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Modeling the Spread of COVID-19 in
Lebanon: A Bayesian Perspective
Samer A. Kharroubi*†

Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut,

Lebanon

This article investigates the problem of modeling the trend of the current Coronavirus

disease 2019 pandemic in Lebanon along time. Two different models were developed

using Bayesian Markov chain Monte Carlo simulation methods. The models fitted

included Poisson autoregressive as a function of a short-term dependence only and

Poisson autoregressive as a function of both a short-term dependence and a long-term

dependence. The two models are compared in terms of their predictive ability using

mean predictions, root mean squared error, and deviance information criterion. The

Poisson autoregressive model that allows capturing both short-term and long-term

components performs best under all criterions. The use of such a model can greatly

improve the estimation of number of new infections, and can indicate whether disease

has an upward/downward trend, and where about every country is on that trend, so that

containment measures can be applied and/or relaxed. The Bayesian model is flexible

in characterizing the uncertainty in the model outputs. The model is also applicable

to other countries and more time periods as data becomes available. Further research

is encouraged.

Keywords: Bayesian statistic, statistical modeling, Poisson autoregressive model, prediction, COVID-19

INTRODUCTION

As the Coronavirus Disease 2019 (COVID-19) pandemic progresses, countries around the world,
including Lebanon, are increasingly implementing a range of responses that are intended to help
prevent the transmission of this disease. Until a COVID-19 vaccine becomes available, strict
measures from closing schools and universities to locking down entire cities and countries were
enforced to suppress the virus transmission, thereby, slowing down the growth rate of cases and
rapidly reducing case incidence.

Structured mathematical and statistical techniques can be potentially powerful tools in the
fight against the COVID-19 pandemic. These techniques allow the COVID-19 transmission to be
modeled, so the resulting models can be used to predict and explain COVID-19 infections. This
may be of great usefulness for health care decision-makers, as it gives them the time to intervene on
the local public health systems, thereby take the appropriate actions to contain the spreading of the
virus to the degree possible. A statistical model that describes the spread of the disease over time is,
therefore, essential to this endeavor. Since the outbreak of the pandemic, there has been a scramble
to use and explore various statistical techniques, and other data analytic tools, for these purposes.

Advancement in statistical modeling, such as Bayesian inference methods facilitates the analysis
of contagion occurrence through time. It is well-documented that infectious diseases grow
exponentially and are usually driven by the basic reproduction number R (see for example [1])
for a given population. The value of R is defined as the ratio between consecutive new occurrences
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of infection. This describes a short-term dependence. However,
according to [2] for the case of COVID-19, incubation time
varies substantially among individuals and incidence and so
measurement may not be uniform across different populations,
thereby a long-term dependence should be induced. This
implies that, a model that describes the contagion dynamics of
COVID-19 should ideally contain both short-term and long-term
components as determining factors of newly infected counts.
Such a model is hugely important to understand whether the
contagion of the virus has a trend (upward or downward) and
where exactly each country stands on that trend. This can provide
support to decision-makers involved in contrasting the spread
of the COVID-19 to perceive the effectiveness of their policy
measures against the virus and what their future steps should be.

We aim in the presenting paper to model and predict the
number of COVID-19 infections in Lebanon using Bayesian
methods. To this aim, we propose two different models of
increasing complexity using BayesianMarkov chainMonte Carlo
(MCMC) simulation methods. These models include Poisson
autoregressive as a function of a short-term dependence only
and Poisson autoregressive as a function of both a short-
term dependence and a long-term dependence. The Poisson
autoregressive model that includes both short-term and long-
term memory components performs best in terms of mean
predictions, root mean squared error (RMSE), and deviance
information criterion (DIC). A model of this kind, while
mathematically expressing the current practices in the modeling
on the global spread of COVID-19, produces findings that could
be beneficial for policy decision-makers. Our contribution in
the present study is a Bayesian statistical model for the spread
of COVID-19 which, by accounting for dependence between
infection counts, can better detect the contagion curve dynamics,
so can shed some light on the understanding of its possible future
path. The Bayesian model is also flexible in characterizing inputs
to regression models and more comprehensive in characterizing
the uncertainty in the model outputs.

To our knowledge, this study would be the first in the Middle
East to analyze and predict the spread of COVID-19 using
Bayesian methods and, therefore, neighboring countries would
benefit from this study along with the model until similar studies
are conducted in the region.

METHODS

Data Source
The Ministry of Public Health has started to release a daily
bulletin about COVID-19 infections in Lebanon since 23
February 2020. Data are available from the website of the
Ministry of Public Health (MoPH) [3] and worldometer website
[4]. The overall temporal distribution of daily counts of COVID-
19 cases (blue line) is presented in Figure 1. The data covers the
period from February 23 to April 18, 2020. The plot indicates
that COVID-19 contagion in Lebanon has achieved a complete
cycle. Specifically, Figure 1 shows an upward trend until a peak
is reached on March 23 and after this date, a decreasing trend is
then observed.

Bayesian Methods
Bayesian methods allow the use of information other than
the study data, into the analysis [5]. Such information is
represented as a prior distribution and is combined with the
likelihood function to give a posterior distribution on which
inferences are subsequently made. In Bayesian analysis, the use of
subjective/informative a priori beliefs is not a necessity as “vague”
priors can be utilized. Given the focus in the present study is
not the incorporation of prior information, all prior distributions
that will be used for model parameters are considered to be
“vague.” However, in order to examine the robustness of our
results under different prior probability distributions, sensitivity
analysis is performed. We consider this finding in more detail in
the discussion section.

MCMC Methods
Bayesian methods rest upon the computation of the posterior
distributions for model parameters. MCMC methods [6] are
computer-intensive methods that would allow user to draw
samples from the posterior distribution, without the need to
explicitly compute the posterior distribution. Each model in this
study will be fit using the software packageWinBUGS [7] and the
relevant WinBUGS code is provided in the Appendix.

Model Development
Two different models were fitted to the data as follows:

1. Poisson autoregressive as a function of a short-term
dependence only

2. Poisson autoregressive as a function of both a short-term
dependence and a long-term dependence

Following Agosto and Giudici [2], the number of new cases
yt reported at time (day) t is assumed to follow a Poisson
distribution i.e.,

yt∼Poisson(λt),

with a log-linear autoregressive intensity specification, as follows:

log (λt) = α + β log(1 + yt − 1) (Model 1)

log(λt) = α + β log(1+ yt−1)+ γ log(λt−1) (Model 2)

In each model, the inclusion of 1 in log (1 + yt−1) allows to
address the problem generated by zero values, α represents the
intercept term and β expresses the short-term dependence of the
expected number of cases reported at time t, λt , on these observed
in the previous day (time t−1). The γ component in model
2 corresponds to a trend component and, more specifically, it
represents the long-term dependence of λt on all past counts
of the observed process. Note that the use of a log-linear
autoregressive intensity specification, rather than linear, allows
for negative dependence. Inference for this model was conducted
via the Maximum Likelihood estimation method in Agosto and
Giudici [2].
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FIGURE 1 | Actual (blue line) and fitted (orange line) cases based on the Poisson autoregressive model (Model 2).

Model Estimation
Both models were implemented from a Bayesian perspective
using Gibbs sampling MCMC simulation methods using
WinBUGS software [7]. The relevant code to undertake the
Bayesian models is given in the Appendix. For every model,
an initial 10,000 iterations were run as a “burn-in” to reach
convergence. To assess convergence, two parallel chains were
started from different initial values, and the ratio of the within-
chain to between-chain variance was then monitored and
converged at about one, indicating convergence had been reached
[8]. The initial run was then followed by an additional 50,000
iterations for parameter estimation purposes. To this end, the
prior distributions for all the regression parameters (α, β , and
γ ) were specified as

α, β , γ ∼ N(0, 106).

That is, centered at zero with a large variance so as to be
relatively non-informative.

Model Validation
The two models were compared in terms of their coefficients
with their associated 95% credible intervals (CI), as well as their
predictive performance using plots of predicted to actual values,
calculations of the mean predictions, RMSE and DIC. The RMSE

TABLE 1 | Model coefficients and model performance.

Parameter Model 1 Model 2 China [2]

α 0.743 (0.476, 1.003) 0.169 (0.038, 0.301) 0.402

β 0.704 (0.611, 0.798) 0.608 (0.514, 0.693) 0.815

γ NA 0.332 (0.241, 0.429) 0.131

RMSE 8.56 7.68 NA

DIC 517.5 444.7 NA

criterion for the mean is defined as:

RMSE =

(

∑T
t=1

(

yt − ŷt
)2

T

)1/2

where yt is the observed value of new infections reported at time
(day) t, ŷt is the fitted value and T is the number of time points
in the sample. In addition, the DIC, which combines measures of
both model fit and model complexity, is defined by

DIC = D+ PD

where D represents the posterior mean deviance and PD is the
effective number of parameters representing model complexity.
The minimum DIC denotes the model best fitting the data [9].
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FIGURE 2 | Example Probability Distributions for the last four daily counts predictions of COVID-19 cases [55–58th case predictions in Table 2 (i.e., λ55 − λ58)].

RESULTS

Model Estimation and Validation
Table 1 shows the estimated autoregressive coefficients for both
models together with their associated 95% CI. We notice that all
coefficients had the expected positive sign as well as their credible
intervals excluding zero, indicating the presence of a short-term
dependence for model 1 and both a short-term dependence
and a long-term trend for model 2. A testing of the models’
performance is also shown in Table 1, where model 2 was found
to perform best by scoring the best RMSE and DIC with 7.68
and 444.7, respectively, in comparison to model 1 (RMSE= 8.56,
DIC= 517.5).

Model Predictions
Model 2 has been tested in terms of its predictive ability where
the resulting fitted mean occurrences (orange line) have been
plotted along with the actual occurrences (blue line) in Figure 1.
As can be seen from the plot, the Poisson autoregressive model
as a function of both a short-term dependence and a long-
term dependence predicts the data quite well. With aim of
better interpreting the short-term time series and long-term time
series of model 2, we notice from Table 1 that the estimated γ

parameter is lower than β , confirming that a downward trend
data is accumulated. Additionally, we split the Lebanese data into
two time periods and we separately fit the model for each data set.
More specifically, we first fit the model on the data, which covers
the period from February 23 to March 23, 2020 and then on the
data from March 24 onwards. Analysis from the first data set
revealed that γ was larger than β , confirming the presence of an
upward trend (the γ component) which absorbs the short-term
component. After this date, the estimated γ parameter became
lower, so a downward trend data is accumulated.

Agosto and Giudici [2] drew a similar conclusion from
their analysis of the Chinese data, which covers the period

from January 20 to March 15, 2020. Their estimated β and γ

parameters (final column of Table 1) revealed that the contagion
cycle was in a downward trend (γ < β). On the other side, their
analysis for South Korea revealed non-significant estimate for the
estimated γ parameter, confirming absence of a trend effect on
the daily cases. However, for Italy, their results showed that the
estimated β parameter was smaller than γ , suggesting that the
trend of the contagion has not peaked yet.

Uncertainty in Model Predictions
A key potential advantage of the Bayesian approach is that it
produces estimates of the uncertainty in the number of new
infections predictions from the model. The classical models, like
[2], produce data on the uncertainty in the model parameters,
however, they do not produce estimates of the uncertainty in the
number of new infections predictions from the model. Figure 2
shows the probability distributions for the last four daily count
predictions (λ55–λ58) from the model. From these distributions,
the mean, median, standard deviation, and corresponding 95%
credible intervals along with Monte Carlo (MC) error can
be computed. The distributional statistics for all daily counts
predictions from the model are reported in Table 2. These results
show that Bayesian method is more flexible in characterizing
inputs to regression models and more comprehensive in
characterizing the uncertainty in the model outputs.

DISCUSSION

In this article, we have analyzed, by modeling, the trend of
the current COVID-19 pandemic in Lebanon along time. We
have developed two different models of increasing complexity
using Bayesian MCMC simulation methods, and found that
the Poisson autoregressive as a function of both a short-term
dependence and a long-term dependence provides the best fit to
the data. The use of Poisson autoregressive model that allows to
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TABLE 2 | Characteristics of distributions for the daily counts predictions.

λt Mean

prediction

Standard

deviation

Median

prediction

Lower

bound of the

95% CI

Upper

bound of the

95% CI

MC error

λ1 0.9032 0.7494 0.6856 0.117 2.861 0.01872

λ2 1.297 0.6414 1.194 0.3645 2.807 0.01629

λ3 1.337 0.4112 1.317 0.6114 2.186 0.01005

λ4 1.394 0.2957 1.389 0.8306 1.988 0.007653

λ5 1.445 0.2453 1.434 0.9905 1.968 0.007352

λ6 1.867 0.2763 1.86 1.35 2.465 0.009348

λ7 1.735 0.2542 1.72 1.276 2.298 0.009061

λ8 2.091 0.2872 2.076 1.566 2.719 0.01054

λ9 2.342 0.3093 2.325 1.773 3.011 0.01148

λ10 3.156 0.3729 3.141 2.448 3.946 0.01397

λ11 3.779 0.4076 3.766 2.997 4.624 0.01525

λ12 4.217 0.4196 4.208 3.409 5.085 0.01562

λ13 3.587 0.3912 3.561 2.863 4.432 0.01447

λ14 3.723 0.3983 3.696 2.987 4.581 0.01473

λ15 3.333 0.3954 3.308 2.622 4.202 0.01462

λ16 4.478 0.4239 4.467 3.667 5.369 0.01569

λ17 5.634 0.4705 5.633 4.715 6.581 0.01733

λ18 5.79 0.4558 5.784 4.903 6.726 0.0166

λ19 8.293 0.6026 8.297 7.116 9.451 0.02176

λ20 10.99 0.797 11.01 9.45 12.55 0.02831

λ21 6.409 0.5255 6.39 5.442 7.503 0.01885

λ22 7.628 0.4764 7.617 6.723 8.624 0.01653

λ23 10.67 0.5928 10.67 9.506 11.81 0.01989

λ24 10.37 0.4995 10.37 9.407 11.35 0.0158

λ25 11.82 0.5463 11.83 10.75 12.87 0.01664

λ26 12.48 0.542 12.48 11.44 13.53 0.01563

λ27 14.11 0.6219 14.11 12.9 15.35 0.0176

λ28 15.49 0.6858 15.49 14.17 16.85 0.01894

λ29 16.98 0.7716 16.97 15.51 18.52 0.02119

λ30 25.03 1.998 24.97 21.3 29.1 0.06745

λ31 24.1 1.455 24.08 21.28 26.95 0.04464

λ32 22.2 1.101 22.18 20.12 24.38 0.03019

λ33 26.2 1.6 26.17 23.14 29.38 0.04873

λ34 26.75 1.598 26.71 23.71 29.93 0.04796

λ35 28.8 1.845 28.75 25.27 32.48 0.05678

λ36 26.31 1.496 26.27 23.48 29.32 0.04382

λ37 24.22 1.311 24.19 21.72 26.85 0.03771

λ38 24.66 1.326 24.64 22.17 27.3 0.03774

λ39 17.32 1.126 17.32 15.1 19.54 0.03682

λ40 17.6 0.9141 17.58 15.85 19.43 0.02679

λ41 17.42 0.8237 17.4 15.86 19.09 0.02255

λ42 16.97 0.7732 16.94 15.51 18.54 0.02063

λ43 16.34 0.7365 16.32 14.95 17.83 0.01966

λ44 15.23 0.7129 15.21 13.87 16.67 0.01998

λ45 12.43 0.7635 12.4 10.98 13.99 0.025

λ46 13.53 0.6141 13.51 12.39 14.79 0.01722

λ47 11.56 0.6646 11.53 10.33 12.93 0.02145

λ48 15.92 0.6674 15.91 14.68 17.29 0.01711

λ49 12.74 0.6063 12.72 11.6 13.96 0.0179

(Continued)

TABLE 2 | Continued

λt Mean

prediction

Standard

deviation

Median

prediction

Lower

bound of the

95% CI

Upper

bound of the

95% CI

MC error

λ50 16.89 0.7385 16.87 15.53 18.4 0.01954

λ51 14.67 0.6002 14.66 13.52 15.88 0.01522

λ52 13.88 0.6026 13.87 12.73 15.1 0.01643

λ53 8.501 0.8158 8.459 7.003 10.19 0.02924

λ54 9.393 0.6183 9.354 8.283 10.68 0.02098

λ55 12.12 0.5135 12.11 11.14 13.14 0.01437

λ56 9.815 0.5728 9.786 8.757 11 0.01893

λ57 8.649 0.5963 8.618 7.563 9.895 0.02055

λ58 7.544 0.6013 7.506 6.478 8.797 0.02122

capture short and long term memory effects can greatly improve
the estimation of number of new cases and can indicate whether
disease has an upward/downward trend, and where about every
country is on that trend, all of which can help the public decision-
makers to better plan health policy interventions and take the
appropriate actions to contain the spreading of the virus to the
degree possible.

Through employing Bayesian methods, we were able to
incorporate parameter estimation uncertainty in our results. In
particular, they allow to provide information on the predictive
performance precision as a direct output from the modeling
process, and this in turn can be used to prepare credible intervals
for posterior distributions. For example, posterior distributions
constructed in Bayesian analysis permit inference of functions
of parameters (e.g., tail probabilities of parameters), which the
classical analysis, like [2], cannot do.

Model findings are presented for the actual time series of
Lebanon, but can be easily reproduced and extended to other
countries and more time periods as more data becomes available.
Ongoing research on conducting the proposed methodology for
the US, UK, China, Italy, and South Korea has preliminary results
that are very promising. The model can also be used to monitor
the spread of the virus in the post-lockdown phase, which in
turn would enable a comparative analysis of the effectiveness of
alternative policy measures. Further research is also underway
to assess this. It is perhaps worth mentioning that the model
proposed must be analyzed with a caveat in mind related to the
fact that the dataset still covers a relatively limited timeframe.

To this end, a key note related to the prior distributions
that are put on the model parameters: Although these prior
distributions were considered to be non-informative, it is
recommended to perform sensitivity analysis to assess the impact
of these distributions. Had said, for every regression parameter in
the model, the mean for the normal prior distribution was varied
from −50 to 50. The variance for the normal prior distributions
was also varied from 102 to 106. The posterior distributions for
the regression parameters were found to change only minimally,
thus a normal prior with variance 106 is suitably non-informative
and works generally well with our dataset. This implies that,
for our model, results were robust over this array of prior
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distributions. More discussions regarding the choice of prior
distributions are available in Spiegelhalter et al. [10].
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APPENDIX

WinBUGS Code—Bayesian Analysis of
Poisson Autoregressive Model (Model 2)
model{

# AR(1) model
log(lambda [1]) <- w + alpha∗log(1+y0)
+ beta∗log(lambda0)
y[1]∼ dpois(lambda [1])
for(t in 2:N) {
log(lambda[t]) <- w + alpha∗log(1+y[t-1])
+ beta∗log(lambda[t-1])
y[t]∼ dpois(lambda[t])
}
# Prior distribution
w∼ dnorm(0.0, 1.0E-6)
alpha∼ dnorm(0.0, 1.0E-6)
beta∼ dnorm(0.0, 1.0E-6)
y0∼ dunif(0.001,1000)
lambda0∼ dunif(0.001,1000)
}
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