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Ensemble Kalman filters are powerful tools to merge model dynamics and observation

data. For large system models, they are known to diverge due to subsampling errors at

small ensemble size and thus possible spurious correlations in forecast error covariances.

The Local Ensemble Transform Kalman filter (LETKF) remedies these disadvantages by

localization in observation space. However, its application to nonlocal observations is

still under debate since it is still not clear how to optimally localize nonlocal observations.

The present work studies intermittent divergence of filter innovations and shows that

it increases forecast errors. Nonlocal observations enhance such innovation divergence

under certain conditions, whereas similar localization radius and sensitivity function width

of nonlocal observationsminimizes the divergence rate. The analysis of the LETKF reveals

inconsistencies in the assimilation of observed and unobserved model grid points which

may yield detrimental effects. These inconsistencies inter alia indicate that the localization

radius should be larger than the sensitivity function width if spatially synchronized

system activity is expected. Moreover, the shift of observation power from observed to

unobserved grid points hypothesized in the context of catastrophic filter divergence is

supported for intermittent innovation divergence. Further possible mechanisms yielding

such innovation divergence are ensemble member alignment and a novel covariation

between background perturbations in location and observation space.

Keywords: ensemble Kalman filter, localization, nonlocal observations, divergence, local observations

1. INTRODUCTION

Data assimilation (DA) merges models and observations to gain optimal model state estimates.
It is well-established in meteorology [1], geophysics [2], and attracts attention in life sciences [3].
Typical applications of DA serve to estimate model parameters [4] or provide initial conditions
for forecasts [5]. A prominent technique is the ensemble Kalman filter [6], which allows to
assimilate observations in nonlinear models. When underlying models are high-dimensional, such
as in geophysics or meteorology, spurious correlations in forecast errors are detrimental to state
estimates. A prominent approach to avoid this effect is localization of error covariances. The
Local Ensemble Transform Kalman Filter (LETKF) [7] utilizes a localization scheme in observation
space that is computationally effective and applicable to high-dimensional model systems. The
LETKF applies to local observations [8] measured in the physical system under study, e.g.,
by radiosondes, and nonlocal observations measured over a large area of the system by, e.g.,
weather radar or satellites [9–11]. Since nonlocal observations represent spatial integrals of activity,
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and the localization scheme of the LETKF requests a single spatial
location of each observation, it is conceptually difficult to apply
the LETKF to nonlocal observations. In fact, present localization
definitions [10, 12] of nonlocal observations attempt to estimate
the best single spatial location neglecting the spatial distribution
of possible activity sources. A recent study [13] on satellite data
assimilation proposes to choose the localization radius equal to
the spatial distribution width of radiation sources. This spatial
source distribution is the sensitivity function of the nonlocal
observation and is part of the model system. The present work
considers the hypothesis that the relation between localization
radius and sensitivity function width plays an important role in
the filter performance.

Merging the model forecast state and observations, the
ensemble Kalman filter tears the analysis, i.e., the newly estimated
state, toward the model forecast state and thus underestimates
the forecast error covariance matrix due to a limited ensemble
size [14]. This is enforced by model errors [15, 16] and leads to
filter divergence. Moreover, if the forecast error covariances are
too large, the forecasts have too less weight in the assimilation
step and the filter tears the analysis toward the observations. This
also results to filter divergence. In general terms, filter divergence
occurs when an incorrect background state can not be adjusted
to a better estimate of the true state by assimilating observations.

Ensemble member inflation and localization improves the
filter performance. The present work considers a perfect
model and thus neglects model errors. By virtue of this
study construction, all divergence effects observed result from
undersampling and localization. The present work chooses a
small ensemble size compared to the model dimension, fixes the
ensemble inflation to a flow-independent additive inflation and
investigates the effect of localization.

In addition to the filter divergence described above ensemble
Kalman filter may exhibit catastrophic filter divergence which
enhances the filter forecasts to numerical machine infinity [17–
21]. This divergence is supposed to result from alignment of
ensemble members and from unconserved observable energy
dissipation [20]. This last criterion states that the filter diverges
in a catastrophic manner if the observable energy of the system
dissipates in unobserved directions, i.e., that energy moves from
observed to unobserved locations. The present work raises the
question whether such features of catastrophic divergence play
a role in non-catastrophic filter divergence as well. Subsequent
sections indicate that this is the case in the assimilation of
nonlocal observations.

The underlying motivation of this work is the experience
from meteorological data assimilation, that satellite data are
detrimental to forecasts if assimilation procedure is not well-
tuned [12, 13, 22]. This effect is supposed to result from
deficits in the underlying model. The present work assumes a
perfect model and investigates the question, whether assimilating
nonlocal observations is still detrimental. Figure 1 shows forecast
and analysis errors in numerical data assimilation experiments
with this perfect model with three local observations only and
with additional nonlocal observation. Nonlocal observations
have positive and negative impact on the forecast error of the
local observations dependent on the spatial location of the

FIGURE 1 | Example for effect of nonlocal observations on departure

statistics. Verification of model equivalents in observation space by local

observations at three spatial positions (x = 1, 27, and 54) for assimilation of

local observations only (open squares) and assimilation of local observations

and nonlocal observation (solid diamonds). The blue-colored line sketch on the

right hand side reflects the sensitivity function of the nonlocal observation with

center at x = 40 and the width rH = 10; the localization radius is rl = 10.

Further details on the model, observations and assimilation parameters are

given in section 2.7.

local observations with respect to the nonlocal observation.
This preliminary result, that additional observations increase
the first guess error, is counter-intuitive at a first glance
but consistent with practical experience in weather forecasting.
This finding indicates that nonlocal observations renders the
LETKF unstable and it diverges dependent on properties of the
observations sensitivity function. What is the role of localization
in this context? Is there a fundamental optimal relation between
localization and sensitivity function as found in [13]? The present
work addresses these questions in the following sections.

Section 2 introduces the essential elements of the LETKF
and re-calls its analytical description for a single observation in
section 2.5. Section 2.8 provides conventional and new markers
of filter divergence that help to elucidate possible underlying
divergence mechanisms. Section 3 presents briefly the findings,
that are put into context in section 4.

2. METHODS

2.1. The Model
The storm-like Lorenz96—model [23] is a well-established
meteorological model and the present work considers an
extension by a space-dependent linear damping [24]. It is a circle
network with nodes of number N, whose node activity xk(t) at
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node k and time t obeys

dxk

dt
= (xk+1 − xk−2)xk−1

−(1/2+ 2 cos4(αkπ))xk + I , (1)

with k = 1, . . . ,N, xk = xk+N , and αk = k/N. We choose
I = 8.0 and N = 80 and the initial condition is random with
xk(0) = 8.0 + ξk, k 6= N/2, and xN/2(0) = 8.01 + ξN/2 with the
normal distributed random variable ξ ∼ N (0, 0.01). Figure 2A

shows the model field dependent on time.
Typically, data assimilation techniques are applied to merge

observations and solutions of imperfect models and the true
dynamics of the underlying system is not known. To illustrate the
impact of nonlocal observations, we assume (what is unrealistic
in practice) that the model under consideration (1) is perfect
and hence emerging differences between observations and model
equivalents do not originate in the model error.

2.2. The Local Ensemble Transform
Kalman Filter (LETKF)
The aim of data assimilation is to estimate a state that describes
optimally both a model (or background) state xb ∈ R

N and
corresponding observations y ∈ R

S of number S. This analysis
xa ∈ R

N minimizes the cost function

J(x) =
(

x− xb
)t

B−1
(

x− xb
)

+

+
(

y − Ĥ(xb)
)t

R−1
(

y− Ĥ(xb)
) (2)

with x ∈ R
N , the background error covariance B ∈ R

N×N and
the observation error covariance R ∈ R

S×S. The observation
operator Ĥ :R

N → R
S is linear in the present work and projects

a model state into the observation space and thus links model and
model equivalents in observation space.

The LETKF estimates the background error covariance B by
background-ensemble perturbations of number L

B ≈ 1

L− 1
Xb

(

Xb
)t

(3)

with Xb ∈ R
N×L. In the following, we will call an ensemble with

L = N a full ensemble, compared to a reduced ensemble with
the typical case L < N. The columns of Xb are the background
ensemble member perturbations {xb,l − x̄b} ∀l = 1, . . . , L, {xb,l}
is the set of background ensemble members and x̄b is the mean
over the ensemble.

Then the coordinate transformation from physical space to
ensemble space

x = x̄b + Xbw (4)

describes a state x in the ensemble space with new coordinates
w [7]. Inserting Equation (4) into (2) yields

J(w) = (L− 1)wwt

+
(

y − ȳb − Yw
)t

R−1
(

y− ȳb − Yw
) (5)

in the new coordinate w. Here ȳb = Ĥ(x̄b) ∈ R
S is the model

equivalent of the background ensemble mean in observation
space and Yb = Ĥ(Xb) is the corresponding model equivalent
of Xb. This implies [7]

Ĥ
(

x̄+ Xbw
)

≈ ȳb + Ybw ,

which is valid for linear observation operators.
The minimization of the cost function (5) yields

w̄a = A(Yb)tR−1
(

y − ȳb
)

(6)

with

A =
[

(L− 1)I +
(

Yb
)t

R−1Yb

]−1

. (7)

Equation (4) provides the analysis ensemble mean

x̄a = x̄b + Xbw̄a . (8)

Then the square root filter-ansatz [7] yields the analysis ensemble
members

wa,l = w̄a +Wa,l ,

whereWa,l is the l-th column of the matrixWa =
[

(L− 1)A
]1/2

.
The square root of A may be computed by using the singular
value decomposition A = UDVt with the diagonal matrix D and
the eigenvector matrices U ,V . This yields A1/2 = UD1/2V t .

Finally the analysis ensemble members in physical space read

xa,l = x̄b + Xw̄a + XWa,l, l = 1, . . . , L , (9)

see [7, 8] for more details.
Specifically, we have chosen L = 10 ensemble members and

number of observations S = 1 or S = 2.

2.3. Observation Data
In principle there are two types of observations. Local
observations are measured at a single spatial location in the
system, whereas nonlocal observations are integrals over a set of
spatial locations. Examples for local observations are radiosondes
measuring humidity and temperature in the atmosphere at a
certain vertical altitude and horizontal position. Typical nonlocal
observations are satellite measurements capturing the radiation
in a vertical atmospheric column.

The present work considers observations

y = Ĥ(x)+ η , (10)

where η ∈ S is Gaussian white noise with the true varianceRt and
Ĥ(x) is a linear observation operator Ĥ(x) = Hx, H ∈ R

S×N . In
the following, the linear operator H is called sensitivity function
and we adopt this name from meteorological data assimilation
of nonlocal satellite data. The present work considers either
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nonlocal observations only (S = 1) with the observation matrix
elements

H1n =













1 n ∈ [N/2− rH;N/2)

1+ 10−5 n = N/2

1 n ∈ (N/2;N/2+ rH]

0 otherwise

(11)

with sensitivity function width rH or both observation types
(S = 2), for which the observation matrix elements read

H1n =









1 n ∈ [N/2− rH;N/2)

1+ 10−5 n = N/2

1 n ∈ (N/2;N/2+ rH]

(12)

H2n = 1 for n = i (13)

Hkm = 0 otherwise, (14)

where the local observation is captured at spatial location i, cf.
Figure 2 for illustration. The sensitivity function of the nonlocal
observation has a small peak in its center, which permits to
localize the observation in the center of the sensitivity function,
cf. section 2.4.

In the subsequent sections, i = N/2 and rH varies in the
range 1 ≤ rH ≤ 10. Please note that rH = 1 approximates
the model description of a local observation. Moreover, in the
following a grid point whose activity contributes to a model
equivalent in observation space is called an observed grid point
and all others are called unobserved grid points. Mathematically,
observed (unobserved) grid points exhibit Hnk 6= 0 (Hnk = 0).

In this work, a single partial study considers a smooth
sensitivity function instead of the boxcar function described
above. Then the sensitivity function is the Gaspari-Cohn function
GC(n, rH/2) [25] in the interval −rH ≤ n ≤ rH , which
approximates the Gaussian function by a smooth function with
finite support 2rH

H1n =
{

GC(n, rH) n ∈ [−rH; rH]
0 otherwise

The observations y(tn), tn =1, . . . ,T at T time instances (cf.
Equation 10) obey the model (1) and Equation (10) with the
observation operator (11) or (12). In a large part of the work, we
have assumed zero observation error Rt = 0, i.e., observations
are perfect in the sense that they reflect the underlying perfect
model, cf. section 2.1. We take the point of view that we do not
know that the model and observations are perfect and hence we
guess R as it is done in cases where models and observations are
not perfect.
This approach has been taken in most cases in the work.
Since, however, this implicit filter error may already contribute
to a filter instability or even may induce it, a short partial
study has assumed perfect knowledge of the observation error.
To this end, in this short partial study we have assumed
(Rt)jj = 0.1, j = 1, . . . , S and perfect knowledge of this error, i.e.,
R = Rt .

FIGURE 2 | The model field V from Equation (1) and an illustration of the

observation operator H from Equation (12) with the sensitivity function width

rH. (A) Exemplary space-time distribution of the model solution (left hand side)

with the parameters I = 8.0 and N = 80, the sketched position i of a local

observation and a sketched sensitivity function of nonlocal observation with

the center in the middle of the spatial field with radius rH. (B) Example

observations illustrating that local and nonlocal observations are scalars and

may evolve differently over time. Please also note the different order of values

of the two observation types.

Although techniques have been developed to estimate R

adaptively [26], we do not employ such a scheme for simplicity.

2.4. Localization
In the LETKF, the background covariance matrix B is expressed
by L ensemble members, cf. Equation (3), and it is rank-deficit
for L ≪ N. This leads to spurious correlations in B. Spatial
localization in ensemble Kalman filters has been found to be
beneficial [16, 27–29] in this context. The LETKF as defined by
Hunt et al. [7] performs the localization in observation space.
In detail, Hunt et al. [7] proposed to localize by increasing
the observation error in matrix R dependent on the distance
between the analysis grid point and observations. The present
implementation follows this approach.

The observation error matrix R is diagonal, i.e., observation
errors between single observations are uncorrelated. Then at
each grid point i the localization scheme considers observations
yn at location j only if the distance between location i and j
does not exceed the localization radius rl. Then the error of
observation n is Rnn = R0nn/ρij, where ρij = GC(dij, r) + ε
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for dij ≤ rl is the weighting function with the Gaspari-Cohn
function GC(d, r) [25], ε > 0 is a small constant ensuring a finite
observation error and dij is the spatial distance between i and j.
The Gaspari-Cohn function approximates a Gaussian function
with standard deviation r

√
3/10 by a polynomial with finite

support. The parameter 2r = rl is the radius of the localization
function with 0 ≤ GC(z, r) ≤ 1, 0 ≤ z ≤ rl. Consequently the
observation error takes its minimum R0nn at distance dij = 0 and
increases monotonously with distance to its maximum R0nn/ε at
dij = rl . In the present implementation, we use ε = 10−7 and
observation errors R011 = 0.1 for a single nonlocal observation
S = 1 and R0nm = 0.1δnm, n = 1, 2 for local and nonlocal
observation with S = 2.

The observation error close to the border of the localization
area about a grid point i is large by definition Rnn =
R0nn/(GC(d → rl/2, rl/2) + ε). In numerical practice, the
assimilation effect of large values Rnn > R0nn/GClow is
equivalent for some distances from the grid point i in a
reasonable approximation ifGClow is low enough. By virtue of the
monotonic decrease ofGC(d, rl/2) with respect to distance d ≥ 0,
this yields the condition GC(rl ≥ d ≥ rc, rl/2) < GClow. In other
words, for distances d larger than a corrected localization radius
rc, the observation errors Rnn are that large that observations at
such distances do poorly contribute to the analysis. For instance,
if GClow = 0.01, then rl = 5 → rc = 3, rl = 10 →
rc = 7 and rl = 15 → rc = 11. It is important to note
that this corrected localization radius depends on the width of
the Gaspari-Cohn function and thus on the original localization
radius rl, i.e., rc = rc(rl). In most following study cases results
are given for original localization radii rl, while the usage of the
corrected localization radius is stated explicitly. The existence of a
corrected localization radius rc illustrates the insight, that there is
not a single optimal localization radius for smooth localization
functions but a certain range of equivalent localization radii.
For non-smooth localization functions with sharp edges, e.g., a
boxcar function, this variability would not exist.

The present work considers primarily nonlocal observations.
Since these are not located at a single spatial site, it is non-
trivial to include them in the LETKF that assumes a single
observation location. To this end, several previous studies
have suggested corresponding approaches [13, 24, 30–36]. A
reasonable approximation for the spatial location of a nonlocal
observation is the location of the maximum sensitivity [10,
37], i.e., maxnHkn of nonlocal observation k. Although
this approximation has been shown to yield good results, it
introduces a considerable error for broad sensitivity functions,
i.e., rH is large. In fact, this localization scheme introduces an
additional contribution to the observation error. The present
implementation considers this definition. This results in the
localization of the nonlocal observation at grid point i = N/2.

2.5. LETKF for a Single Observation
In a large part of this work, we consider a single observation with
S = 1. The subsequent paragraphs show an analytical derivation
of the ensemble analysis mean and the analysis members, whose
terms are interpreted in section 3.

Considering the localization scheme described above, at the
model grid point i the analysis ensemble mean (8) reads

x̄ai = x̄bi +
(

XiAiY
t
)

(y0 − ȳb)/Ri (15)

where Y ∈ R
L is a row vector with Yk = Yb

1k
, with the row vector

Xi ∈ R
L, (Xi)k = Xik and

Ai =
[

(L− 1)I + Y tY/Ri
]−1

. (16)

The term Ri = R011/ρi(N/2) denotes the weighted observation
error used at grid point i, when the observation is located at
j = N/2, and R011 is the error of observation y1.

Now utilizing the Woodbury matrix identity [38]

(B+ UCV)−1 =
B−1 − B−1U(C−1 + VB−1U)−1VB−1

for real matrices B ∈ R
n×n, U ∈ R

n×k, C ∈ R
k×k, and

V ∈ R
k×n with n, k ∈ N, Equation (16) reads

Ai =
1

L− 1
Qi (17)

Qi = I − 1

(L− 1)Ri + y2
Y tY ,

where y =
√
YY t ∈ R is a scalar. Inserting (17) into (15), the

analysis ensemble mean is

x̄ai = x̄bi + XiY
tαi (18)

with

αi =
y0 − ȳb

(L− 1)Ri + y2
.

Since RN/2 = R011 and RN/2±rl = R0nn/ε = 107R0nn, αi takes its
maximum at the observation location and is very small when the
observation is at the localization border. This means that x̄ai ≈ x̄bi
at the border of the localization area.

Now let us focus on the ensemble members. Equations (18)
and (9) give the analysis ensemble members at grid point i

xa,li = x̄bi + XiY
tαi +

√
L− 1Xi

(√

Ai

)

l
, (19)

where (
√
Ai)l is the l-th column of matrix

√
Ai =

√
Qi/

√
L− 1.

The singular value decomposition serves as a tool to compute

√

Qi = U
√
DU t , (20)
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where
√
D ∈ R

L×L is diagonal and its matrix elements are the
eigenvalues of Q. The columns of matrix U ∈ R

L×L are the
normalized eigenvectors of Q. Then Equation (7) yields

QiY
t =

(

I − 1

(L− 1)Ri + y2
Y tY

)

Y t

= Y t − y2

(L− 1)Ri + y2
Y t

= (L− 1)Ri

(L− 1)Ri + y2
Y t

= λiY
t ,

i.e., Y t is an eigenvector of Qi with eigenvalue 0 < λi < 1.
By virtue of the properties of Ri, λi takes its minimum at the
observation location at i = N/2 and it is maximum at the
localization border.

The remaining eigenvectors of number L− 1 are vn ⊥ Y , n =
1, . . . , L− 1 with unity eigenvalue since

Qivn =
(

I − 1

(L− 1)Ri + y2
Y tY

)

vn

= vn −
1

(L− 1)Ri + y2
Y t Yvn

︸︷︷︸

=0

= vn .

Hence U = (Y t/||Y||, v1, . . . , vL−1) and
√
D = diag(

√
λi, 1, . . .)

and, after inserting into Equation (20) and lengthy calculations

(
√

Qi)kl =
√

λi
YkYl

y2
+

L−1
∑

n=1

(vn)k(vn)l . (21)

This leads to

xa,li = x̄bi + XiY
tαi + XiY

t

√
λi

y2
Yl +

L−1
∑

n=1

Xivn(vn)l . (22)

2.6. Additive Covariance Inflation
The ensemble Kalman filter underestimates the forecast error
covariance matrix due to the limited ensemble size [39]. This
problem is often addressed by covariance inflation [27, 40, 41].
The present work implements additive covariance inflation [42].
The ensemble perturbations Xb in (3) are modified by white
Gaussian additive noise Ŵ ∈ R

N×L

Xb
add = Xb + Ŵ .

with matrix elements Ŵij ∼ N (0, f 2
add

) and the inflation factor
fadd = 0.1.

2.7. Numerical Experiments
The present study investigates solutions x(t) of model (1) and
Equation (10) provides the observations y(t). This is called
the nature run. In the filter cycle, the initial analysis values
are identical to the initial values of the nature run and the
underlying filter model is the true model (1). In the forecast

step, the model is advanced with time step 1t = 10−3/12
for 100 time steps applying a 4th-order Runge-Kutta integration
scheme. According to [23], the duration of one forecast step
corresponds to 1 hour which is also the time between two
successive observations. The analysis update is instantaneous. In
an initial phase, the model evolves freely for 50 forecast steps,
i.e., 50 h, to avoid possible initial transients. Then, the LETKF
estimates the analysis ensemble according to section 2.2 during
200 cycles if not stated otherwise. One of such a numerical
simulation is called a trial in the following and it comprises
100 · 200 time steps. In all figures, the time given is the number of
forecast steps, or equivalently analysis steps in hours.
Each trial assumes identical initial ensemble members and the
only difference in trials results from the additive noise in additive
covariance inflation, cf. section 2.6.

By virtue of the primarily numerical nature of the present
work, it is mandatory to vary certain parameters, such as
perturbations to the observations or the factor of additive
inflation. For instance, the data assimilation results in Figure 1

are based on model (1), 3 local and 1 nonlocal observation.
This corresponds to the observation operator Ĥ with the
sensitivity function

H1n = δnn1

H2n = δnn2

H3n = δnn3

H4n =









1 n ∈ [N/2− rH;N/2)

1+ 10−5 n = N/2

1 n ∈ (N/2;N/2+ rH]

with rH = 10 and n1 = 1, n2 = 27, n3 = 54. The localization
radius is identical to the sensitivity function rl = rH and data
assimilation is performed during 250 filter cycles with an initial
phase of 50 forecast steps. For stabilization reasons, we have
increased the model integration time step to 1t = 10−2/12 but
reduced the number of model integrations to 10 steps, cf. [19],
thus essentially retaining the time interval between observations.
Other parameters are identical to the standard setting described
in the previous sections.

As mentioned above, typically the measurement process is
not known in all details. For instance, the observation error is
assumed to be R = 0.1 for the nonlocal observations, whereas
the true model exhibits noise-free observations with Rt = 0. This
is the valid setting for all simulations but few set of trials shown
in Figure 5. In a set of experiments [Figure 5 (solid, dashed,
and dashed-dotted line)], observations are noisy with noise
perturbation variance 0.1 and hence Rt = R = 0.1. Moreover,
the additive inflation factor is chosen to fadd = 0.1 but in two
single sets of experiments [cf. Figure 5 (dashed and dashed-
dotted line)], where fadd = 0.05. In addition, the weighting
function of nonlocal observations is a boxcar window function
with sharp borders but in a single set of experiments, where
the weighting function is a smooth Gaspari-Cohn function, cf.
Figure 5 (dashed-dotted line).

The verification measures bias and RMSE are computed for
the local observations only according to Equations (23) and (24).
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2.8. Divergence Criteria and Verification
The Kalman filter may diverge for several reasons [6, 27, 43],
such as model error, insufficient sampling of error covariance,
or high condition number of observation operators [17, 44].
Especially the latter has been shown to be able to trigger
catastrophic filter divergence of the ensemble Kalman filter
exhibiting a diverging forecasts inmodel state space [19–21]. This
divergence type exhibits a magnitude increase of model variables
to machine infinity in finite time. The present implementation
detects catastrophic filter divergence and stop the numerical
simulation when the maximum absolute value of any single

ensemble member exceeds a certain threshold |xb,l
k
| > 1010, k ∈

[1;N], l ∈ [1; L].
The present work focusses primarily on a non-catastrophic

filter divergence type showing a strong increase of the innovation
magnitude to values much larger than the model equivalent
in observation space of the attractor. This divergence may
be temporally intermittent with finite duration. Since this
intermittent innovation divergence results in increased first guess
departures and hence worsens forecasts, it is important to detect
these divergences and control them. By definition the innovation
process diverges if maxl,k |[yn−Hxb,l]k| > σth for any observation

n with σth = 1,000
√

R0nn. Then the numerical simulation is
stopped. The time of filter divergence is called Tb in the
following. This criterion for innovation divergence is hard: if the
innovation reaches the threshold σth, then innovation divergence
occurs. The corresponding divergence rate γ is the ratio between
the number of divergent and non-divergent trials. For instance,
for γ = 1 all numerical trials diverge whereas γ = 0 reflect
stability in all numerical trials.

Moreover, it is possible that |[yn − Hxb,l]k| grows
intermittently but does not reach the divergence threshold.
The first guess departure bias

bias = 1

TS

T
∑

k=1

S
∑

n=1

[y(tk)]n − [Hx̄b(tk)]n (23)

and the corresponding root mean-square error

RMSE = 1

TS

T
∑

k=1

S
∑

n=1

(yn(tk)− [Hx̄b(tk)]n)
2 (24)

quantify the forecast error in such trials. For a single observation,
y → yo. Larger values of bias RMSE indicate larger innovation
values.

To quantify filter divergence, Tong et al. [18] have proposed
the statistical measure

2n =

√
√
√
√

1

L

L
∑

l=1

(y(tn)−Hxb,l(tn))t(y(tn)−Hxb,l(tn))

and

4n = || 1

L− 1

L
∑

l=1

Xo(tn)⊗ Xu(tn)||

at time tn, where the norm is defined by ||Z|| =
∑

n,m |Znm|2
for any matrix Z and Znm are the corresponding matrix
elements. The quantity 2n represents the ensemble spread in
observation space and 4n is the covariation of observed and
unobserved ensemble perturbations assuming local observations.
Large values of 4 indicates catastrophic filter divergence as
pointed out in [18, 20]. This definitionmay also apply to nonlocal
observations, cf. section 2.5, although its original motivation
assumes local observations.

An interesting feature to estimate the degree of divergence
is the time of maximum ensemble spread T2 and the time of
maximum covariation of observed and unobserved ensemble
perturbations T4:

T2 = argmax
n

2n

T4 = argmax
n

4n .
(25)

Moreover, previous studies have pointed out that catastrophic
filter divergence in ensemble Kalman filter implies alignment of
ensemble members. This may also represent an important
mechanism in non-catastrophic filter divergence. The
new quantity

pa,u = na,u

L(L− 1)/2
(26)

is the probability of alignment and unalignment, where na is the
number of aligned ensemble member perturbation pairs (xb,l −
x̄b), (xb,k − x̄b) for which

cosβlk =
(xb,l − x̄b)t(xb,k − x̄b)

||xb,l − x̄b||||xb,k − x̄b||
≥ 0.5

and nu is the number of ant-aligned member pairs with

cosβlk =
(xb,l − x̄b)t(xb,k − x̄b)

||xb,l − x̄b||||xb,k − x̄b||
≤ −0.5

∀ l 6= k, l, k = 1, . . . , L. The alignment (anti-alignment)
condition cosβlk > 0.5 (cosβlk < −0.5) implies −60◦ ≤ βlk ≤
60◦ (120◦ ≤ βlk| ≤ 240◦). Please note that 0 ≤ pa,u ≤ 1
and the larger pa (pu) the more ensemble members are aligned
(anti-aligned) to each other.

Considering the importance of member alignment to
each other for catastrophic divergence, it may be interesting
to estimate the alignment degree of background member
perturbation with the analysis increments xa,l − xb,l by

cosαl =
(xb,l − x̄b)t(xa,l − xb,l)

||xb,l − x̄b||||xa,l − xb,l||
, l = 1, . . . , L . (27)

The term xa,l−xb,l is the analysis ensemble member perturbation
from the backgroundmembers and xb,l−x̄b is the direction of the
background member perturbation. If cosαl → 1 (cosαl → −1)
the analysis ensemble members point into the same (opposite)
direction as the background ensemble members. In addition,

qa =
na

L
, qu = nu

L
(28)
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FIGURE 3 | Temporal solutions of the filter process with rH = 5 with two

different localization radii rl . (A) Comparison of observations (black line) and

model equivalents in the observation space of the ensemble mean yb [top row,

solid blue line, denoted as Hfg for model equivalent (H) of the first guess (fg)]

and the ensemble members y(b,l) (bottom row, dotted blue line). The time

represents the number of analysis steps. (B) First guess (fg) ensemble

members in model space at the single spatial location n = 20 (shown in top

panel), i.e., outside the observation area with H1n = 0, and at the single spatial

location n = 40, i.e., in the center of the observation area (shown in bottom

panel).

are the percentages of aligned and anti-aligned ensemble
members for which cosαl > 0.5 (of number na) and cosαl <

−0.5 (of number nu), respectively.

3. RESULTS

The stability of the ensemble Kalman filter depends heavily on the
model and the nature of observations. To gain some insight into
the effect of nonlocal observations, the present work considers
primarily nonlocal observations only (section 3.1). Then the last
section 3.2 shows briefly the divergence rates in the presence of
both local and nonlocal observations.

3.1. Nonlocal Observations
The subsequent sections consider nonlocal observations only
and show how they affect the filter stability. To this end, the

first studies are purely numerical and are complemented by an
additional analytical study.

3.1.1. Numerical Results

In order to find out how the choice of localization radius
rl affects the stability of the LETKF, a large number of
numerical experiments assist to investigate statistically under
which condition the filter diverges. Figure 3 shows the temporal
evolution of the background xb and the model equivalents in
observation space yb for two different localization radii. In
Figure 3A, observations (black line) are very close to their model
equivalents (blue lines) for identical localization and sensitivity
function width, i.e., rl = rH . Conversely, observations and their
model equivalents diverge after some time for rl 6= rH . This is
visible in the ensemble mean (Figure 3A, top row) and the single
ensemble members (Figure 3A, bottom row). The different filter
behavior can be observed in model space as well, but there it
is less obvious, cf. Figure 3B. The ensemble members at spatial
location n = 40 are located in the center of the observation area.
They exhibit a rather small spread around the ensemble mean for
rl = rH , whereas the ensemble spread is larger for rl 6= rH . The
ensemble at n = 20 is outside the observation area and thus is not
updated. There, the ensemble in rl = rH and rl 6= rH are close to
each other.

This result can be generalized to a larger number of
localization and sensitivity function widths, cf. Figure 4. For
the smallest sensitivity function width and thus the smallest
observation area with rH = 1, no filter process diverges for a
large range of localization radii rl, i.e., the LETKF is stable (dashed
black line in Figure 4). This case rH = 1 corresponds to local
observations. Now increasing the observation area with rH > 1,
the filter may diverge and its divergence rate γ depends on the
localization radius. We observe that the filter diverges least when
the localization radius is close to the sensitivity function width.
These findings hold true for both the original localization radius
and the corrected radius rc, cf. section 2.4 and Figures 4A,B.
Moreover, the filter does not exhibit catastrophic divergence
before the background reaches its divergence threshold.

These results hold also true if observations are subjected
to additive noise and the observation error is chosen to the
true value, cf. Figure 5 (solid line) and if additive inflation
is chosen to a lower value [Figure 5 (dashed line)]. Similarly
to Figure 4, the divergence rate is minimum if the sensitivity
function width is close to the original (Figure 5A) or corrected
(Figure 5B) localization radius rl. The situation is different if the
sensitivity function is not a non-smooth boxcar function as in
the majority of the studies but a smooth Gaspari-Cohn function.
Then the divergence rate is still minimum but the corresponding
localization radius of this minimum is much smaller than rH , cf.
dotted-dashed line in Figure 5.

All these results consider the realistic case of a small number
of ensemble members L ≪ N. Nevertheless, it is interesting to
raise the question how these results depend on the ensemble size.
Figure 5 (bold dotted-dashed line) indicates that an ensemble
with L = N = 80 may yield maximum divergence for rl < rH
and stability with zero divergence rate for rl > rH . This means
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FIGURE 4 | Stability of the LETKF of nonlocal observations dependent on the sensitivity function width rH and the localization radius rl . The divergence rate γ is

defined in section 2.8. (A) With original localization radius rl . (B) With corrected localization radius rc and GClow = 0.01. Here, the observations are noise-free with

Rt = 0 but the chosen observation error is assumed to R = 0.1 6= Rt due to lack of knowledge of this true value.

FIGURE 5 | LETKF stability for different parameters and rH = 10. The solid line denotes the divergence rate γ if the true observation error Rt = 0.1 is known, i.e.,

R = Rt, and the inflation rate is fadd = 0.1; the dashed line denotes the divergence rate for lower inflation rate fadd = 0.05, otherwise identical to the solid line case; the

dotted-dashed line marks results identical to the dashed line case but with a smooth Gaspari-Cohn sensitivity function. The dotted line is taken from Figure 4 for

comparison (Rt = 0, R = 0.1) and the bold dotted-dashed line represents the results with an ensemble L = 80, otherwise identical to the dotted line-case. (A) original

localization radius rl . (B) Corrected localization radius rc with GClow = 0.01.

the full ensemble does not show a local minimum divergence rate
as observed for L < N.

The divergence criterion is conservative with a hard threshold
and trials with large but sub-threshold innovations, i.e., with
innovations that do not exceed the threshold, are not detected
as being divergent. Nevertheless to quantify intermittent large
innovations in the filter, Figure 6 shows the bias and RMSE
of trials whose innovation process do not reach the divergence
threshold. We observe minimum bias and RMSE for original
localization radii rl that are similar to the sensitivity function
width rH (Figure 6A). For corrected localization radii rc and rH
agree well at minimum bias and RMSE, cf. Figure 6B.

Now understanding that localization radii rl 6= rH may
destabilize the filter, the question arises where this comes from
and which mechanisms may be responsible for the innovation
divergence. Figure 7 illustrates various statistical quantities for
three exemplary trials. These quantities have been proposed to
reflect or explain divergence. The innovation-based measure 2n

diverges (Figure 7B) when the filter diverges (Figure 7A) for
rl < rH and rl ≫ rH , whereas 2n remains finite for rl ≈ rH .
Interestingly, for rl < rH a certain number of ensemble members
align and anti-align intermittently but do not align in the instance
of divergence (Figure 7C). In the case of similar localization
radius and sensitivity function width, a similar number of
ensemble members align and anti-align but the filter does not
diverge. Conversely, for rl ≫ rH ensemble members both align
and anti-align while the filter diverges. These results already
indicate a different divergence mechanism for rl ≤ rH and r>rH .
Accordingly, for rl < rH and rl ≈ rH background member
perturbations align with the analysis member perturbations with
cosαl → 1 (Figure 7D), whereas cosαl fluctuates between 1 and
−1 for rl ≫ rH while diverging.

Figure 8A shows the distribution of time instances T2 and T4

when the respective quantities 2n and 4n are maximum. These
time instances agree well with the divergence times Tb. This
confirms the single trial finding in Figures 7A,B that 2n and 4n
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FIGURE 6 | First guess departure statistics of trials that do not reach the

divergence threshold. Here rH = 5 (black) and rH = 10 (red). (A) Original

localization radius rl . (B) Corrected localization radius rc with GClow = 0.01. All

statistical measures are based on 100 trials.

are good markers for filter innovation divergence. Moreover only
few background members align and anti-align for rl ≤ rH (small
values of pa,u), whereas many more background members align
and anti-align for rl ≫ rH (Figure 8B). Conversely, each analysis
member aligns with its corresponding background member for
rl ≤ rH (qa = 1, qu = 0) and most analysis members still align
with their background members for rl ≫ rH (Figure 8C). This
means that nonlocal observations do poorly affect the direction
of ensemble members in these cases.

3.1.2. Analytical Description

According to Figure 9, there are different possible configurations
of the sensitivity function with respect to the localization area.
The localization radius rl may be smaller (cases 1) or larger (cases
2) than the sensitivity width rH or both may be equal (cases 3). In
addition, it is insightful to distinguish observed and unobserved
grid points as already proposed in [18].

Now let us take a closer look at each case, cf. Figure 9:

• case 1.1, rl ≤ rH , |i− N
2 | ≤ rH , and

|i− N
2 | ≤ rl: the localization radius is smaller than the

sensitivity function width and the observation at spatial
location N/2 is located within the localization radius about
grid point i. Then, the analysis ensemble (22) and its mean (18)
read

xa,lo,i = x̄bo,i + Xo,iY
tαi + Xo,iY

t

√
λi

y2
Yl

+
L−1
∑

n=1

Xo,ivn(vn)l (29)

and

x̄ao,i = x̄bo,i + Xo,iY
tαi (30)

with the corresponding ensemble means at observed grid
points x̄bo,i and x̄ao,i, the first guess perturbations Xo,i and the

analysis ensemble members xa,lo,i.

• case 1.2, rl ≤ rH , |i− N
2 | ≤ rH , and

|i− N
2 | > rl: compared to case 1.1, the grid point i is observed

as well but the observation is outside the localization area;
hence the analysis is identical to the first guess

x̄ao,i = x̄bo,i

xa,lo,i = x̄bo,i + (X)o,i .

• case 1.3, rl ≤ rH , |i− N/2| > rH , and
|i− N/2| > rl: the grid point i is not observed and the
observation is outside the localization area leading to

x̄au,i =x̄bu,i

xa,lu,i =x̄bu,i + (X)u,i
(31)

with the corresponding unobserved ensemble means x̄bu,i and
x̄au,i, the unobserved ensemble perturbations Xu,i and the

analysis ensemble member xa,lu,i.

• case 2.1, rl > rH , |i− N
2 | ≤ rH , and

|i− N
2 | ≤ rl: the localization radius is larger than the

sensitivity function width, the observation is located within
the localization radius about the grid point i and all grid
points are observed. This case is equivalent to case 1.1 and the
expressions for the analysis ensemble and mean hold as well.

• case 2.2, rl > rH , |i− N
2 | > rH , and

|i− N
2 | ≤ rl: compared to case 2.1, the observation is

located within the localization radius but grid points are
unobserved. Then

x̄au,i = x̄bu,i + Xu,iY
tαi (32)

and

xa,lu,i = x̄bu,i + Xu,iY
tαi + Xu,iY

t

√
λi

y2
Yl

+
L−1
∑

n=1

Xu,ivn(vn)l . (33)

• case 2.3, rl > rH , |i− N
2 | > rH , and

|i− N
2 | > rl: in this case, the grid points are unobserved and

the observation is outside the localization area. Then the
analysis is identical to the first guess and the case is equivalent
to case 1.3.

• case 3.1, rl = rH , |i− N
2 | ≤ rH : the observation is located

within the localization radius about the grid point i, the grid
point is observed and the expressions in case 1.1 hold.
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FIGURE 7 | Various measures reflecting stability of the LETKF dependent on the localization radius rl in single trials. (A) observation yo (black) and its model

equivalent Hx̄b (red). (B) Statistical quantities 4n (top) and 2n (bottom), for definition see section 2.8. (C) The probability of ensemble member alignment according to

Equation (26) for aligned (black) and anti-aligned (red) members. (D) Statistical estimate of alignment between ensemble members and xa − xb according to

Equation (27). The different localization radii are rl = 1 (left panel), rl = 6 (center panel), and rl = 20 (right panel) with the sensitivity function width rH = 5.

• case 3.2, rl = rH , |i− N
2 | > rH : the observation is not located

within the localization radius of grid point i, then grid point is
not observed and the expressions in case 1.3 hold.

Firstly, let us consider the limiting case of local observations
with rH = 1. Then case 1 does not exist. This means that
case 1 emerges for nonlocal observations only and Figure 4

demonstrates that the filter does not diverge for 1 ≤ rl ≤ 20.
Moreover, the sensitivity function of the observation is non-
zero at the observation location only and hence the localization
of the observation to the position of the sensitivity maximum
(cf. section 2.4) is trivial. In case 2, this implies that updates
at grid points far from the observation location i 6= N/2
consider the local observation with weighted observation error

Ri. This situation changes in case of nonlocal observations with
rH > 1. Then case 1 exists and analysis updates in case 2

consider an errornous estimate of the nonlocal observation at the
single spatial location N/2. The broader the sensitivity function
and thus the larger rH , the larger is the error induced by this
localization approximation. Consequently, updates at grid points
far from the observation location still consider the observation
with weighted observation error Ri, however the observation
includes a much larger error than Ri introducing an analysis
update error.

From a mathematical perspective, in cases 1.1, 2.1, and 3.1
the LETKF updates observed grid points whereas in the cases
1.3, 2.3, and 3.2 no update is applied. These cases appear to be
consistent since grid points that contribute to the observation are
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FIGURE 8 | Divergence times and ensemble member alignment dependent on the localization radius rl . (A) Histogram of time of maximum 2n (T2, black), time of

maximum 4n (T4, blue), and the divergence time Tb (green) , see the Methods section 2.8 for definitions. (B) Histograms of alignment ratio pa (black) and

anti-alignment ratio pu (red) defined in Equation (26). (C) Histograms of alignment ratio qa (black) and anti-alignment ratio qu (red) defined in Equation (28). In addition

rH = 5 and results are based on the 200 numerical trials from Figure 4.

FIGURE 9 | Sketch of different configurations of sensitivity function and localization area. The circles denote the different cases (n.m) The sensitivity function (blue) has

its center at the center of the spatial domain and the localization function (red) is located about model grid element i.
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updated by the observation and grid points that do not contribute
to the observation are not updated. Conversely, observed grid
points in case 1.2 do not consider the observation and are not
updated although they contribute to the first guess in observation
space. This missing update contributes to the filter error and the
filter divergence as stated in previous work [12]. Moreover, the
unobserved grid points in case 2.2 do consider the observation
and are updated by the Kalman filter. At a very first glance, this
inconsistency may be detrimental similar to case 2.1. However,
it may be arguable whether this inconsistency may contribute to
the filter error. On the one hand, the background error covariance
propagates information from observed to unobserved grid points
in each cycle step. This may hold true for system phenomena
with a large characteristic spatial scale, such as wind advection or
long-rangemoisture transport inmeteorology or, more generally,
emerging long-range spatial synchronization events. However,
on the other hand, if the background error covariance represents
a bad estimate, e.g., due to sampling errors or short-range
synchronization, the false (or inconsistent) update may enhance
errornous propagated information and hence contributes to the
filter divergence. This agrees with the vanishing divergence
in case of a full ensemble [cf. Figure 5 (bold dotted-dashed
line)]. Moreover, updates at unobserved grid points may be
errornous due to model errors or the approximation error made
by replacing a nonlocal observation by an artificial observation
at a single location. The larger the localization radius, the more
distant are grid points to the observation location and the less
representative is the localized observation to distant grid points.

Hence these two latter cases may cause detrimental effects.
Consequently, cases 1 and 2, i.e., rl 6= rH , yields bad estimates of
analysis updates that make the Kalman filter diverge. Conversely,
case 3, i.e., rl = rH , involves consistent updates only and
detrimental effects as described for the other cases are not
present. These effects may explain enhanced filter divergence for
rl 6= rH and minimum filter divergence for rl = rH seen in
Figure 3, and the minimum divergence rate at rl ≈ rH shown
in Figure 4.

The important terms in case 2.2, i.e., Equations (32) and
(33), are Xu,iY

t , αi,
√

λiYl/y
2, and

∑

n Xu,ivn(vn)l. Equivalently,
the missing terms in case 1.2 are Xo,iY

t , αi,
√

λiYl/y
2 and

∑

n Xo,ivn(vn)l. For instance,

co,u = Xo,uY
t =

L
∑

l=1

(xb,lo,u − x̄bo,u)(y
b,l − ȳb) (34)

and αi appear in both cases 2.1 and 2.2. The terms co,u
represent the covariances between model and model equivalents
perturbations over ensemble members and they may contribute
differently to the intermittent divergence with increasing |rl−rH |.
For a closer investigation of these terms, let us consider

(co)iαi = Xo,iY
tαi (35)

in case 2.1 and

(cu)iαi = Xu,iY
tαi . (36)

FIGURE 10 | The divergence correlates with the weighted model-observation

covariances at observed grid points Ao. The plots show the times of maxima

To (cf. Equation 37) to stop, i.e., Tstop − To. To is the time when the mean

model-observation covariance Ao is maximum, for divergent (red-colored with

break time Tstop) and non-divergent (black colored with maximum time

Tstop = 200) trials. Here it is rH = 5.

in case 2.2. These terms represent the weighted ensemble
covariances between model and model equivalents perturbations
in observation space. To quantify their difference,

Ao = max
n

1

Mo

∑

i∈Mo

(co)i(tn)αi(tn)

Au = max
n

1

Mu

∑

i∈Mu

(cu)i(tn)αi(tn)

A = Ao − Au

may be helpful. The term Ao (Au) is the maximum over time of
the mean of (co)iαi ((cu)iαi). This mean is computed over the set
of observed (unobserved) grid points Mo (Mu) with size Mo

(Mu) . Consequently, A quantifies the difference of observed and
unobserved weighted model-observation ensemble covariances,
while the unobserved covariances are down-weighted by αi

compared to the observed covariances. This down-weighting
results from the fact that unobserved grid points are more distant
from the observation which yields smaller values of αi. By
definitions (35) and (36), thus A < 0 reflects larger weighted
model-observation covariances in unobserved than observed
grid points.

The corresponding quantities

To = argmax
n

1

Mo

∑

i∈Mo

(co)i(tn)αi(tn) (37)

Tu = argmax
n

1

Mu

∑

i∈Mu

(cu)i(tn)αi(tn)

1T = To − Tu (38)
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FIGURE 11 | Comparison of weighted model-observation covariances in observed and non-observed grid points. (A) A = Ao − Au is the difference between

maximum weighted model-observation covariances in observed and unobserved grid points. (B) 1T = To − Tu is the difference of times when the weighted

model-observation covariances reach their maximum, cf. Equation (38). It is rH = 5.

define the time instances when thesemaxima are reached and1T
is their difference. For instance, if 1T > 0, then the weighted
model-observation covariances at observed grid points reach
their maximum before weighted model-observation covariances
at unobserved grid points.

To illustrate the importance of Ao and its corresponding
occurrence time To, Figure 10 shows To relative to the stop
time Tstop of filter iteration, i.e., Tstop − To. For divergent trials,
Tstop = Tb is the time of divergence and for non-divergent trials
Tstop = 200 is the maximum time. Figure 10 reveals that To is
very close to the divergence time, whereas To is widely distributed
about To = 110 (Tstop − To = 90) in non-divergent trials.
This indicates that Ao is strongly correlated with the underlying
divergence mechanism.

Now that Ao is strongly correlated with the filter
innovation divergence, the question arises whether the
difference between weighted observed and unobserved
model-observation covariances is related to the innovation
divergence. Figure 11 shows the distribution of A = Ao − Au

and 1T = To − Tu for divergent and non-divergent
experimental trials. Most trials exhibit stronger model-
observation covariances in unobserved grid points than
in observed grid points (A < 0), cf. Figure 11A, and the
distribution variances of divergent and non-divergent trials
are significantly different (Fligner-Killeen test, p < 0.001).
Moreover, the distribution of 1T in divergent trials is
asymmetric since 1T > 0 for almost all divergent trials
(see Figure 11B). Hence weighted model-observation
covariances in unobserved grid points reach their maximum
significantly earlier than in observed grid points. Conversely,
1T = 0 of non-divergent trials scatters within a much
wider range from negative to positive values (Fligner-Killeen
test, p < 0.0001).

In this context, re-call that Au > Ao but Tu < To in
divergent trials, i.e., unobserved grid points reach their larger
maximum faster than observed grid points. This indicates that

the model-observation covariance cu reflects the instability of
the filter.

3.2. Local and Nonlocal Observations
Several international weather services apply ensemble Kalman
filters and assimilate both nonlocal and local observations.
Performing assimilation experiments similar to the experiments
for nonlocal observations but now with a single additional local
observation at grid point i = N/2 (cf. section 2.7), the filter
divergence rate γ indicates the filter stability. Figure 12 illustrates
how local observations affect the filter stability in addition to
nonlocal observations. For rH = 1, the filter diverges rarely
due to large innovations (with fewest trials at rl ≈ 10) but at
a larger number than in the absence of local observations, cf.
Figure 4. Moreover, increasing the localization radius yields a
higher number of trials with catastrophic filter divergence with
a maximum catastrophic divergence rate at rl ≈ 10. In sum, the
least number of divergent trials occur at rl = rH = 1 (blue curve
in Figure 12). A similar stability behavior occurs for rH = 5
with a minimum innovation divergence rate at rl ≈ rH and a
maximum catastrophic divergence rate at rl ≈ 10. Again, the least
number of trials diverge at rl = rH .

Figure 1 motivates the present work demonstrating that
nonlocal observations yield larger first guess departures than for
local observations only. Here, it is interesting to note that the
numerical trial in Figure 1 with nonlocal observations exceeds
the innovation divergence threshold, cf. section 2.8, but has
run over all filter cycles for illustration reasons. Moreover,
several trials with the same parameters exhibit catastrophic filter
divergence and the shown trial is a rare case. This divergence
could have been avoided by implementing stabilizing features,
such as ensemble enlargement [19], adaptive localization [29],
adaptive inflation [18], or first guess check [13, 45]. However,
these methods would have introduced additional assimilation
effects and the gained results would not have been comparable
to findings and insights in the remaining work.
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FIGURE 12 | Rate of filter divergence γ (innovation divergence, black line) and

catastrophic filter divergence (any ensemble member diverges, red line) in the

presence of a single local and a single nonlocal observation. The total number

of divergent trials is the sum of innovation and member divergence-trials (blue

line). Results are based on 200 numerical trials.

4. DISCUSSION

Ensemble Kalman filtering of nonlocal observationsmay increase
the innovation in the filter process leading to larger observation-
background departure bias and RMSE, cf. Figure 1. It is
demanding to detect this innovation divergence since it is finite
and transient, i.e., of finite duration. At a first glance, this
negative impact is surprising since observations are thought to
introduce additional knowledge to the system and thus should
improve forecasts or at least retain them. To understand better
why nonlocal observations may be detrimental, the present work
performs numerical studies to identify markers of innovation
divergence and understand their origin.

4.1. Nonlocal Observations Facilitate Filter
Divergence
The majority of previous stability studies of Kalman filtering
involving nonlocal observations consider catastrophic filter
divergence. Kelly et al. [20] show analytically for a specific simple
but non-trivial model how catastrophic filter divergence of a
ensemble Kalman filter is affected by nonlocal observations. The
work of Marx and Potthast [44] is an analytical discussion of
the linear Kalman filter and the authors derive corresponding
stability conditions. Conversely, the present work considers
intermittent innovation divergence and, to our best knowledge, is
one of the first to demonstrate this important effect numerically.
Intermittent innovation divergence is detrimental to forecasts
and are visible, e.g., in first guess departure statistics (Figure 1). It
occurs for a nonlocal observation only (Figure 4) or for nonlocal
and additional local observation (Figure 12). This holds true for
almost all localization radii.

4.2. Optimal Localization Radius
Figures 4, 5, 6, 12 show that innovation divergence depends
on the relation between sensitivity function width rH and
localization radius rl. The LETKF diverges least when rl ≈ rH
and hence this choice of localization radius is called optimal, i.e.,

the filter is least divergent. This insight agrees with the finding
in an operational weather prediction framework involving the
LETKF [13]. The authors consider an adaptive localization for
(nonlocal) satellite observations and choose the corresponding
radius to the sensitivity function width. In two different weather
situations, this tight relation improves short- and middle-range
weather forecasts compared to the case of independent sensitivity
width and localization radius. Figure 9 illustrates the possible
reason for the detrimental effect of different sensitivity function
width and localization radius: the LETKF is inconsistent if
it updates the state at unobserved spatial locations or does
not update the state at observed spatial locations. Only if the
sensitivity function and the localization width are similar, then
this detrimental effect is small. Such an inconsistency is in line
with other inconsistencies in ensemble Kalman filters caused
by localization, cf. [46]. For instance, a full ensemble reduces
inconsistencies for localization radii larger than the sensitivity
function width and yields filter stability (Figure 5).

It is important to point out that, under certain conditions,
it may be beneficial to further enlarge the localization area
compared to the sensitivity function. If the system’s activity
synchronizes on a larger spatial scale, then information is
shared between observed and unobserved grid points and a
larger localization radius would be beneficial. Examples for
such synchronization phenomena are deep clouds or large-scale
winds in meteorology or locally self-organized spots in physical
complex systems. In other words, to decide how to choose
the localization radius one should take a closer look at the
system’s dynamics: if larger spatially synchronized phenomena
are expected, then rl ≫ rH is preferable, otherwise rl ≈ rH .

Several previous studies have derived optimal localization
radii for local observations in ensemble Kalman filter [47–
49] and the specific LETKF [28, 50]. A variant of the LETKF
localizes not in observation space as in the present work but
in the spatial domain [24, 31, 34, 51], where the localization of
nonlocal observations has been studied as well [52]. There is the
general agreement for local and nonlocal observations that the
optimal localization radius depends on the ensemble size and the
observation error but seems to be independent on themodel [50].

Essentially, it is important to point out that there may
be not a single optimal localization radius but a range of
more or less equivalent localization radii. This holds true
for smooth localization functions, whereas non-smooth (i.e.,
unrealistic) localization functions do not show this uncertainty,
cf. section 2.4.

4.3. Origin of Divergence
It is important to understand why some numerical trials diverge
and some do not. Direct and indirect markers indicate which
dynamical features play an important role in divergence. The
most obvious direct markers are the absolute values of the
innovation and the ensemble member perturbation spread 2n

and both increase sharply during filter innovation divergence,
cf. Figures 4, 6, 7B, 8, 12. Similarly, the covariation of observed
and unobserved background errors 4n also increases during
divergence. Interestingly, 2n and 4n remain finite and take their
maxima just before the instance of divergence, cf. Figure 8. The
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covariation 4n increases if both observed and unobserved errors
increases. Kelly et al. [20] and Tong et al. [18] argue that this
indicates a shift of power from observed to unobserved errors
and that this shift is responsible for catastrophic divergence.
The present findings support this line of argumentation and
extends it to intermittent innovation divergence. This can be
seen in Figure 11A. It shows larger mean weighted model-
observation error covariances (i.e., ensemble error covariances)
in unobserved grid points than in observed grid points (A <

0) and these weighted model-observation covariances increase
faster in unobserved grid points than in observed grid points.
In addition, the larger the localization radius rl > rH , the
larger the ensemble error in unobserved grid points compared
to observed grid points. Hence themodel-observation covariance
reflects a degree of instability (and thus of divergence) in the filter
and this is stronger in unobserved grid points than in observed
grid points.

Figures 4, 5, 6, 12 provide further evidence on possible
error sources that yield filter divergence. The asymmetry of the
divergence rates with respect to rl ≈ rH hints different underlying
filter divergence contributions. If rl < rH , too few grid points
are updated by the nonlocal observation (Figure 9) although they
are observed. Consequently model equivalents in observation
space include contributions from non-updated grid points which
might yield large contributions to the model equivalents from
largemodel magnitudes and hence this errormechanism is rather
strong. Fertig et al. [12] have identified this case as a possible
source of divergence and proposed to adapt the localization
radius to the sensitivity function width. In fact, this removes case
1 in Figure 9 and stabilizes the filter for rl < rH .

For rl ≫ rH , a large number of grid points are updated which,
however, consider an observation with a large intrinsic error
resulting from, e.g., a too small number of ensemble members.
The corresponding assimilation error is more subtle than for rl <

rH and increases for larger localization radii only. The localized
nonlocal observation comprises a representation error due to the
reduction of the broad sensitivity function to a single location.
For small ensembles, this implicit observation error contributes
to the analysis update error and, finally, to filter divergence. In
sum, the two inconsistencies illustrated in Figure 9 and derived
in section 3.1 represent two possible contributions to the filter
divergence for a low number of ensemble members. Conversely,
for a full ensemble, intrinsic error contributions are well reduced
rendering the filter more stable (Figure 5).

Moreover, there is some evidence that ensemble member
alignment may cause catastrophic filter divergence [19–21].
Figure 8 shows such indirect markers indicating weak member
anti-alignment for rl ≤ rH but enhanced alignment and anti-
alignment for rl > rH . The authors in [19] argue that finite
ensemble sizes cause the ensemble to align in case of divergence
and Ng et al. [53] show that the ensemble members may
align with the most unstable phase space direction. However,
our results reveal that member alignment does not represent
the major mechanism for innovation divergence. Conversely,
Figure 8 provides evidence for alignment of analysis increments
and background perturbations when the filter diverges. This
alignment indicates that the analysis members point into the

same direction as the background members. For instance, if
background member perturbations point to less stable locations
in phase space, then the LETKF does not correct this direction
and the new analysis state is less stable, cf. the model example
in [20]. This shows accordance to the reasoning in [53].

In addition to the alignment mechanism, Equation (34)
represents the covariation of ensemble perturbations in spatial
and observation space at observed and unobserved spatial
locations. For observed spatial locations, it is maximum just
before the innovation divergence time. Moreover, it reaches
its maximum at unobserved locations almost always before
the maximum at observed locations are reached (Figure 11).
It seems this new feature represent an important contribution
to the innovation divergence and future work will analyse this
covariation in more detail.

4.4. Limits and Outlook
The present work considers the specific case of finite low
ensemble size and application of the localization scheme.
To understand better the origin of the filter divergence, it
is insightful to study in detail the limiting case of large
ensemble sizes, i.e., close to the model dimension, and a
neglect of localization. Although this limit is far from practice
in seismology and meteorology, where the model systems are
too large to study this limit, nevertheless this limit study is
of theoretical interest and future work will consider it in
some detail.

There is some evidence that the optimal localization radius
is flow-dependent [54, 55], whereas we assume a constant
radius. In addition, the constrained choice of parameters
and missing standard techniques to prevent divergence, such
as adaptive inflation and adaptive observation error, limits
the present work in generality and interpretation and thus
makes it hard to derive decisive conclusions. Future work
will implement adaptive schemes [56, 57] in a more realistic
model framework.

In the majority of studies, the present work considers
a non-smooth boxcar sensitivity function in order to
distinguish observed and unobserved grid points. Although
this simplification allows to gain deeper understanding
of possible contributions to the filter divergence, the
sensitivity function is unrealistic. A more realistic sensitivity
function is smooth and unimodal or bimodal. Figure 5

shows that such a sensitivity function yields a minimum
divergence rate but the localization radius at the minimum
rate is much smaller than the sensitivity function width.
Consequently, the line of argumentation about Figure 9

does not apply here since there is no clear distinction
of observed and unobserved grid points anymore.
Future work will attempt to consider smooth unimodal
sensitivity functions.

Moreover, the localization scheme of nonlocal observations
applied in the present work is very basic due to its choice of the
maximum sensitivity as the observations location. Future work
will investigate cut-off criteria as such in [12] that chooses the
location of nonlocal observations in the range of the sensitivity
function. Fertig et al. [12] also have shown that such a cut-off
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criterion improves first guess departure statistics and well reduces
the divergence for localization radii that are smaller than the
sensitivity weighting function.

Nevertheless the present work introduces the problem of
intermittent innovation divergence, extends lines of reason on
the origin of filter divergence to nonlocal observation and
proposes new markers of innovation divergence.
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