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Various statistical models have been used in estimating inputs to mean-variance

efficient portfolio construction since the mid-1960s. One can argue how many factors

are necessary, but there appears to be substantial evidence that statistical models

outperform fundamental models for several expected returns models, such as we test in

this analysis. In this paper, we show that tracking portfolios constructed with expected

return rankings based on earnings forecasting and price momentum composite alpha

strategies produce statistically significant excess returns and increased Sharpe Ratios

when optimized with 3-factor statistical risk model.

Keywords: portfolio optimization, investments, earnings forecasting, finance, robust regression, portfolio, finance,

robust regression

INTRODUCTION

In this paper, we study the construction of US mean-variance efficient portfolios during the period
1999–2017. We construct mean-variance portfolios by maximizing the 10-factor U.S. Expected
Return stock selection model (USER) alphas and constraining Tracking Error with respect to the
S&P 500 benchmark using 3-factor risk model of Blume et al. [1]1. The main finding of this paper is
that the mean-variance efficient portfolios produce statistically significant portfolio excess returns
in the US market.

The organization of the paper is as follows. The first section describes the construction of
efficient portfolios, estimation of covariance matrix with multi-factor models, and the data used

1An assumption underlying many studies is that the market model, or more generally a model with one factor common to

all securities, generates realized returns. In such a one-factor model, realized returns are the sum of an asset’s response to a

stochastic factor common to all assets and a factor unique to the individual asset. In the last decade, there has been much

interest in models with more than one common stochastic factor, using either pre-specified factors, like Fama and French

[2] 3-factor model, or factors identified through factor analysis or similar multivariate techniques. Factor analysis and similar

factor analytic techniques have on occasion played an important role in the analysis of returns on common stocks and other

types of financial assets. Farrar [3] may have been the first to use factor analysis in conjunction with principal component

analysis to assign securities into homogeneous correlation groups. King [4] used factor analysis to evaluate the role of market

and industry factors in explaining stock returns. These two studies sparked an interest in multi-index models, and a rich body

of empirical work soon emerged. Examples include Elton and Gruber [5, 6], Meyer [7], Farrell [8], and Livingston [9], among

others. The major goal of these earlier studies was to establish the smallest number of “indexes” needed to construct efficient

sets. Factor models have been used in the tests of arbitrage pricing theory and its variants. See for example, Ross and Roll [10]

and Dhrymes et al. [11–13], to cite a few from the large literature.
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in construction of size ranked portfolios in estimating common
risk factors. The second section describes the expected excess
return model used in the study, statistical estimation method,
and the data. The third section describes construction of tracking
portfolios and presents portfolio statistics. The final section
contains concluding remarks.

CONSTRUCTING EFFICIENT PORTFOLIOS

The Markowitz portfolio construction approach is based on
the premise that mean and variance of future outcomes are
sufficient for rational decision making under uncertainty, to
identify the best opportunity set, efficient frontier, where returns
are maximized for a given level of risk, or minimize risk for
a given level of return. The reader is referred to Markowitz
[14, 15] for the seminal discussion of portfolio construction
and management. The two parameters needed are the portfolio
expected return, E(Rp) is calculated by taking the sum of
the security weights, w multiplied by their respective expected
returns, and the portfolio standard deviation is the sum of the
weighted covariances.

µP = ETW (1)

σ 2
P = WT�W (2)

WT1 = 1 (3)

where, E = {µ1, µ2,...,µN} is N × 1 vector of expected security
returns, (N is the number of candidate securities),� is theN×N
covariance matrix, W = {w1, w2,..., wN} is the vector of weights,
and 1 is the unit column vector. Sum of weights in (3) indicates
that the portfolio is fully invested.

One can construct infinite number of Mean-Variance efficient
portfolios. Optimal portfolio choice decision will be determined
by an investors’ risk tolerance2. Following Markowitz’s [14, 16–
18] general portfolio optimization objective function is:

Min WT�W − λETW (4)

where, λ is the coefficient of relative risk aversion of the investor3.

Accurate characterization of portfolio risk requires an
accurate estimate of the covariance matrix of security returns.

Estimation of the covariance structure is almost always based
on a linear return generating multi-factor model (MFM) in the
form of:

Rj,t =

K
∑

k = 1

βjk f̃k,t + ẽj,t (5)

The non-factor, or asset-specific return on security j ẽj,t is the
residual return of the security after removing the estimated
impacts of the finite number of K factors where 1 ≤ K ≤ N. The

term f̃k,t is the rate of return of factor “k,” which is independent

2This is the well know Separation Theorem in the economic theory. Opportunity

set is independent of individuals’ preferences.
3A rich and detailed Mean-Variance portfolio construction methods are covered

in Elton et al. [19] and Rudd and Rosenberg [20].

of securities and affects the security’s return through its exposure
coefficient βjk. Under the assumption that the residual return ej,t
is not correlated across securities the covariance matrix of the
securities is reduced to form:

� = BT2B+ϒ (6)

where:

Bk×N =











β1,1 β1,2 · · · β1,N

β2,1 β2,2 · · · β2,N

...
... · · ·

...
βk,1 βk,2 · · · βk,N











(7)

2k×k =











σf1,f1 σf1 ,f2 · · · σf1,fk
σf2,f1 σf2 ,f2 · · · σf2,fk
...

... · · ·
...

σfk,f1 σfk,f1 · · · σfk,fk











(8)

ϒN×N =











σ 2
e1

0 · · · 0

0 σ 2
e2

· · · 0
...

... · · ·
...

0 0 · · · σ 2
eN











(9)

B in (7) is the matrix of exposure coefficients, also referred as
“loadings” in the literature, θ in (8) is the covariance matrix of
the factors, andg in (9) is the covariance of the residuals.

The very first model used in the literature is Treynor’s market
model that led to development of the Capital Asset PricingModel
(CAPM)4. There is a rich volume of research covering multi
factor models starting with King [4].

In this paper, we use a statistical risk model developed by
Blume et al. [1], (BGG). Statistical factor models deduce the
appropriate factor structure by analyzing the sample asset returns
covariance matrix. There is no need to pre-define factors and
compute exposures, as required by fundamental factor models.
The only inputs are a time-series of asset returns and the number
of desired factors. BGG has shown that return generating model
based on factors analysis estimation is superior to commonly
used multi-factor models used in the literature.

Data and Estimation Methodology
The empirical analyses to estimate the factors use monthly
returns of 444 sets of size-ranked portfolios of NYSE stocks
constructed from the CRSP file. The first set consists of all
securities in the CRSP files with complete data for the 5
years 1980 through 1984. These securities ranked by their
market value as of December 1979 and then partitioned into
30 equally weighted size-ranked portfolios with as close to an
equal number of securities as possible. This process is repeated
for each rolling 5-year period every month to December 2017
with each set consisting 30 monthly portfolio returns with
60 observations.

We use the maximum likelihood method (MLM) to estimate
the factor models; the usual way to assess the number of required

4There is a rich literature related to CAPM. Treynor’s equilibrium model based on

the market model in an unpublished internal memorandum is most likely the first

one. CAPM is attributed to works of Sharpe [21], Lintner [22], and Mossin [23].

For a very detailed analysis of CAPM, see Mossin [24].
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factors is to rerun the procedure, successively increasing the
number of factors until the X2 test for the goodness of fit
developed by Bartlett [25] indicates that the number of factors
is generally shown to be sufficient in explaining returns. To use
this criterion, one must specify the level of significance, often
arbitrarily set at 1 or 5 percent. The level of significance is
important since there is a direct relation between the level of
significance and the number of significant factors. BGG’s findings
indicate that the number of required factors varies over time.
Their analysis of the required number of factors reveals a positive
relation between the number of factors and the variability of
returns during the estimation period. A rationale for this finding
is that during periods of relatively low volatility, most of the
volatility is firm specific and it is difficult to identify the common
factors. In more volatile times, the common factors are relatively
more important than the firm-specific factors, making it easier
to identify them. Their findings indicate that median number of
factor required to explain the returns at 5 percent confidence level
is three. In Figure 1 we plot the standard deviation of portfolio 1,
(small cap), portfolio 30, (large-cap), and the number of factors
required at 5 percent confidence level. The number of factors
needed during the study period is between two and four. In this
paper, we set the number of factors to three rather than varying
them over time based on Bartlett’s goodness of fit criteria.

For each security in our universe and the benchmark (S&P
500), we estimated the factor loadings over the same period in (5)
with three factors extracted from 30 size ranked portfolio returns.
We then estimated the covariance matrix for each month, based
on the previous 5 years of monthly data for the securities in our
universe and the benchmark as:

⌢

�t,NxN
∼= BTt,kxNBt,kxN

Where (10)

Bt,kxN =

















⌢

β t,1,1

⌢

β t,1,2 · · ·
⌢

βt,1,k
⌢

β t,2,1

⌢

β t,2,2 · · ·
⌢

βt,2,k
...

... · · ·
...

⌢

βt,N,1

⌢

β t,N,2 · · ·
⌢

β t,N,k

















Note that the MLM estimation extracts orthogonal factors and
the variance of the factors is set to unity by default. That is, Ψ in
(9) is reduced to N×N unit matrix. In this paper we assume that
factor loadings are stationary over the month (Bt+1,k = Bt,k) in
estimating the weight of each security in tracking portfolio.

ESTIMATION OF EXPECTED RETURNS

There are many approaches to security valuation and the creation
of expected returns. We believe that asset managers use security
analysis and stock selection models consisting of reported
earnings, forecasted earnings and financial data5. Graham and
Dodd [27] recommended that stocks be purchased on the basis of
the price-earnings (P/E) ratio. The “low” PE investment strategy

5Expected earnings have been used as a proxy for company’s future cash flow in

many studies. For a detailed analysis of analysts’ consensus forecasts and share

prices, see Elton et al. [26].

FIGURE 1 | Optimum number of factors and standard deviation of portfolio 1

& 30.

was discussed in Williams [28], the monograph that influenced
Harry Markowitz and his thinking on portfolio construction.
Bloch et al. [29] and Haugen and Baker [30, 31] advocated
models incorporating earnings-to-price (EP), book-value-to-
price, BP, cash flow-to-price, CP, sales-to-price, SP, and other
fundamental data. Guerard et al. [32, 33] added price momentum
(PM), price at t-1 divided by the price 12 months ago, t-12,
and consensus temporary earnings forecast (CTEF) to expected
returns modeling. They denoted the stock selection model as
United States Expected Returns (USER). They reported, among
other results, that: (1) the EP variable had a larger average weight
than the BP variable; (2) the relative PE, denoted RPE, the EP
relative to its 60-month average had a higher average weight than
the PE variable; and (3) the composite earnings forecast variable,
CTEF, had a larger weight than the RPE variable. In fact, in the
USER model, only the price momentum variable, PM, had a
higher weight than the CTEF variable (and only by one percent,
at that)6.

In this paper, we use the same USER Model.

TRt+1 = a0 + a1EPt + a2BPt + a3CPt + a4SPt + a5REPt

+ a6RBPt + a7RCPt + a8RSPt + a9CTEFt + a10PMt + et

(11)

where : EP = [earnings per share]/[price per share]

= earnings− price ratio;

6Wall Street practitioners have embraced the “low PE” approach for well over

50 years. The low PE strategy is a form of the contrarian investment approach

associated with Bernard [34] and Dremen [35, 36]. The authors believe in the

low PE strategy, but not as the exclusive strategy. There is extensive literature on

the impact of individual value ratios on the cross section of stock returns. We go

beyond using just one or two of the standard value ratios (EP and BP) to include

the cash-price ratio (CP) and/or the sales-price ratio (SP). Several major papers on

combination of value ratios to predict stock returns (that include at least CP and/or

SP) are Fama and French [2, 37, 38], Bloch et al. [29], Chan et al. [39], Blin et al.

[40], Guerard, Gültekin, and Stone [41], and Haugen and Baker [30, 31].
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TABLE 1 | Portfolio Statistics for the USER model.

Year Relative risk aversion

0.01 0.05 0.10

Excess

return

Relative

Sharpe ratio

Tracking

error

Excess

return

Relative

Sharpe ratio

Tracking

error

Excess

return

Relative

Sharpe ratio

Tracking

error

PANEL A: PORTFOLIOS WITH 100 SECURITIES

1997 6.60% 1.15 1.70% 5.80% 1.11 3.80% 3.29% 1.01 4.00%

1998 4.14% 1.15 0.10% 2.92% 1.32 1.80% 1.81% 1.03 1.10%

1999 3.46% 1.03 2.60% 3.04% 1.11 2.80% 2.77% 1.05 5.60%

2000 3.21% 1.17 3.20% 2.23% 1.07 1.70% 0.50% 1.06 4.30%

2001 3.55% 1.22 3.10% 2.95% 1.13 2.00% 0.87% 1.10 3.70%

2002 3.09% 1.07 2.20% 2.50% 1.05 1.80% 1.06% 1.02 3.80%

2003 4.18% 1.19 0.30% 3.29% 1.17 1.00% 2.80% 1.07 1.70%

2004 4.47% 1.28 1.40% 3.67% 1.09 2.10% 3.06% 1.04 3.60%

2005 6.55% 1.03 2.00% 4.48% 1.06 2.70% 3.26% 1.08 3.10%

2006 5.31% 1.26 2.50% 3.68% 1.02 2.30% 2.42% 1.05 4.10%

2007 5.75% 1.19 1.70% 4.21% 1.12 3.40% 3.16% 1.06 3.80%

2008 0.97% 1.10 4.80% 0.83% 1.10 5.20% 0.03% 1.04 7.90%

2009 1.31% 1.15 1.00% 1.14% 1.16 1.30% 0.55% 1.05 4.10%

2010 3.70% 1.12 1.40% 2.32% 1.09 2.20% 1.80% 1.09 4.20%

2011 4.50% 1.09 1.60% 3.95% 1.06 1.90% 2.43% 1.04 2.40%

2012 5.16% 1.13 2.30% 3.69% 1.11 3.41% 1.85% 1.08 5.80%

2013 4.79% 1.04 2.10% 3.42% 1.18 2.80% 1.72% 1.07 4.40%

2014 4.63% 1.02 2.00% 3.35% 1.02 3.30% 1.32% 1.04 2.70%

2015 4.04% 1.30 3.40% 2.59% 1.14 4.14% 0.41% 1.01 6.40%

2016 4.83% 1.04 2.80% 3.17% 1.02 2.90% 1.91% 1.09 3.00%

2017 4.82% 1.26 2.60% 3.05% 1.15 2.94% 1.93% 1.06 4.20%

Average 4.24% 1.14 2.13% 3.16% 1.11 2.64% 1.85% 1.06 4.00%

PANEL B: PORTFOLIOS WITH 50 SECURITIES

1997 7.26% 1.26 1.87% 6.38% 1.22 4.18% 3.62% 1.11 4.40%

1998 4.55% 1.26 0.11% 3.21% 1.45 1.98% 1.99% 1.13 1.21%

1999 3.81% 1.14 2.86% 3.34% 1.22 3.08% 3.05% 1.16 6.16%

2000 3.53% 1.29 3.52% 2.45% 1.17 1.87% 0.55% 1.17 4.73%

2001 3.91% 1.34 3.41% 3.25% 1.24 2.20% 0.96% 1.20 4.07%

2002 3.40% 1.18 2.42% 2.75% 1.16 1.98% 1.17% 1.12 4.18%

2003 4.60% 1.31 0.33% 3.62% 1.29 1.10% 3.08% 1.18 1.87%

2004 4.92% 1.41 1.54% 4.04% 1.20 2.31% 3.37% 1.15 3.96%

2005 7.21% 1.13 2.20% 4.93% 1.17 2.97% 3.59% 1.19 3.41%

2006 5.84% 1.39 2.75% 4.05% 1.12 2.53% 2.66% 1.16 4.51%

2007 6.33% 1.31 1.87% 4.63% 1.23 3.74% 3.48% 1.17 4.18%

2008 1.07% 1.21 5.28% 0.91% 1.21 5.72% 0.03% 1.15 8.69%

2009 1.44% 1.26 1.10% 1.25% 1.27 1.43% 0.61% 1.15 4.51%

2010 4.07% 1.24 1.54% 2.55% 1.20 2.42% 1.98% 1.20 4.62%

2011 4.95% 1.20 1.76% 4.35% 1.17 2.09% 2.67% 1.15 2.64%

2012 5.68% 1.24 2.53% 4.06% 1.22 3.75% 2.04% 1.19 6.38%

2013 5.27% 1.14 2.31% 3.76% 1.30 3.08% 1.89% 1.17 4.84%

2014 5.09% 1.12 2.20% 3.69% 1.12 3.63% 1.45% 1.15 2.97%

2015 4.44% 1.43 3.74% 2.85% 1.25 4.55% 0.45% 1.11 7.04%

2016 5.31% 1.14 3.08% 3.49% 1.12 3.19% 2.10% 1.20 3.30%

2017 5.30% 1.38 2.86% 3.36% 1.26 3.23% 2.12% 1.17 4.62%

Average 4.70% 1.25 2.30% 3.50% 1.22 2.90% 2.30% 1.16 4.40%
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BP = [book value per share]/[price per share]

= book− price ratio;

CP = [cash flow per share]/[price per share]

= cash flow− price ratio;

SP = [net sales per share]/[price per share]

= sales− price ratio;

REP = [current EP ratio]/[average EP ratio over

the past 5 years];

RBP = [current BP ratio]/[average BP ratio over

the past 5 years];

RCP = [current CP ratio]/[average CP ratio over

the past 5 years];

RSP = [current SP ratio]/[average SP ratio over

the past 5 years];

CTEF = consensus earnings− per− share

I/B/E/S forecast, revisions, and breadth,

PM = Price Momentum;

e = randomly distributed error term.

Given concerns about both outlier distortion and
multicollinearity, Bloch et al. [29] tested the relative explanatory
and predictive merits of alternative regression estimation
procedures: OLS, robust regression using the Beaton and Tukey
[42] bi-square criterion to mitigate the impact of outliers,
latent root to address the issue of multicollinearity [see [43]],
and weighted latent root, denoted WLRR, a combination of
robust and latent root. The Guerard et al. [33] USER model test
substantiated the Bloch et al. [29] approach, techniques, and
conclusions that WLLR works best among the alternative linear
predictive models.

Data and Estimation
For each security, we use monthly total stock returns and prices
from CRSP files, earnings book value cash flow, net sales from
quarterly COMPUSTAT files, and consensus earnings-per-share,
forecast revisions and breadth from I/B/E/S files. We construct
the variables used in (8) for each month starting in January
1980. The USER model is estimated using WLRR analysis over
the 60 month (5 year) moving window for each period to
identify variables statistically significant at the 10% level. The
model uses the normalized coefficients as weights over the past
12 months with Beaton-Tukey outlier adjustment. We use the
statistically significant coefficients to estimate the next month’s
expected return rank, Ei, for each security. The USER estimation
conditions are virtually identical to those described in Guerard
et al. [32, 33, 44].

PORTFOLIO CONSTRUCTION

We construct monthly long only, i.e., wi ≥ 0, portfolios to track
S&P 500 index with minimum tracking error by solving the

following equation:

MinWt
T

⌢

�Wt − λEt
TWt −

⌢
σ
2

S & P500,t + Ztc
st :

Wt
T1
−
= 1

Xt
T1
−
≤ M

Zt1− ≤ M × p

xi ,t =

(

1, for wi,t > 0
0, for wi,t = 0

wi,t ≥ 0, i = 1, · · · ,N

(12)

where λ is the relative risk aversion, 1
−
is the unit, vector Xt

= {x1,t , x2,t , . . . , xN,t} is the vector of binary variables that
indicate if the security i is included in the portfolio in month
t, Zt = {

∣

∣x1,t − x1,t−1

∣

∣ ,
∣

∣x2,t − x2,t−1

∣

∣ , ...,
∣

∣xN,t − xN,t−1

∣

∣} is the
vector of binary variables to account for security turnover, c is the
transaction cost, p is the portfolio turnover limit percentage, and
M is the maximum number of securities allowed in the portfolio.
Variance of S&P 500 for the period in Equation (12) is estimated
with Equation (10) using the factor loadings of the 3-factor
model. We specifically solve Equation (12) with a relatively small
number of securities (M), set at 50 and 100 or less, transactions
cost (c), set 150 basis points each way, and portfolio turnover (p)
set at 8 percent or less7.

In Table 1, we present portfolio statistics for each year for
relative risk aversion of 0.01, 0.05, and 0.10. Excess return is
the annual portfolio return net of truncations costs in excess
of the annual return of S&P 500. Relative Sharpe ratios is
portfolio Sharpe ratio divided by Share ratio of S&P 500. The
active average excess returns of the USER model are statistically
significant. Tracking error is not statistically significant for 100-
security portfolio.

SUMMARY AND CONCLUSIONS

Investing with fundamental, expectations, and momentum
variables is a good investment strategy over the long run. The
use of multi-factor risk-control significantly improves portfolios
performance relative to the benchmark. We considered long only
portfolio construction in this study. Construction of realistic
Long–Short portfolios are not feasible under these settings unless
one assumes that securities are always available to borrow to
short sell. However, there are various actively traded derivative
securities based on S&P 500 index, the benchmark used in
this study. Portfolios constructed in the study tracks the S&P
Index with reasonably low tracking error. With the use of these
derivative securities, it is possible to expand the opportunity set
for investors.
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7The second constraint in (12) was binding at all months.
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