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Convolutional neural networks (CNN) have been hugely successful recently with superior
accuracy and performance in various imaging applications, such as classification, object
detection, and segmentation. However, a highly accurate CNN model requires millions of
parameters to be trained and utilized. Even to increase its performance slightly would
require significantly more parameters due to adding more layers and/or increasing the
number of filters per layer. Apparently, many of these weight parameters turn out to be
redundant and extraneous, so the original, dense model can be replaced by its
compressed version attained by imposing inter- and intra-group sparsity onto the layer
weights during training. In this paper, we propose a nonconvex family of sparse group
lasso that blends nonconvex regularization (e.g., transformed ℓ1, ℓ1 − ℓ2, and ℓ0) that
induces sparsity onto the individual weights and ℓ2,1 regularization onto the output
channels of a layer. We apply variable splitting onto the proposed regularization to
develop an algorithm that consists of two steps per iteration: gradient descent and
thresholding. Numerical experiments are demonstrated on various CNN architectures
showcasing the effectiveness of the nonconvex family of sparse group lasso in network
sparsification and test accuracy on par with the current state of the art.
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1 INTRODUCTION

Deep neural networks (DNNs) have proven to be advantageous for numerous modern computer
vision tasks involving image or video data. In particular, convolutional neural networks (CNNs)
yield highly accurate models with applications in image classification [28, 39, 77, 95], semantic
segmentation [13, 49], and object detection [30, 72, 73]. These large models often contain millions
of weight parameters that often exceed the number of training data. This is a double-edged
sword since on one hand, large models allow for high accuracy, while on the other, they contain
many redundant parameters that lead to overparametrization. Overparametrization is a well-
known phenomenon in DNN models [6, 17] that results in overfitting, learning useless random
patterns in data [96], and having inferior generalization. Additionally, these models also possess
exorbitant computational and memory demands during both training and inference.
Consequently, they may not be applicable for devices with low computational power and
memory.

Resolving these problems requires compressing the networks through sparsification and pruning.
Although removing weights might affect the accuracy and generalization of the models, previous
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works [25, 54, 66, 81] demonstrated that many networks can be
substantially pruned with negligible effect on accuracy. There are
many systematic approaches to achieving sparsity in DNNs, as
discussed extensively in Refs. 14 and 15.

Han et al. [26] proposed to first train a dense network, prune
it afterward by setting the weights to zeroes if below a fixed
threshold, and retrain the network with the remaining weights.
Jin et al. [32] extended this method by restoring the pruned
weights, training the network again, and repeating the process.
Rather than pruning by thresholding, Aghasi et al. [1, 2]
proposed Net-Trim, which prunes an already trained
network layer by layer using convex optimization in order to
ensure that the layer inputs and outputs remain consistent with
the original network. For CNNs in particular, filter or channel
pruning is preferred because it significantly reduces the amount
of weight parameters required compared to individual weight
pruning. Li et al. [43] calculated the sums of absolute weights of
the filters of each layer and pruned the ones with the smallest
sums. Hu et al. [29] proposed a metric called average percentage
of zeroes for channels to measure their redundancies and
pruned those with highest values for each layer. Zhuang
et al. [105] developed discrimination-aware channel pruning
that selects channels that contribute to the network’s
discriminative power.

An alternative approach to pruning a dense network is
learning a compressed structure from scratch. A conventional
approach is to optimize the loss function equipped with either the
ℓ1 or ℓ2 regularization, which drives the weights to zeroes or to
very small values during training. To learn which groups of
weights (e.g., neurons, filters, channels) are necessary, group
regularization, such as group lasso [93] and sparse group lasso
[76], are equipped to the loss function. Alvarez and Salzmann [4]
and Scardapane et al. [75] applied group lasso and sparse group
lasso to various architectures and obtained compressed networks
with comparable or even better accuracy. Instead of sharing
features among the weights as suggested by group sparsity,
exclusive sparsity [104] promotes competition for features
between different weights. This method was investigated by
Yoon and Hwang [92]. In addition, they combined it with
group sparsity and demonstrated that this combination
resulted in compressed networks with better performance than
their original counterparts. Non-convex regularization has also
been examined. Louizos et al. [54] proposed a practical algorithm
using probabilistic methods to perform ℓ0 regularization on
CNNs. Ma et al. [61] proposed integrated transformed ℓ1, a
convex combination of transformed ℓ1 and group lasso, and
compared its performance against the aforementioned group
regularization methods.

In this paper, we propose a family of group regularization
methods that balances both group lasso for group-wise sparsity
and nonconvex regularization for element-wise sparsity. The
family extends sparse group lasso by replacing the ℓ1 penalty
term with a nonconvex penalty term. The nonconvex penalty
terms considered are ℓ0, ℓ1 − αℓ2, transformed ℓ1, and SCAD.
The proposed family is supposed to yield a more accurate and/or
more compressed network than sparse group lasso since ℓ1

suffers various weaknesses due to being a convex relaxation

of ℓ0. We develop an algorithm to optimize loss functions
equipped with the proposed nonconvex, group regularization
terms for DNNs.

2 MODEL AND ALGORITHM

2.1 Preliminaries
Given a training dataset consisting of N input-output pairs
{(xi, yi)}Ni�1, the weight parameters of a DNN are learned by
optimizing the following objective function:

min
W

1
N
∑N
i�1

L[h(xi,W), yi] + λR(W), (1)

where

• W is the set of weight parameters of the DNN.
• h(·, ·) is the output of the DNN used for prediction.
• L(·, ·)≥ 0 is the loss function that compares the prediction

h(xi,W) with the ground-truth output yi. Examples include
cross-entropy loss function for classification and mean-
squared error for regression.

• R(·) is the regularizer on the set of weight parameters W.
• λ> 0 is a regularization parameter for R(·).

The most common regularizer used for DNNs is ℓ2

regularization ‖ · ‖22, also known as weight decay. It prevents
overfitting and improves generalization because it enforces the
weights to decrease proportionally to their magnitudes [40].
Sparsity can be imposed by pruning weights whose
magnitudes are below a certain threshold at each iteration
during training. However, an alternative regularizer is the ℓ1

norm ‖ · ‖1, also known as the lasso penalty [78]. The ℓ1 norm is
the tightest convex relaxation of the ℓ0 penalty [20, 23, 82] and it
yields a sparse solution that is found on the corners of the 1-norm
ball [27, 52]. Theoretical results justify the ℓ1 norm’s ability to
reconstruct sparse solution in compressed sensing. When a
sensing matrix satisfies the restricted isometry property, the ℓ1

norm recovers the sparse solution exactly with high probability
[11, 23, 82]. On the other hand, the null space property is a
necessary and sufficient condition for ℓ1 minimization to
guarantee exact recovery of sparse solutions [16, 23]. Being
able to yield sparse solutions, the ℓ1 norm has gained
popularity in other types of inverse problems such as
compressed imaging [33, 57] and image segmentation [34, 35,
42] and in various fields of applications such as geoscience [74],
medical imaging [33, 57], machine learning [10, 36, 67, 78, 89],
and traffic flow network [91]. Unfortunately, element-wise
sparsity by ℓ1 or ℓ2 regularization in CNNs may not yield
meaningful speedup as the number of filters and channels
required for computation and inference may remain the
same [86].

To determine which filters or channels are relevant in each
layer, group sparsity using the group lasso penalty [93] is
considered. The group lasso penalty has been utilized in
various applications, such as microarray data analysis [62],
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machine learning [7, 65], and EEG data [46]. Suppose a DNN has
L layers, so the set of weight parametersW is divided into L sets of
weights: W � {Wl}Ll�1. The weight set of each layer Wl is divided
intoNl groups (e.g., channels or filters):Wl � {wl,g}Nl

g�1. The group
lasso penalty applied to Wl is formulated as

RGL(Wl) � ∑Nl

g�1

����
#wl,g

√ ∣∣∣∣∣∣∣∣wl,g

∣∣∣∣∣∣∣∣2 � ∑Nl

g�1

����
#wl,g

√ �������∑#wl,g

i�1
w2

l,g,i

√√
, (2)

where wl,g,i corresponds to the weight parameter with index i in
group g in layer l and the term #wl,g denotes the number of
weight parameters in group g in layer l. Because group
sizes vary, the constant

����
#wl,g

√
is multiplied in order to

rescale the ℓ2 norm of each group with respect to the group
size, ensuring that each group is weighed uniformly [65, 76, 93].
The group lasso regularizer imposes the ℓ2 norm on each group,
forcing weights of the same groups to decrease altogether at
every iteration during training. As a result, the groups of
weights are pruned when their ℓ2 norms are negligible,
resulting in a highly compact network compared to element-
sparse networks.

As an alternative to group lasso that encourages feature
sharing, exclusive sparsity [104] enforces the model weight
parameters to compete for features, making the features
discriminative for each class in the context of classification.
The regularization for exclusive sparsity is

1
2
∑Nl

g�1

∣∣∣∣∣∣∣∣wl,g

∣∣∣∣∣∣∣∣21 � 1
2
∑Nl

g�1
⎛⎜⎝ ∑#wl,g

i�1

∣∣∣∣wl,g,i

∣∣∣∣⎞⎟⎠2

. (3)

Now, within each group, sparsity is enforced. Because
exclusivity cannot guarantee the optimal features since some
features do need to be shared, exclusive sparsity can be
combined with group sparsity to form combined group and
exclusive sparsity (CGES) [92]. CGES is formulated as

RCGES � ∑Nl

g�1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣(1 − μl)
�������∑#wl,g

i�1
w2

l,g,i

√√
+ μl
2
⎛⎜⎝ ∑#wl,g

i�1

∣∣∣∣wl,g,i

∣∣∣∣⎞⎟⎠2⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where μl ∈ (0, 1) is a parameter for balancing exclusivity and
sharing among features.

To obtain an even sparser network, element-wise sparsity and
group sparsity can be combined and applied together to the
training of DNNs. One regularizer that combines these two types
of sparsity is the sparse group lasso penalty [76], which is
formulated as

RSGL1(Wl) � RGL(Wl) + ‖Wl‖1 (5)

where

‖Wl‖1 � ∑Nl

g�1
∑#wl,g

i�1

∣∣∣∣wl,g,i

∣∣∣∣.
Sparse group lasso simultaneously enforces group sparsity by
having the regularizer RGL(·) and element-wise sparsity by

having the ℓ1 norm. This regularizer has been used in
machine learning [83], bioinformatics [48, 103], and medical
imaging [47].

Figure 1 demonstrates the differences between lasso, group
lasso, and sparse group lasso applied to a weight matrix
connecting a 5-dimensional input layer to a 10-dimensional
output layer. In white, the entries are zero’ed out; in gray; the
entries are not. Unlike lasso, group lasso results in a more
structured method of pruning since three of the five neurons
can be zero’ed out. Combined with ℓ1 regularization on the
individual weights, sparse group lasso allows for more weights
in the remaining two neurons to be pruned.

2.2 Nonconvex Sparse Group Lasso
We recall that the ℓ1 norm is the tightest convex relaxation of the
ℓ0 penalty, given by

||Wl||0 � ∑Nl

g�1
∑#wl,g

i�1
|wl,g,i 0| (6)

where

|w|0 � { 1 if w≠ 0
0 if w � 0

when applied to the weight setWl of layer l. The ℓ0 penalty is non-
convex and discontinuous. In addition, any ℓ0-regularized
problem is NP-hard [23]. These properties make developing
convergent and tractable algorithms for ℓ0-regularized
problems difficult, thereby making ℓ1-regularized problems
better alternatives to solve. However, the ℓ0-regularized
problems have been shown to recover better solutions in
terms of sparsity and/or accuracy than do ℓ1-regularized
problems in various applications, such as compressed sensing
[56], image restoration [8, 12, 19, 55, 102], MRI reconstruction
[80], and machine learning [56, 94]. In particular, ℓ0-regularized
inverse problems were demonstrated to be more robust against
Poisson noise than are ℓ1-regualarized inverse problems [100].

A continuous alternative to the ℓ0 penalty is the SCAD penalty
term [22, 58], given by

λ||Wl||SCAD(a) � ∑Nl

g�1
∑#wl,g

i�1
λ|wl,g,i|SCAD(a) (7)

where

λ|w|SCAD(a) :�
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

λ|w| if |w|< λ
2aλ|w| − w2 − λ2

2(a − 1) if λ≤ |w|< aλ

(a + 1)λ2/2 if |w|≥ aλ
for λ> 0 and a> 2. This penalty term enjoys three properties –
unbiasedness, sparsity, and continuity – while the ℓ1 norm, on
the other hand, has only sparsity and continuity [22]. In linear
and logistic regression, SCAD was shown to outperform ℓ1 in
variable selection [22]. SCAD has been applied to wavelet
approximation [5], bioinformatics [9, 84], and compressed
sensing [64].
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The transformed ℓ1 penalty term [68] also enjoys the
properties of unbiasedness, sparsity, and continuity [58]. In
fact, the regularizer is not just continuous but Lipschitz
continuous [98]. The term is given by

||Wl||TL1(a) � ∑Nl

g�1
∑#wl,g

i�1

∣∣∣∣wl,g,i TL1(a)
∣∣∣∣ (8)

where

|w|TL1(a) � (a + 1)|w|
a + |w| .

In addition, it interpolates the ℓ0 and ℓ1 penalties through the
parameter a [98] because

lim
a→ 0+

|w|TL1(a) � |w|0 and lim
a→∞

|w|TL1(a) � |w|.

The transformed ℓ1 penalty term was investigated and was shown
to outperform ℓ1 in compressed sensing [79, 97, 98], deep

learning [45, 61, 87], matrix completion [99], and epidemic
forecasting [45].

Another Lipschitz continuous, nonconvex regularizer is the
ℓ1 − αℓ2 penalty given by

||Wl||ℓ1−αℓ2 � ||Wl||1 − α||Wl||2

� ∑Nl

g�1
∑#wl,g

i�1
|wl,g,i| − α

������������∑Nl

g�1
∑#wl,g

i�1
|wl,g,i|2,

√√
(9)

where α ∈ (0, 1]. In a series of works [50–52, 90], the penalty term
ℓ1 − ℓ2 with α � 1 yields better solutions than does ℓ1 in various
compressed sensing applications especially when the sensing
matrix is highly coherent or it violates the restricted isometry
property condition. To guarantee exact recovery of sparse solution,
ℓ1 − ℓ2 only requires a relaxed variant of the null space property
[79]. Furthermore, ℓ1 − αℓ2 is more robust against impulsive noise
in yielding sparse, accurate solutions for inverse problems than is ℓ1
[44]. Besides compressed sensing, it has been utilized in image

FIGURE 1 |Comparison between lasso, group lasso, and sparse group lasso applied to a weight matrix. Entries in white are zero’ed out or removed; entries in gray
remain.
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denoising and deblurring [53], image segmentation [71], image
inpainting [63], and hyperspectral demixing [21]. In deep learning
application, the ℓ1 − ℓ2 regularization was used to learn
permutation matrices [59] for ShuffleNet [60, 101].

Due to the advantages and recent successes of the
aforementioned nonconvex regularizers, we propose to
replace the ℓ1 norm in Eq. 5 with nonconvex penalty terms.
Hence, we propose a family of group regularizers called
nonconvex sparse group lasso. The family includes the
following:

RSGL0(Wl) � RGL(Wl) + ||Wl||0 (10)

RSGSCAD(a)(Wl) � RGL(Wl) + ||Wl||SCAD(a) (11)

RSGTL1(a)(Wl) � RGL(Wl) + ||Wl||TL1(a) (12)

RSGL1−αL2(Wl) � RGL(Wl) + ||Wl||ℓ1−αℓ2. (13)

Using these regularizers, we expect to obtain a sparser and/or
more accurate network than from using the original sparse
group lasso. The ℓ1 norm can also be replaced with other
nonconvex penalties not mentioned in this paper. Refer to
Refs. 3 and 85 to see other nonconvex penalties. However, we
focus on the aforementioned nonconvex regularizers
because they have closed-form proximal operators
required by our proposed algorithm described in the next
section.

2.3 Notations and Definitions
Before discussing the algorithm, we summarize notations that we
will use to save space. They are the following:

• If V � {Vl}Ll�1 and W � {Wl}Ll�1, then (V ,W) :�
({Vl}Ll�1, {Wl}Ll�1) � (V1, . . . ,VL,W1, . . . ,WL)

• V+ :� Vk+1
• ~L(W) :� 1

N∑​ N
i�1L(h(xi,W), yi)

In addition, we define the proximal operator for the
regularization function r(·) as follows:

proxλr(y) � arg min
x

λ r(x) + 1
2

∣∣∣∣∣∣∣∣x − y
∣∣∣∣∣∣∣∣22

for λ> 0.

2.4 Numerical Optimization
We develop a general algorithm framework to solve

min
W

~L(W) + λ∑L
l�1

R(Wl) � ~L(W) +∑L
l�1
[λRGL(Wl) + λr(Wl)]

(14)

where W � {Wl}Ll�1, R is either RSGL1 or one of the nonconvex
regularizers Eqs. 10–13, and r(·) is the corresponding sparsity-
inducing regularizer. Throughout the paper, our assumption on
Eq. 14 is the following:

ASSUMPTION 1. The function ~L is continuously differentiable
with respect to Wl for each l � 1, . . . , L.

By introducing an auxiliary variable V � {Vl}Ll�1 for (14), we
have a constrained optimization problem:

min
V ,W

~L(W) +∑
l�1

L

(λRGL(Wl) + λr(Vl))
s.t.Vl � Wl l � 1, . . . , L.

(15)

The constraints can be relaxed by adding the quadratic penalty
terms with β> 0 so that we have

min
V ,W

Fβ(V ,W) :� ~L(W) +∑L
l�1
[λRGL(Wl) + λr(Vl) + β

2
||Vl −Wl||22].

(16)

With β fixed, Eq. 16 can be solved by alternating minimization:

Wk+1 � arg min
W

Fβ(Vk,W) (17a)

Vk+1 � arg min
V

Fβ(V ,Wk+1). (17b)

To solve Eq. 17a, we simultaneously updateWl for l � 1, . . . L by
gradient descent

Wk+1
l � Wk

l − c[∇Wl
~L(Wk) + λzWlRGL(Wk

l ) − β(Vk
l −Wk

l )]
(18)

where c> 0 is the learning rate and zWlRGL is the
subdifferential of RGL with respect to Wl . In practice, Eq.
18 is performed using stochastic gradient descent (or one of its
variants) with mini-batches due to the large-size computation
dealing with the amount of data and weight parameters that a
typical DNN has.

To update V, we see that Eq. 17b can be rewritten as

Vk+1 � arg min
V

∑L
l�1
(λ
β
r(Vl) + 1

2
||Vl −Wl||22)

� (proxλ
β r
(W1), . . . , proxλ

β r
(WL)). (19)

The proximal operators for the considered regularizers are
thresholding functions as their closed-form solutions, and as a
result, the V update simplifies to thresholding W. The
regularization functions and their corresponding proximal
operators are summarized in Table 1.

Incorporating the algorithm that solves the quadratic
penalty problem Eq. 16, we now develop a general
algorithm to solve Eq. 14. We solve a sequence of
quadratic penalty problems Eq. 16 with β ∈ {βj}∞j�1 where
βj↑∞. This will yield a sequence {(Vj,Wj)}∞j�1 so that
Wj →W*, a solution to (14). This algorithm is based on
the quadratic penalty method [69] and the penalty
decomposition method [56]. The algorithm is summarized
in Algorithm 1.

An alternative algorithm to solve Eq. 14 is proximal gradient
descent [70]. By this method, the update for Wl, l � 1, . . . , L, is
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TABLE 1 | Regularization penalties and their corresponding proximal operators with λ>0.

Regularizer Name Penalty Formulation Proximal Operator

ℓ1 λ||x||1 � λ ∑n
i�1

|xi | proxλ‖·‖1(x) � [Sλ(x1), . . . ,Sλ(xn)],
with

Sλ(t) � sign(t)max{|t| − λ, 0}

ℓ0 λ||x||0 � λ ∑n
i�1
∣∣∣xi |0

proxλ‖·‖0(x) � [Hλ(x1), . . . ,Hλ(xn)],
with

Hλ(t) � {0 if |t|≤ ���
2λ

√

t if |t|> ���
2λ

√

SCAD(a)

λ||x||SCAD(a) � ∑n
i�1

λ|xi |SCAD(a)
with

λ|t|SCAD(a) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
λ|t| if |t|< λ

2aλ|t| − t2 − λ2

2(a − 1) if λ< |t|≤ aλ

(a + 1)λ2/2 if |t|> aλ

proxλ‖·‖SCAD(a)(x) � [Sa,λ(x1), . . . ,Sa,λ(xn)],
with

Sa,λ(t) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Sλ(t) if |t|≤ 2λ

(a − 1)t − sign(t)aλ
a − 2

if 2λ< |t|≤ aλ

t if |t|> aλ.

TL1(a) λxTL1(a) � λ ∑n
i�1

(a+1)|xi |
a+|xi | proxλ‖·‖TL1(a)(x) � (T a,λ(x1), . . . , T a,λ(xn)),

with

T a,λ(t) � { 0 if |t|≤ τ(a, λ)
ga,λ(t) if |t|> τ(a, λ)

Where
ga,λ(t) � sign(t)(2

3
(a + |t|)cos(ϕa,λ(t)

3
) − 2a

3
+ |t|
3
),

ϕa,λ(t) � arccos(1 − 27λa(a + 1)
2(a + |t|)3 ),

and

τ(a, λ) �
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

��������
2λ(a + 1)√ − a

2
if λ> a2

2(a + 1)

λ
a + 1
a

if λ≤
a2

2(a + 1)

ℓ1 − ℓ2 λ ‖ x‖ℓ1−ℓ2 � λ⎛⎝ ∑n
i�1

|xi | −
�����∑n
i�1

x2i

√ ⎞⎠ proxλ‖·‖ℓ1−ℓ2(x) �
⎧⎪⎪⎨⎪⎪⎩

||z1||2 + λ

||z1||2 z1 if ||x||∞ > λ

z2 if 0≤ ||x||∞ ≤ λ
with z1 � Sλ(x) and

(z2)i � { 0 if i ≠ k
sign(xi)||x||∞ if i � k,

where k � arg min1≤ k ≤ n{|xi | �‖ x‖∞}.
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Wk+1
l � proxcλr{Wk

l − c[∇Wl
~L(Wk) + λzWlRGL(Wk

l )]}. (20)

Using this algorithm results in weight parameters with some
already zero’ed out.

However, the advantage of our proposed algorithm lies in Eq.
17a, written more specifically as

Wk+1
l � arg min

Wl

~L(W) +RGL(Wl) + β

2
||Vl −Wl||22 (21)

� arg min
Wl

~L(W) +RGL(Wl) + β

2
∑
i�1

#Wl(vl,i − wl,i)2.
We see that this step performs exact weight decay or ℓ2

regularization on weights wl,i whenever vl,i � 0. On the other
hand, when vl,i ≠ 0, the effect of ℓ2 regularization is mitigated on
the corresponding weight wl,i based on the absolute difference∣∣∣∣vl,i − wl,i

∣∣∣∣. Using ℓ2 regularization was shown to give superior
pruning results in terms of accuracy by Han et al. [26]. Our
proposed algorithm can be perceived as an adaptive ℓ2

regularization method, where Eq. 17b identifies which weights
to perform exact ℓ2 regularization on and Eq. 17a updates and
regularizes the weights accordingly.

2.5 Convergence Analysis
To establish convergence for the proposed algorithm, the results
below state that the accumulation point of the sequence generated
by Eqs 17a and 17b is a block-coordinate minimizer, and an
accumulation point generated by Algorithm 1 is a sparse feasible
solution to (15). Proofs are provided in Section 5. Unfortunately,
the feasible solution generated may not be a local minimizer of
Eq. 15 because the loss function L(·, ·) is nonconvex. However, it
was shown in [18] that a similar algorithm to Algorithm 1, but for
fixed β in a bounded interval, generates an approximate global
solution with high probability for a one-layer CNN with ReLu
activation function.

THEOREM 2. Let {(Vk,Wk)}∞k�1 be a sequence generated by the
alternating minimization algorithm Eqs. 17a and 17b, where r(·)
is ℓ0, ℓ1, transformed ℓ1, ℓ1 − αℓ2, or SCAD. If (V*,W*) is an
accumulation point of {(Vk,Wk)}∞k�1, then (V*,W*) is a block-
coordinate minimizer of Eq. 16. that is

V* ∈ arg min
V

Fβ(V ,W*)
W* ∈ arg min

W
Fβ(V *,W).

THEOREM 3. Let {(Vk,Wk, βk)}∞k�1 be a sequence generated by
Algorithm 1. Suppose that {Fβk

(Vk,Wk)}∞k�1 is uniformly
bounded. If (V*,W*) is an accumulation point of
{(Vk,Wk)}∞k�1, then (V*,W*) is a feasible solution to Eq. 15,
that is V* � W*.

Remark: To safely ensure that {Fβk
(Vk,Wk)}∞k�1 is uniformly

bounded in practice, we can find a feasible solution (V feas,Wfeas)
to (15) and impose a bound M such that

M ≥max
⎧⎨⎩~L(W feas) + λ∑L

l�1
R(W feas

l ),min
W

Fβ0(V1,W)⎫⎬⎭.

If minWFβk+1(Vk,W)>M, then we set Vk+1 � W feas. This strategy
is based on Ref. 56. However, in our numerical experiments, we
have not yet encountered Fβk

(Vk,Wk) to diverge.

3 NUMERICAL EXPERIMENTS

3.1 Application to Deep Neural Networks
We compare the proposed nonconvex sparse group lasso against
four other methods as baselines: group lasso, sparse group lasso
(SGL1), CGES proposed in Ref. 92, and the group variant of ℓ0
regularization (denoted as ℓ0 for simplicity) proposed in Ref. 54.
SGL1 is optimized using the same algorithm proposed for

Algorithm 1: Algorithm for Nonconvex Sparse Group Lasso Regularization
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nonconvex sparse group lasso. For the group terms, the weights
are grouped together based on the filters or output channels,
which we will refer to as neurons. We trained various CNN
architectures on MNIST [41] and CIFAR 10/100 [38]. The
MNIST dataset consists of 60k training images and 10k test
images. MNIST is trained on two simple CNN architectures:
LeNet-5-Caffe [31, 41] and a 4-layer CNN with two
convolutional layers (32 and 64 channels, respectively) and
an intermediate layer of 1000 fully connected neurons.
CIFAR 10/100 is a dataset that has 10/100 classes split into
50k training images and 10k test images. It is trained on Resnets
[28] and wide Resnets [95]. Throughout all of our experiments,
for SGSCAD(a), we set a � 3.7 as suggested in [22]; for
SGTL1(a), we set a � 1.0 as suggested in Ref. 99; and for
SGL1 − L2, we set α � 1.0 as suggested by the literatures
[50–52, 90]. For CGES, we have μl � l/L. Because the
optimization algorithms do not drive most, if not all, the
weights and neurons to zeroes, we have to set them to zeroes
when their values are below a certain threshold. In our
experiments, if the absolute weights are below 10− 5, we set
them to zeroes. Then, weight sparsity is defined to be the
percentage of zero weights with respect to the total number
of weights trained in the network. If the normalized sum of the
absolute values of the weights of the neuron is less than 10− 5,
then the weights of the neuron are set to zeroes. Neuron sparsity
is defined to be the percentage of neurons whose weights are
zeroes with respect to the total number of neurons in the
network.

3.1.1 MNIST Classification
MNIST is trained on Lenet-5-Caffe, which has four layers with
1,370 total neurons and 431,080 total weight parameters. All
layers of the network are applied with strictly the same type of
regularization. No other regularization methods (e.g., dropout
and batch normalization) are used. The network is optimized
using Adam [37] with initial learning rate 0.001. For every 40
epochs, the learning rate decays by a factor of 0.1. We set the
regularization parameter to the following values: λ � α/60000 for
α ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. For SGL1 and nonconvex sparse
group lasso, we set β � 25α/60000, and for every 40 epochs, β
increases by a factor of σ � 1.25. The network is trained for 200
epochs across 5 runs.

Table 2 reports the mean results for test error, weight
sparsity, and neuron sparsity across five runs of Lenet-5-
Caffe trained after 200 epochs. We see that although CGES
has the lowest test errors at α ∈ {0.1, 0.3, 0.4} and the largest
weight sparsity for all α ∈ {0.1, 0.2, . . . , 0.5}, nonconvex sparse
group lasso’s test errors and weight sparsity are comparable.
Additionally, nonconvex sparse group lasso’s neuron sparsity is
nearly two times larger than the neuron sparsity attained by
CGES. Across all parameters and methods, SGL0 with α � 0.5
attains the best average test error of 0.630 with average weight
sparsity 95.7% and neuron sparsity 80.7%. Furthermore, its test
error is lower than the test errors of other nonconvex sparse
group lasso regularization methods for all α’s tested. Generally,
SGL1 and nonconvex sparse group lasso outperform ℓ0T
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TABLE 3 | Average test error, weight sparsity, and neuron sparsity of Lenet-5 models trained on MNIST with lowest test errors across 5 runs. Standard deviations are in parentheses.

Avg. Test Error
(%)

ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.1 0.682 (0.023) 0.532 (0.031) 0.568 (0.026) 0.568 (0.021) 0.576 (0.027) 0.602 (0.027) 0.582 (0.028) 0.554 (0.056)
α � 0.2 0.846 (0.033) 0.584 (0.038) 0.630 (0.017) 0.582 (0.035) 0.584 (0.049) 0.616 (0.021) 0.592 (0.026) 0.578 (0.032)
α � 0.3 0.980 (0.033) 0.590 (0.028) 0.642 (0.013) 0.600 (0.030) 0.588 (0.019) 0.618 (0.037) 0.594 (0.022) 0.596 (0.039)
α � 0.4 1.014 (0.019) 0.562 (0.015) 0.680 (0.038) 0.652 (0.025) 0.604 (0.033) 0.630 (0.035) 0.630 (0.048) 0.628 (0.020)
α � 0.5 1.066 (0.024) 0.598 (0.027) 0.682 (0.043) 0.616 (0.052) 0.572 (0.012) 0.654 (0.015) 0.586 (0.034) 0.670 (0.026)

Avg. Weight Sparsity ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 − L2

α � 0.1 2.38×10−4 (1.97×10−5) 0.541 (0.024) 0.661 (0.073) 0.757 (0.015) 0.768 (0.019) 0.680 (0.167) 0.773 (7.48×10− 3) 0.719 (0.066)
α � 0.2 2.26×10− 4 (9.43×10− 6) 0.583 (0.017) 0.728 (0.170) 0.845 (4.79×10− 3) 0.857 (6.15×10−3) 0.821 (0.041) 0.854 (5.60×10− 3) 0.836 (6.76×10− 3)
α � 0.3 2.19×10− 4 (1.36×10− 5) 0.603 (0.020) 0.810 (0.078) 0.886 (3.69×10− 3) 0.889 (3.62×10−3) 0.878 (9.43×10−4) 0.827 (0.115) 0.879 (3.97×10− 3)
α � 0.4 2.22×10− 4 (1.47×10− 5) 0.627 (0.019) 0.845 (0.040) 0.896 (3.57×10− 3) 0.905 (3.66×10−3) 0.846 (0.097) 0.899 (4.23×10− 3) 0.852 (0.097)
α � 0.5 2.24×10− 4 (1.02×10− 5) 0.633 (0.013) 0.886 (6.40×10− 3) 0.905 (2.87×10− 3) 0.922 (0.015) 0.902 (2.64×10−3) 0.871 (0.084) 0.848 (0.080)

Avg. Neuron Sparsity ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 − L2

α � 0.1 0.363 (0.047) 0.315 (0.030) 0.389 (0.120) 0.497 (0.014) 0.496 (0.030) 0.426 (0.172) 0.513 (9.57×10− 3) 0.440 (0.107)
α � 0.2 0.574 (2.22×10−3) 0.392 (0.016) 0.498 (0.185) 0.627 (0.011) 0.631 (0.012) 0.549 (0.169) 0.634 (9.30×10− 3) 0.608 (0.015)
α � 0.3 0.599 (2.61×10−3) 0.418 (0.021) 0.570 (0.154) 0.697 (9.73×10− 3) 0.692 (8.19×10− 3) 0.684 (5.69×10− 3) 0.613 (0.154) 0.686 (8.60×10− 3)
α � 0.4 0.614 (1.71×10−3) 0.482 (0.020) 0.586 (0.184) 0.721 (8.16×10− 3) 0.725 (9.97×10− 3) 0.642 (0.151) 0.724 (0.015) 0.655 (0.150)
α � 0.5 0.625 (1.55×10−3) 0.492 (0.024) 0.708 (8.94×10− 3) 0.735 (3.73×10− 3) 0.759 (0.020) 0.733 (8.59×10− 3) 0.683 (0.143) 0.570 (0.216)

TABLE 4 | Average test error, weight sparsity, and neuron sparsity of 4-layer CNN models trained on MNIST after 200 epochs across 5 runs. Standard deviations are in parentheses.

Avg. Test Error (%) ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.2 0.962 (0.041) 0.470 (0.036) 0.486 (0.030) 0.418 (0.010) 0.432 (0.023) 0.408 (0.013) 0.418 (0.026) 0.436 (0.012)
α � 0.4 1.454 (0.070) 0.486 (0.030) 0.502 (0.035) 0.436 (0.026) 0.49 (0.017) 0.456 (0.016) 0.47 (0.035) 0.446 (0.031)
α � 0.6 2.396 (0.066) 0.512 (0.035) 0.510 (0.028) 0.494 (0.031) 0.500 (0.023) 0.488 (0.019) 0.498 (0.025) 0.522 (0.019)
α � 0.8 3.396 (0.096) 0.502 (0.020) 0.544 (0.026) 0.542 (0.025) 0.536 (0.037) 0.524 (0.015) 0.536 (0.014) 0.524 (0.015)
α � 1.0 4.74 (0.148) 0.524 (0.26) 0.568 (0.004) 0.566 (0.041) 0.576 (0.014) 0.544 (0.024) 0.552 (0.017) 0.556 (0.022)

Avg. Weight Sparsity ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 − L2

α � 0.2 5.99×10−5 (9.28×10− 6) 0.655 (4.10×10− 3) 0.284 (6.47×10− 3) 0.302 (6.68×10−3) 0.306 (0.014) 0.297 (5.42×10− 3) 0.298 (8.63×10−3) 0.299 (7.74×10− 3)
α � 0.4 5.84×10− 5 (7.95×10−6) 0.710 (2.45×10− 3) 0.489 (7.38×10− 3) 0.510 (1.85×10−3) 0.502 (8.01×10− 3) 0.507 (8.80×10− 3) 0.510 (0.011) 0.505 (7.25×10− 3)
α � 0.6 6.06×10− 5 (1.22×10−5) 0.737 (2.13×10− 3) 0.593 (5.67×10− 3) 0.606 (5.41×10−3) 0.603 (7.61×10− 3) 0.605 (5.46×10− 3) 0.599 (0.012) 0.609 (6.96×10− 3)
α � 0.8 7.18×10− 5 (6.24×10−6) 0.755 (5.67×10− 3) 0.661 (6.11×10− 3) 0.660 (6.42×10−3) 0.663 (7.30×10−3) 0.661 (8.74×10−3) 0.665 (3.95×10−3) 0.661 (5.72×10−3)
α � 1.0 6.90×10− 5 (7.33×10−6) 0.767 (2.92×10− 3) 0.695 (5.08×10− 3) 0.696 (4.68×10−3) 0.697 (2.38×10− 4) 0.698 (6.51×10−3) 0.699 (4.27×10− 3) 0.689 (9.47×10− 3)

Avg. Neuron Sparsity ℓ0 CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.2 0.472 (7.10×10−4) 0.299 (2.40×10− 3) 0.153 (4.06×10−3) 0.160 (4.54×10− 3) 0.164 (8.58×10−3) 0.158 (3.68×10− 3) 0.158 (5.20×10− 3) 0.159 (5.87×10−3)
α � 0.4 0.494 (1.01×10−3) 0.329 (2.10×10− 3) 0.280 (5.64×10−3) 0.287 (7.55×10− 4) 0.280 (6.57×10−3) 0.281 (5.05×10− 3) 0.285 (8.48×10− 3) 0.284 (7.22×10−3)
α � 0.6 0.506 (7.23×10−4) 0.343 (1.78×10− 3) 0.351 (4.72×10−3) 0.354 (2.47×10− 3) 0.35 (7.17×10−3) 0.352 (3.99×10− 3) 0.347 (9.65×10− 3) 0.353 (5.88×10−3)
α � 0.8 0.516 (6.72×10−4) 0.355 (8.23×10− 3) 0.404 (6.20×10−3) 0.391 (4.66×10− 3) 0.396 (7.60×10−3) 0.395 (9.59×10− 3) 0.399 (3.89×10− 3) 0.398 (6.39×10−3)
α � 1.0 0.526 (9.45×10−4) 0.361 (5.36×10− 3) 0.432 (5.02×10−3) 0.424 (5.62×10− 3) 0.427 (2.64×10−3) 0.427 (7.36×10− 3) 0.430 (6.37×10− 3) 0.417 (0.011)
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regularization proposed by Louizos et al. [54] and group lasso by
average weight and neuron sparsity.

Table 3 reports the mean results for test error, weight
sparsity, and neuron sparsity of the Lenet-5-Caffe models
with the lowest test errors from the five runs. According to
the results, the best test errors are attained by SGL0 at
α � 0.3, 0.5; SGL1 − L2 at α � 0.2; and CGES at α � 0.1, 0.4.
For average weight sparsity, SGL0 attains the largest weight
sparsity at α ∈ {0.2, 0.3, 0.4, 0.5}. For average neuron sparsity,
the largest values are attained by SGTL1 at α � 0.1, 0.2; by SGL1
at α � 0.3; and by SGL0 at α � 0.4, 0.5. Although SGL0 does not
outperform all the othermethods across the board, its results are
still comparable to the best results. Overall, we see that
nonconvex sparse group lasso outperforms ℓ0 in test error,
weight sparsity, and neuron sparsity and group lasso in weight
and neuron sparsity.

MNIST is also trained on a 4-layer CNN with two
convolutional layers with 32 and 64 channels, respectively,
and an intermediate layer with 1000 neurons. Each
convolutional layer has a 5 × 5 convolutional filters. The 4-
layer CNN has 2,120 total neurons and 1,087,010 total
weight parameters. All layers of the network are applied with
strictly the same type of regularization. The network is
optimized with the same settings as Lenet-5-Caffe. However,
the regularization parameter is different: we have λ � α/60000
for α ∈ {0.2, 0.4, 0.6, 0.8, 1.0}. For SGL1 and nonconvex sparse
group lasso, we set β � 5α/60000 and for every 40 epochs, β
increases by a factor of σ � 1.25. The network is trained for 200
epochs across 5 runs.

Table 4 reports the mean results for test error, weight
sparsity, and neuron sparsity across five runs of the 4-layer
CNN models trained after 200 epochs. Although CGES
consistently has the highest weight sparsity, it does not yield
the most accurate models until when α≥ 0.8. Moreover, its
neuron sparsity is smaller than the neuron sparsity by group
lasso, SGL1, and nonconvex group lasso when α≥ 0.6. ℓ0 has the
highest neuron sparsity for all α’s given, but its test errors are
much greater. When α≤ 0.6, SGSCAD yields the most accurate
models at α � 0.2, 0.6 while SGL1 yields one at α � 0.4. Overall,
we see that nonconvex group lasso has comparable weight
sparsity and neuron sparsity as group lasso and SGL1.

Table 5 reports the mean results for test error, weight
sparsity, and neuron sparsity of the 4-layer CNN models
with the lowest test errors from the five runs. At α � 0.2,
SGL1 and SGSCAD have the lowest test errors, but their
weight sparsity are exceeded by CGES and their neuron
sparsity are exceeded by ℓ0. At α � 0.4, SGL1 − L2 has the
lowest test error, but its weight sparsity and neuron sparsity
are exceeded by CGES and ℓ0, respectively. At α � 0.6, SGL1 has
the lowest test error, but SGSCAD has the largest weight sparsity
with comparable test error. At α≥ 0.8, CGES has the lowest test
error, but its weight sparsity is exceeded by group lasso, SGL1,
and the nonconvex group lasso regularizers, which all have
slightly higher test error. At α � 0.8, the neuron sparsity of
CGES is comparable to the neuron sparsity of group lasso, SGL1,
and the nonconvex group lasso regularizers. At α � 1.0, group
lasso has the highest neuron sparsity, but nonconvex groupT
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lasso has slightly lower neuron sparsity. In general, weight
sparsity of nonconvex group lasso is comparable to or larger
than the weight sparsity of group lasso and SGL1.

3.1.2 CIFAR Classification
CIFAR 10/100 is trained on Resnet-40 and wide Resnet with
depth 28 and width 10 (WRN-28-10). Resnet-40 has
approximately 570,000 weight parameters and 1520 neurons
while WRN-28-10 has approximately 36,500,000 weight
parameters and 10,736 neurons. The networks are optimized

using stochastic gradient descent with initial learning rate 0.1.
After every 60 epochs, learning rate decays by a factor of 0.2.
Strictly the same type of regularization is applied to the weights of
the hidden layer where dropout is utilized in the residual block.
We vary the regularization parameter λ � α/50000. For Resnet-40,
we have α ∈ {1.0, 1.5, 2.0, 2.5, 3.0} for CIFAR 10 and
α ∈ {2.0, 2.5, 3.0, 3.5, 4.0} for CIFAR 100. For SGL1 and
nonconvex sparse group lasso, we set β � 15α/50000 for
Resnet-40 and β � 25α/50000 for WRN-28-10. For every 20
epochs, β increases by a factor of σ � 1.25. The networks are

TABLE 6 | Average test error, weight sparsity, and neuron sparsity of Resnet-40models trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations are in
parentheses.

Avg. Test Error (%) CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 1.0 6.932 (0.154) 6.154 (0.199) 6.442 (0.065) 6.456 (0.176) 6.618 (0.128) 6.500 (0.158) 6.512 (0.126)
α � 1.5 7.248 (0.145) 6.504 (0.122) 6.850 (0.078) 7.108 (0.084) 6.948 (0.124) 6.958 (0.158) 6.820 (0.177)
α � 2.0 7.306 (0.206) 6.860 (0.174) 7.494 (0.092) 7.642 (0.176) 7.450 (0.192) 7.388 (0.140) 7.384 (0.122)
α � 2.5 7.590 (0.148) 7.298 (0.105) 7.760 (0.079) 8.146 (0.178) 8.026 (0.196) 8.096 (0.137) 7.968 (0.190)
α � 3.0 7.672 (0.082) 7.542 (0.135) 8.424 (0.081) 8.740 (0.166) 8.426 (0.192) 8.624 (0.083) 8.598 (0.144)

Avg. Weight Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 1.0 0.350 (0.009) 0.201 (0.018) 0.189 (0.007) 0.191 (0.008) 0.213 (0.015) 0.205 (0.015) 0.224 (0.016)
α � 1.5 0.371 (0.012) 0.322 (0.008) 0.345 (0.013) 0.313 (0.008) 0.354 (0.029) 0.330 (0.020) 0.343 (0.008)
α � 2.0 0.385 (0.009) 0.431 (0.013) 0.457 (0.012) 0.422 (0.014) 0.466 (0.015) 0.428 (0.013) 0.451 (0.012)
α � 2.5 0.386 (0.010) 0.509 (0.017) 0.525 (0.010) 0.507 (0.011) 0.534 (0.012) 0.522 (0.026) 0.537 (0.013)
α � 3.0 0.401 (0.008) 0.551 (0.015) 0.594 (0.009) 0.568 (0.009) 0.598 (0.012) 0.569 (0.014) 0.585 (0.006)

Avg. Neuron Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 1.0 0.035 (0.003) 0.096 (0.011) 0.087 (0.004) 0.082 (0.005) 0.102 (0.008) 0.093 (0.010) 0.105 (0.012)
α � 1.5 0.040 (0.006) 0.154 (0.006) 0.159 (0.008) 0.144 (0.009) 0.168 (0.013) 0.151 (0.009) 0.155 (0.004)
α � 2.0 0.048 (0.004) 0.207 (0.005) 0.203 (0.008) 0.188 (0.006) 0.217 (0.015) 0.195 (0.009) 0.209 (0.009)
α � 2.5 0.045 (0.005) 0.247 (0.010) 0.232 (0.010) 0.225 (0.017) 0.245 (0.011) 0.233 (0.008) 0.244 (0.006)
α � 3.0 0.048 (0.007) 0.274 (0.012) 0.271 (0.008) 0.249 (0.004) 0.272 (0.016) 0.259 (0.008) 0.268 (0.011)

TABLE 7 | Average test error, weight sparsity, and neuron sparsity of Resnet-40 models trained on CIFAR 100 with lowest test errors across 5 runs. Standard deviations are
in parentheses.

Avg. Test Error (%) CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 2.0 30.102 (0.234) 28.636 (0.140) 29.260 (0.306) 29.610 (0.275) 29.044 (0.155) 29.316 (0.154) 29.274 (0.249)
α � 2.5 30.326 (0.272) 29.322 (0.144) 30.140 (0.180) 30.454 (0.295) 30.180 (0.175) 30.426 (0.253) 30.204 (0.159)
α � 3.0 30.378 (0.154) 29.750 (0.258) 31.134 (0.099) 31.482 (0.361) 31.048 (0.118) 31.164 (0.236) 31.108 (0.129)
α � 3.5 30.666 (0.267) 30.588 (0.285) 31.966 (0.260) 32.438 (0.272) 31.930 (0.156) 31.984 (0.182) 31.822 (0.365)
α � 4.0 30.982 (0.277) 31.436 (0.069) 33.106 (0.281) 33.210 (0.230) 32.758 (0.279) 33.240 (0.171) 33.094 (0.219)

Avg. Weight Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 2.0 0.286 (0.002) 0.129 (0.024) 0.182 (0.018) 0.164 (0.010) 0.198 (0.012) 0.162 (0.017) 0.187 (0.015)
α � 2.5 0.299 (0.005) 0.233 (0.010) 0.283 (0.005) 0.251 (0.021) 0.292 (0.010) 0.271 (0.015) 0.284 (0.016)
α � 3.0 0.303 (0.003) 0.321 (0.008) 0.365 (0.009) 0.355 (0.018) 0.377 (0.012) 0.363 (0.023) 0.372 (0.010)
α � 3.5 0.306 (0.004) 0.409 (0.013) 0.441 (0.014) 0.418 (0.012) 0.444 (0.014) 0.418 (0.016) 0.442 (0.006)
α � 4.0 0.313 (0.010) 0.456 (0.014) 0.511 (0.015) 0.461 (0.011) 0.501 (0.013) 0.480 (0.017) 0.507 (0.012)

Avg. Neuron Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 2.0 0.001 (0.001) 0.054 (0.007) 0.074 (0.007) 0.064 (0.008) 0.083 (0.005) 0.063 (0.004) 0.078 (0.007)
α � 2.5 0.003 (0.001) 0.092 (0.005) 0.113 (0.004) 0.093 (0.010) 0.116 (0.005) 0.103 (0.004) 0.111 (0.005)
α � 3.0 0.004 (0.001) 0.126 (0.004) 0.140 (0.005) 0.133 (0.007) 0.145 (0.003) 0.138 (0.009) 0.146 (0.003)
α � 3.5 0.002 (0.001) 0.157 (0.006) 0.166 (0.005) 0.158 (0.005) 0.182 (0.017) 0.156 (0.004) 0.171 (0.005)
α � 4.0 0.005 (0.002) 0.177 (0.007) 0.195 (0.005) 0.176 (0.007) 0.193 (0.004) 0.180 (0.011) 0.193 (0.004)
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trained for 200 epochs across 5 runs. We excluded ℓ0

regularization by Louizos et al. [54] because it was unstable
for the provided α’s. Furthermore, we only analyze the models
with the lowest test errors since the test errors did not stabilize by
the end of the 200 epochs in our experiments.

Table 6 reports mean test error, weight sparsity, and neuron
sparsity across the Resnet-40 models trained on CIFAR 10 with
the lowest test errors from the five runs. Group lasso has the
lowest test errors for all α’s provided while CGES, SGL1, and
nonconvex sparse group lasso are higher by at most 1.1%. When
α≤ 1.5, CGES has the largest weight sparsity while SGSCAD,

SGTL1 SGL1 − SGL2 have larger weight sparsity than does group
lasso. At α � 2.0, 2.5, SGSCAD has the largest weight sparsity. At
α � 3.0, SGL1 has the largest weight sparsity with comparable
test error as the nonconvex group lasso regularizers. For neuron
sparsity, SGL1 − L2 has the largest at α � 1.0 while SGSCAD has
the largest at α � 1.5, 2.0. However, at α � 2.5, 3.0, group lasso
has the largest neuron sparsity. For all α’s tested, SGSCAD has
higher weight sparsity and neuron sparsity than does SGL1 but
with comparable test error.

Table 7 reports mean test error, weight sparsity, and neuron
sparsity across the Resnet-40 models trained on CIFAR 100 with

TABLE 8 | Average test error, weight sparsity, and neuron sparsity of WRN-28-10models trained on CIFAR 10 with lowest test errors across 5 runs. Standard deviations are
in parentheses.

Avg. Test Error (%) CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 3.822 (0.054) 4.092 (0.159) 4.050 (0.058) 4.036 (0.074) 4.004 (0.104) 3.994 (0.039) 4.152 (0.089)
α � 0.05 3.856 (0.089) 3.946 (0.106) 3.874 (0.029) 3.838 (0.067) 3.862 (0.076) 3.812 (0.097) 3.872 (0.110)
α � 0.1 4.000 (0.076) 3.960 (0.062) 3.784 (0.082) 3.824 (0.088) 3.832 (0.047) 3.800 (0.082) 3.792 (0.113)
α � 0.2 4.146 (0.092) 3.928 (0.115) 3.824 (0.034) 3.874 (0.093) 3.780 (0.096) 3.764 (0.129) 3.962 (0.078)
α � 0.5 4.524 (0.090) 4.486 (0.077) 4.444 (0.086) 4.408 (0.063) 4.448 (0.084) 4.340 (0.115) 4.382 (0.068)

Avg. Weight Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 0.362 (0.016) 0.045 (0.001) 0.040 (0.002) 0.044 (0.002) 0.039 (0.002) 0.040 (0.001) 0.043 (0.001)
α � 0.05 0.464 (0.003) 0.117 (0.003) 0.145 (0.006) 0.156 (0.005) 0.145 (0.007) 0.145 (0.004) 0.161 (0.006)
α � 0.1 0.483 (0.003) 0.417 (0.005) 0.438 (0.004) 0.450 (0.005) 0.441 (0.005) 0.428 (0.004) 0.446 (0.013)
α � 0.2 0.495 (0.003) 0.673 (0.002) 0.669 (0.005) 0.672 (0.003) 0.679 (0.003) 0.666 (0.004) 0.688 (0.003)
α � 0.5 0.503 (0.003) 0.868 (0.001) 0.864 (0.002) 0.857 (0.001) 0.865 (0.001) 0.858 (0.002) 0.867 (0.001)

Avg. Neuron Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 0.033 (0.002) 0.018 (0.001) 0.015 (0.001) 0.018 (0.001) 0.014 (0.001) 0.015 (0.001) 0.017 (0.001)
α � 0.02 0.050 (0.002) 0.056 (0.001) 0.068 (0.003) 0.074 (0.003) 0.069 (0.004) 0.069 (0.003) 0.077 (0.002)
α � 0.1 0.055 (0.002) 0.178 (0.002) 0.189 (0.002) 0.190 (0.002) 0.188 (0.002) 0.182 (0.003) 0.191 (0.006)
α � 0.2 0.059 (0.001) 0.297 (0.002) 0.294 (0.005) 0.293 (0.001) 0.299 (0.001) 0.289 (0.002) 0.307 (0.003)
α � 0.5 0.061 (0.001) 0.440 (0.002) 0.434 (0.002) 0.428 (0.001) 0.435 (0.001) 0.429 (0.003) 0.436 (0.001)

TABLE 9 | Average test error, weight sparsity, and neuron sparsity of WRN-28-10 models trained on CIFAR 100 with lowest test errors across 5 runs. Standard deviations
are in parentheses.

Avg. Test Error (%) CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 18.696 (0.184) 19.792 (0.084) 19.494 (0.241) 19.498 (0.189) 19.368 (0.188) 19.474 (0.051) 19.632 (0.182)
α � 0.05 18.714 (0.203) 19.284 (0.134) 18.816 (0.141) 19.106 (0.277) 18.936 (0.085) 18.846 (0.082) 19.094 (0.272)
α � 0.1 19.120 (0.387) 19.168 (0.067) 18.648 (0.268) 18.690 (0.181) 18.446 (0.108) 18.680 (0.292) 18.724 (0.084)
α � 0.2 20.298 (0.078) 18.902 (0.130) 18.440 (0.115) 18.694 (0.150) 18.502 (0.108) 18.290 (0.107) 18.614 (0.326)
α � 0.5 21.370 (0.259) 19.604 (0.107) 19.648 (0.203) 19.732 (0.147) 19.488 (0.262) 19.552 (0.186) 19.732 (0.156)

Avg. Weight Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 0.281 (0.017) 0.013 (0.001) 0.011 (0.001) 0.013 (<0.001) 0.011 (0.001) 0.011 (0.001) 0.013 (0.001)
α � 0.05 0.412 (0.004) 0.014 (0.001) 0.015 (0.002) 0.017 (0.001) 0.014 (0.001) 0.015 (0.001) 0.018 (0.001)
α � 0.1 0.440 (0.013) 0.054 (0.002) 0.070 (0.003) 0.069 (0.001) 0.073 (0.002) 0.066 (0.002) 0.080 (0.001)
α � 0.2 0.458 (0.016) 0.332 (0.004) 0.356 (0.005) 0.346 (0.002) 0.355 (0.004) 0.345 (0.003) 0.361 (0.003)
α � 0.5 0.478 (0.003) 0.697 (0.001) 0.693 (0.004) 0.685 (0.002) 0.700 (0.002) 0.686 (0.001) 0.698 (0.002)

Avg. Neuron Sparsity CGES GL SGL1 SGL0 SGSCAD SGTL1 SGL1 −L2

α � 0.01 0.008 (0.001) 0.002 (< 0.001) 0.002 (< 0.001) 0.003 (< 0.001) 0.001 (<0.001) 0.002 (<0.001) 0.002 (<0.001)
α � 0.02 0.030 (0.001) 0.003 (< 0.001) 0.005 (0.001) 0.006 (< 0.001) 0.005 (0.001) 0.005 (0.001) 0.006 (<0.001)
α � 0.1 0.037 (0.001) 0.033 (0.001) 0.044 (0.002) 0.041 (< 0.001) 0.046 (0.001) 0.040 (0.001) 0.050 (0.001)
α � 0.2 0.043 (0.003) 0.153 (0.002) 0.157 (0.002) 0.150 (0.001) 0.157 (0.002) 0.148 (0.001) 0.160 (0.001)
α � 0.5 0.052 (0.001) 0.303 (0.001) 0.298 (0.001) 0.294 (0.004) 0.304 (0.002) 0.293 (0.002) 0.303 (0.001)
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the lowest test errors from the five runs. Group lasso has the
lowest test errors for α≤ 3.5 while CGES has the lowest test error
at α � 4.0. However, the weight sparsity and the neuron sparsity

of group lasso are lower than the sparsity of SGL1 and some of the
nonconvex sparse group lasso regularizers. CGES has the lowest
neuron sparsity across all α’s. Among the nonconvex group lasso
penalties, SGSCAD has the best test errors, which are lower than
the test errors of SGL1 for all α’s except 2.5.

Table 8 reports mean test error, weight sparsity, and neuron
sparsity across the WRN-28-10 models trained on CIFAR 10
with the lowest test errors from the five runs. The best test errors
are attained by SGTL1 at α � 0.05, 0.2, 0.5; by CGES at α � 0.01;
and by SGL1 at α � 0.1. Weight sparsity of CGES outperforms
the other methods only when α � 0.01, 0.05, 0.1, but it
underperforms when α≥ 0.2. Weight sparsity levels between
group lasso and nonconvex group lasso are comparable
across all α. For neuron sparsity, SGL1 − L2 attains the largest
values at α � 0.02, 0.1, 0.2. Nevertheless, the other nonconvex
sparse group lasso methods have comparable neuron sparsity.
Overall, SGL1, SGL0, SGSCAD, and SGTL1 outperform group
lasso in test error while having similar or higher weight and
neuron sparsity.

Table 9 reports mean test error, weight sparsity, and neuron
sparsity across the WRN-28-10 models trained on CIFAR 100
with the lowest test errors from the five runs. According to the
results, the best test errors are attained by CGES when
α � 0.01, 0.05; by SGSCAD when α � 0.1, 0.5; and by SGTL1
when α � 0.2. Although CGES has the largest weight sparsity
for α � 0.01, 0.05, 0.1, 0.2, we see that its test error increases as α
increases. When α � 0.5, the best weight sparsity is attained by
SGSCAD, but the other methods have comparable weight

TABLE 10 | Average test error, weight sparsity, and neuron sparsity of
SGL1-regularized Lenet-5 models trained on MNIST after 200 epochs across
5 runs.

Avg. Test Error (%) direct SGD proximal SGD proposed

α � 0.1 0.758 (0.029) 1.306 (0.031) 0.722 (0.028)
α � 0.2 0.760 (0.006) 2.954 (0.051) 0.704 (0.031)
α � 0.3 0.798 (0.023) 4.992 (0.161) 0.732 (0.045)
α � 0.4 0.836 (0.034) 7.304 (0.147) 0.792 (0.034)
α � 0.5 0.772 (0.019) 9.610 (0.170) 0.720 (0.039)

Avg. Weight Sparsity direct SGD proximal SGD proposed

α � 0.1 0.935 (0.001) 0.994 (<0.001) 0.889 (0.004)
α � 0.2 0.951 (0.002) 0.997 (<0.001) 0.926 (0.001)
α � 0.3 0.960 (<0.001) 0.998 (<0.001) 0.945 (0.001)
α � 0.4 0.963 (0.001) 0.998 (<0.001) 0.952 (0.001)
α � 0.5 0.966 (0.001) 0.998 (<0.001) 0.954 (0.002)

Avg. Neuron Sparsity direct SGD proximal SGD proposed

α � 0.1 0.735 (0.003) 0.784 (0.004) 0.691 (0.007)
α � 0.2 0.778 (0.004) 0.902 (0.005) 0.754 (0.003)
α � 0.3 0.802 (0.001) 0.960 (0.002) 0.787 (0.003)
α � 0.4 0.813 (0.003) 0.972 (0.001) 0.805 (0.004)
α � 0.5 0.821 (0.004) 0.976 (0.002) 0.811 (0.004)

Themodels are trained with different algorithms. Standard deviations are in parentheses.
(SGD is stochastic gradient descent).

FIGURE 2 | Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST for 200 epochs across 5 runs when varying the regularization
parameter λ � α/60000 when α ∈ {0.1, 0.2, 0.3,0.4, 0.5}. (A) Mean test error. (B) Mean weight sparsity. (C) Mean neuron sparsity.
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sparsity. The best neuron sparsity is attained by CGES at
α � 0.01, 0.02; by SGL1 − L2 at α � 0.1, 0.2; and by SGSCAD at
α � 0.5. The neuron sparsity among the nonconvex sparse group

lasso methods are comparable. For α≤ 0.2, we see that SGL1 and
nonconvex sparse group lasso outperform group lasso in test
error across α while having comparable weight and neuron
sparsity.

3.2 Algorithm Comparison
We compare the proposed Algorithm 1 with direct
stochastic gradient descent, where the gradient of the
regularizer is approximated by backpropagation, and
proximal gradient descent, discussed in Section 2.4, by
applying them to SGL1 on Lenet-5 trained on MNIST.
The parameter setting for this CNN is discussed in
Section 3.1.1. Table 10 reports the mean results for test
error, weight sparsity, and neuron sparsity across five
models trained after 200 epochs while Figure 2 provides
visualizations. Table 11 and Figure 3 record mean statistics
for models with the lowest test errors from the five runs.
According to the results, proximal stochastic gradient
descent attains the highest level of weight sparsity and
neuron sparsity for models trained after 200 epochs and
models with the lowest test error. However, their test errors
are the highest among the three algorithms. On the other
hand, our proposed algorithm attains the lowest test errors.
For models trained after 200 epochs, the weight sparsity and
neuron sparsity attained by Algorithm 1 are comparable to
the sparsity attained by direct stochastic gradient descent.
For models with the lowest test errors generated from their
respective runs, the weight sparsity and neuron sparsity by

TABLE 11 | Average test error, weight sparsity, and neuron sparsity of
SGL1-regularized Lenet-5 models trained on MNIST with lowest test errors
across 5 runs.

Avg. Test Error (%) direct SGD proximal SGD proposed

α � 0.1 0.594 (0.032) 1.152 (0.026) 0.568 (0.021)
α � 0.2 0.634 (0.031) 2.320 (0.042) 0.582 (0.035)
α � 0.3 0.692 (0.028) 3.360 (0.075) 0.600 (0.030)
α � 0.4 0.684 (0.014) 4.272 (0.051) 0.652 (0.025)
α � 0.5 0.636 (0.022) 5.020 (0.094) 0.616 (0.052)

Avg. Weight Sparsity direct SGD proximal SGD proposed

α � 0.1 0.449 (0.172) 0.939 (0.011) 0.757 (0.015)
α � 0.2 0.531 (0.012) 0.971 (0.005) 0.845 (0.005)
α � 0.3 0.451 (0.217) 0.992 (<0.001) 0.886 (0.004)
α � 0.4 0.449 (0.213) 0.989 (0.005) 0.896 (0.004)
α � 0.5 0.559 (0.007) 0.994 (< .0.001) 0.905 (0.003)

Avg. Neuron Sparsity direct SGD proximal SGD proposed

α � 0.1 0.317 (0.139) 0.698 (0.024) 0.497 (0.014)
α � 0.2 0.444 (0.015) 0.743 (0.021) 0.627 (0.011)
α � 0.3 0.382 (0.185) 0.863 (0.003) 0.697 (0.010)
α � 0.4 0.399 (0.196) 0.828 (0.061) 0.721 (0.008)
α � 0.5 0.519 (0.013) 0.883 (0.003) 0.735 (0.004)

Themodels are trained with different algorithms. Standard deviations are in parentheses.
(SGD is stochastic gradient descent).

FIGURE 3 |Mean results of algorithms applied to SGL1 for Lenet-5 models trained on MNIST with lowest test errors across 5 runs when varying the regularization
parameter λ � α/60000 when α ∈ {0.1, 0.2, 0.3,0.4, 0.5}. (A) Mean test error. (B) Mean weight sparsity. (C) Mean neuron sparsity.
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the proposed algorithm are better than the sparsity by direct
stochastic gradient descent. Therefore, our proposed
algorithm generates the most accurate model with
satisfactory sparsity among the three algorithms for
sparse regularization.

4 CONCLUSION AND FUTURE WORK

In this work, we propose nonconvex sparse group lasso, a
nonconvex extension of sparse group lasso. The ℓ1 norm in
sparse group lasso on the weight parameters is replaced
with a nonconvex regularizer whose proximal operator is a
thresholding function. Taking advantage of this property, we
develop a new algorithm to optimize loss functions regularized
with nonconvex sparse group lasso for CNNs in order to attain
a sparse network with competitive accuracy. We compare
the proposed family of regularizers with various baseline
methods on MNIST and CIFAR 10/100 on different CNNs.
The experimental results demonstrate that in general,
nonconvex sparse group lasso generates a more accurate
and/or more compressed CNN than does group lasso. In
addition, we compare our proposed algorithm to direct
stochastic gradient descent and proximal gradient descent on
Lenet-5 trained on MNIST. The results show that the
proposed algorithm to solve SGL1 yields a satisfactorily
sparse network with lower test error than do the other two
algorithms.

According to the numerical results, there is no single
sparse regularizer that outperforms all other on any CNN
trained on a given dataset. One regularizer may perform well
in one case while it may perform worse on a different case. Due
to the myriad of sparse regularizers to select from and the
various parameters to tune, especially for one CNN trained on
a given dataset, one direction is to develop an automatic
machine learning framework that efficiently selects the right
regularizer and parameters. In recent works, automatic
machine learning can be represented as a matrix completion
problem [88] and a statistical learning problem [24]. These
frameworks can be adapted for selecting the best sparse
regularizer, thus saving time for users who are training
sparse CNNs.

5 PROOFS

We provide proofs for the results discussed in Section 2.5.

5.1 Proof of Theorem 2
By Eqs 17a and 17b, for each k ∈ N, we have

Fβ(Vk,Wk+1)≤ Fβ(Vk,W) (22)

for all W, and

Fβ(Vk+1,Wk+1)≤ Fβ(V ,Wk+1) (23)

for all V. By Eq. 23, we have

Fβ(V+,W+)≤ Fβ(Vk,W+) (24)

for each k ∈ N. Altogether, we have

Fβ(V+,W+)≤ Fβ(Vk,Wk) (25)

for each k ∈ N, so {Fβ(Vk,Wk)}∞k�1 is nonincreasing. Since
Fβ(Vk,Wk)≥ 0 for all k ∈ N, its limit lim

k→∞
Fβ(Vk,Wk) exists.

From Eqs. 22–24, we have

Fβ(V+,W+)≤ Fβ(Vk,W+)≤ Fβ(Vk,Wk).
Taking the limit gives us

lim
k→∞

Fβ(Vk,W+) � lim
k→∞

Fβ(Vk,Wk). (26)

Since (V*,W*) is an accumulation point of {(Vk,Wk)}∞k�1, there
exists a subsequence K such that

lim
k∈K→∞

(Vk,Wk) � (V *,W*). (27)

Because r(·) is lower semicontinuous and lim
k∈K→∞

Vk � V*, there

exists k′ ∈ K such that k≥ k′ implies r(Vk
l )≥ r(V*

l ) for each

l � 1, . . . , L. Using this result along with Eq. 23, we obtain

Fβ(V ,Wk)≥ Fβ(Vk,Wk)
� ~L(Wk) +∑

l�1

L [λ(RGL(Wk
l ) + r(Vk

l )) + β

2

∣∣∣∣∣∣∣∣Vk
l −Wk

l

∣∣∣∣∣∣∣∣22]
≥ ~L(Wk) +∑

l�1

L [λ(RGL(Wk
l ) + r(V *

l )) + β

2

∣∣∣∣∣∣∣∣Vk
l −Wk

l

∣∣∣∣∣∣∣∣22]
for k≥ k′. As k ∈ K→∞, we have

Fβ(V ,W*)≥ ~L(W*)+∑L
l�1
⎡⎣λ(RGL(W*

l )+ r(V *
l )) + β

2

∣∣∣∣∣∣∣∣V*
l −W*

l

∣∣∣∣∣∣∣∣22⎤⎦
� Fβ(V *,W*)

(28)

by continuity, so it follows that V* ∈ arg minVFβ(V ,W*).
For notational convenience, let

~Rλ,β(V ,W) :� ∑L
l�1
[λRGL(Wl) + β

2
||Vl −Wl||22]. (29)

By Eq. 22, we have

~L(W) + ~Rλ,β(Vk,W) � Fβ(Vk,W) − λ∑
i�1

L

r(Vk
l )

≥ Fβ(Vk,W+) − λ∑
i�1

L

r(Vk
l ) � ~L(W+) + ~Rλ,β(Vk,W+).

(30)

Because lim
k∈K→∞

Vk exists, the sequence {Vk}k∈K is bounded. If r(·)
is ℓ0, transformed ℓ1, or SCAD, then {r(Vk)}k∈K is bounded. If
r(·) is ℓ1, then r(·) is coercive. If r(·) is ℓ1 − αℓ2, then r(·) is
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bounded above by ℓ1. Overall, this follows that {r(Vk)}k∈K
bounded as well. Hence, there exists a further subsequence
K ⊂ K such that lim

k∈K→∞
r(Vk) exists. So, we obtain

lim
k∈K→∞

~L(W+) + ~Rλ,β(Vk,W+) � lim
k∈K→∞

Fβ(Vk,W+) − λ∑
i�1

L

r(Vk
l )

� lim
k∈K→∞

Fβ(Vk,W+) − lim
k∈K→∞

λ∑
i�1

L

r(Vk
l )

� lim
k∈K→∞

Fβ(Vk,Wk) − lim
k∈K→∞

λ∑
i�1

L

r(Vk
l )

� lim
k∈K→∞

Fβ(Vk,Wk) − λ∑
i�1

L

r(Vk
l )

� lim
k∈K→∞

~L(Wk) + ~Rλ,β(Vk,Wk)
� ~L(W*) + ~Rλ,β(W*,V*)

(31)

after applying Eq. 26 in the third inequality and by continuity in
the last equality.

Taking the limit over the subsequence K in Eq. 30 and
applying Eq. 31, we obtain

~L(W) + ~Rλ,β(V *,W)≥ ~L(W*) + ~Rλ,β(W*,V*) (32)

by continuity. Adding ∑​L
l�1r(V*

l ) on both sides yields

Fβ(V *,W)≥ Fβ(V *,W*), (33)

which follows that W* ∈ arg minWFβ(V*,W). This completes
the proof.

5.2 Proof of Theorem 3
Because (V*,W*) is an accumulation point, there exists a
subsequence K such that lim

k∈K→∞
(Vk,Wk) � (V*,W*). If

{Fβk
(Vk,Wk)}∞k�1 is uniformly bounded, there exists M such

that Fβk
(Vk,Wk)≤M for all k ∈ N. Then we have

M ≥ Fβk(Vk,Wk) � ~L(W) +∑L
l�1
[λRGL(Wl) + λr(Vl)

+ βk
2
||Vl −Wl||22]≥ βk2 ∑L

l�1
||Vl −Wl||22

As a result,

∑L
l�1

∣∣∣∣∣∣∣∣Vk
l −Wk

l

∣∣∣∣∣∣∣∣22 ≤ 2
βk

M. (34)

Taking the limit over k ∈ K , we have

∑L
l�1

∣∣∣∣∣∣∣∣V *
l −W*

l

∣∣∣∣∣∣∣∣22 � 0,

which follows that V* � W*. As a result, (V*,W*) is a feasible
solution to Eq. 15.
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