
Financial Forecasting With α-RNNs:
A Time Series Modeling Approach
Matthew Dixon1,2* and Justin London2

1Department of Applied Math, Illinois Institute of Technology, Chicago, IL, United States, 2Stuart School of Business, Illinois
Institute of Technology, Chicago, IL, United States

The era of modern financial data modeling seeks machine learning techniques which are
suitable for noisy and non-stationary big data. We demonstrate how a general class of
exponential smoothed recurrent neural networks (α-RNNs) are well suited to modeling
dynamical systems arising in big data applications such as high frequency and algorithmic
trading. Application of exponentially smoothed RNNs to minute level Bitcoin prices and
CME futures tick data, highlight the efficacy of exponential smoothing for multi-step time
series forecasting. Our α-RNNs are also compared with more complex, “black-box”,
architectures such as GRUs and LSTMs and shown to provide comparable performance,
but with far fewer model parameters and network complexity.

Keywords: recurrent neural networks, exponential smoothing, bitcoin, time series modeling, high frequency trading

1. INTRODUCTION

Recurrent neural networks (RNNs) are the building blocks of modern sequential learning. RNNs use
recurrent layers to capture non-linear temporal dependencies with a relatively small number of
parameters (Graves, 2013). They learn temporal dynamics bymapping an input sequence to a hidden
state sequence and outputs, via a recurrent layer and a feedforward layer.

There have been exhaustive empirical studies on the application of recurrent neural networks to
prediction from financial time series data such as historical limit order book and price history
(Borovykh et al., 2017; Dixon, 2018; Borovkova and Tsiamas, 2019; Chen and Ge, 2019; Mäkinen
et al., 2019; Sirignano and Cont, 2019). Sirignano and Cont (2019) find evidence that stacking
networks leads to superior performance on intra-day stock data combined with technical indicators,
whereas (Bao et al., 2017) combine wavelet transforms and stacked autoencoders with LSTMs on
OHLC bars and technical indicators. Borovykh et al. (2017) find evidence that dilated convolutional
networks out-perform LSTMs on various indices. Dixon (2018) demonstrate that RNNs outperform
feed-forward networks with lagged features on limit order book data.

There appears to be a chasm between the statistical modeling literature (see, e.g., Box and Jenkins
1976; Kirchgässner and Wolters 2007; Hamilton 1994) and the machine learning literature (see. e.g.,
Hochreiter and Schmidhuber 1997; Pascanu et al. 2012; Bayer 2015). One of the main contributions
of this paper is to demonstrate how RNNs, and specifically a class of novel exponentially smoothed
RNNs (α-RNNs), proposed in (Dixon, 2021), can be used in a financial time series modeling
framework. In this framework, we rely on statistical diagnostics in combination with cross-validation
to identify the best choice of architecture. These statistical tests characterize stationarity and memory
cut-off length and provide insight into whether the data is suitable for longer-term forecasting and
whether the model must be non-stationary.

In contrast to state-of-the-art RNNs such as LSTMs and Gated Recurrent Units (GRUs) (Chung
et al., 2014), which were designed primarily for speech transcription, the proposed class of α-RNNs is
designed for times series forecasting using numeric data. α-RNNs not only alleviate the gradient

Edited by:
Glenn Fung,

Independent Researcher, Madison,
United States

Reviewed by:
Alex Jung,

Aalto University, Finland
Abhishake Rastogi,

University of Potsdam, Germany

*Correspondence:
Matthew Dixon

matthew.dixon@iit.edu

Specialty section:
This article was submitted to
Mathematics of Computation

and Data Science,
a section of the journal

Frontiers in Applied Mathematics
and Statistics

Received: 12 April 2020
Accepted: 13 October 2020
Published: 11 February 2021

Citation:
Dixon M and London J (2021) Financial

Forecasting With α-RNNs: A Time
Series Modeling Approach.

Front. Appl. Math. Stat. 6:551138.
doi: 10.3389/fams.2020.551138

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511381

ORIGINAL RESEARCH
published: 11 February 2021

doi: 10.3389/fams.2020.551138

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2020.551138&domain=pdf&date_stamp=2021-02-11
https://www.frontiersin.org/articles/10.3389/fams.2020.551138/full
https://www.frontiersin.org/articles/10.3389/fams.2020.551138/full
https://www.frontiersin.org/articles/10.3389/fams.2020.551138/full
http://creativecommons.org/licenses/by/4.0/
mailto:matthew.dixon@iit.edu
https://doi.org/10.3389/fams.2020.551138
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2020.551138

problem but are designed to i) require fewer parameters and
numbers of recurrent units and considerably fewer samples to
attain the same prediction accuracy1; ii) support both stationary
and non-stationary times series2; and iii) be mathematically
accessible and characterized in terms of well known concepts
in classical time series modeling, rather than appealing to logic
and circuit diagrams.

As a result, through simple analysis of the time series properties
of α-RNNs, we show how the value of the smoothing parameter, α,
directly characterizes its dynamical behavior and provides a model
which is both more intuitive for time series modeling than GRUs
and LSTMs while performing comparably. We argue that for time
series modeling problems in finance, some of the more
complicated components, such as reset gates and cell memory
present in GRUs and LSTMs but absent in α-RNNs, may be
redundant for our data. We exploit these properties in two ways i)
first, we using a statistical test for stationarity to determine
whether to deploy a static or dynamic α-RNN model; and ii)
we are able to reduce the training time, memory requirements for
storing the model, and in general expect α-RNN to be more
accurate for shorter time series as they require less training
data and are less prone to over-fitting. The latter is a point of
practicality as many applications in finance are not necessarily big
data problems, and the restrictive amount of data favors an
architecture with fewer parameters to avoid over-fitting.

The remainder of this paper is outlined as follows. Section 2
introduces the static α-RNN. Section 3 bridges the time series
modeling approach with RNNs to provide insight on the network
properties. Section 4 introduces a dynamic version of the model
and illustrates the dynamical behavior of α. Details of the training,
implementation and experiments using financial data together
with the results are presented in Section 5. Finally, Section 6
concludes with directions for future research.

2. α-RNNS

Given auto-correlated observations of covariates or predictors, xt ,
and continuous responses yt at times t � 1, . . . ,N , in the time
series data D :� {(xt , yt)}Nt�1, our goal is to construct an m-step
(m> 0) ahead times series predictor, ŷt+m � F(x_t), of an observed
target, yt+m ∈ Rn, from a p length input sequence x_t

yt+m :� F(x_t) + ut , where x_t :� {xt−p+1, . . . , xt},

xt−j �: Lj[xt] is the jth lagged observation of xt ∈ Rd , for j �
0, . . . , p − 1 and ut is the homoscedastic model error at time t.
We introduce the α-RNN model (as shown in Figure 1):

ŷt+m � FW,b,α(x_t) (1)

where FW,b,α(x_t) is an α ∈ [0, 1] smoothed RNN with weight
matrices W :� (Wh,Uh,Wy), where the input weight matrix
Wh ∈ RH×d , the recurrence weight matrix Uh ∈ RH×H , the
output weight matrix Wy ∈ Rn×H , and H is the number of
hidden units. The hidden and output bias vectors are given by
b :� (bh, by).

For each index in a sequence, s � t-p+2, . . . ,t, forward passes
repeatedly update a hidden internal state ĥs ∈ RH , using the
following model:

(output) ŷt+m � Wyĥt + by ,
(hidden state update) ĥs � σ(Uh

~hs−1 +Whxs + bh),
s � t − p + 2, . . . , t

(smoothing) ~hs � αĥs + (1 − α)~hs−1,

where σ() :� tanh() is the activation function and ~hs ∈ RH is an
exponentially smoothed version of the hidden state ĥs, with the
starting condition in each sequence, ĥt−p+1 � σ(Whxt−p+1).

3. UNIVARIATE TIMES SERIES MODELING
WITH ENDOGENOUS FEATURES

This section bridges the time series modeling literature (Box and
Jenkins, 1976; Kirchgässner and Wolters, 2007; Li and Zhu, 2020)
and the machine learning literature. More precisely, we show the
conditions under which plain RNNs are identical to autoregressive
time series models and thus how RNNs generalize autoregressive
models. Then we build on this result by applying time series
analysis to characterize the behavior of static α-RNNs.

We shall assume here for ease of exposition that the time series
data is univariate and the predictor is endogenous3, so that the
data is D :� {yt}Nt�1.

We find it instructive to show that plain RNNs are non-linear
AR(p) models. For ease of exposition, consider the simplest case
of a RNNwith one hidden unit,H � 1.Without loss of generality,
we set Uh � Wh � ϕ,Wy � 1, bh � 0 and by � μ. Under backward
substitution, a plain-RNN, FW,b(x_t), with sequence length p, is a
non-linear auto-regressive, NAR(p), model of order p: :

ĥt−p+1 � σ(ϕyt−p+1)
ĥt−p+2 � σ(ϕĥt−p+1 + ϕyt−p+2)

. . . � . . .
ĥt � σ(ϕĥt−1 + ϕyt)

ŷt+m � ĥt + μ

then

ŷt+m � μ + σ(ϕ(1 + σ(ϕ(L + σ(ϕ(L2 + . . . + σ(ϕLp−1) . . .)[yt].
(2)

1Sample complexity bounds for RNNs have recently been derived by (Akpinar
et al., 2019). Theorem 3.1 shows that for a recurrent units, inputs of length at most
b, and a single real-valued output unit, the network requires only O(a4b/ϵ2)
samples in order to attain a population prediction error of ε. Thus the more
recurrent units required, the larger the amount of training data needed.
2By contrast, plain RNNs model stationary time series, and GRUs/LSTMs model
non-stationary, but no hybrid exists which provides the modeler with the control to
deploy either.

3The sequence of features is from the same time series as the predictor hence n �
d � 1.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511382

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

When the activation is the identity function σ :� Id , then we
recover the AR(p) model

ŷt+m � μ +∑
p−1

i�0
ϕi+1L

i[yt], ϕi :� ϕi. (3)

with geometrically decaying autoregressive coefficients when∣∣∣∣ϕ
∣∣∣∣< 1.
The α-RNN(p) is almost identical to a plain RNN, but with an

additional scalar smoothing parameter, α, which provides the
recurrent network with “long-memory”4. To see this, let us
consider a one-step ahead univariate α-RNN(p) in which the
smoothing parameter is fixed and H � 1.

This model augments the plain-RNN by replacing ĥs−1 in the
hidden layer with an exponentially smoothed hidden state ~hs−1.
The effect of the smoothing is to provide infinite memory when
α≠ 1. For the special case when α � 1, we recover the plain RNN
with short memory of length p≪N .

We can easily verify this informally by simplifying the
parameterization and considering the unactivated case. Setting
by � bh � 0, Uh � Wh � ϕ ∈ R and Wy � 1:

ŷt+1 � ĥt , (4)

� ϕ(~ht−1 + yt), (5)

� ϕ(αĥt−1 + (1 − α)~ht−2 + yt), (6)

with the starting condition in each sequence, ĥt−p+1 � ϕyt−p+1.
With out loss of generality, consider p � 2 lags in the model so
that ĥt−1 � ϕyt−1. Then

ĥt � ϕ(αϕyt−1 + (1 − α)~ht−2 + yt) (7)

and the model can be written in the simpler form

ŷt+1 � ϕ1yt + ϕ2yt−1 + ϕ(1 − α)~ht−2, (8)

with auto-regressive weights ϕ1 :� ϕ and ϕ2 :� αϕ2. We now see
that there is a third term on the RHS of Eq. 8 which vanishes
when α � 1 but provides infinite memory to the model since ~ht−2
depends on y1, the first observation in the whole time series, not
just the first observation in the sequence. To see this, we unroll the
recursion relation in the exponential smoother:

~ht+1 � α∑
t−1

s�0
(1 − α)sĥt−s + (1 − α)ty1. (9)

where we used the property that ~h1 � y1. It is often convenient to
characterize exponential smoothing by the half-life5. To gain
further insight on the memory of the network, Dixon (2021)
study the partial auto-correlations of the process ŷt+m + ut to
characterize the memory and derive various properties and
constraints needed for network stability and sequence length
selection.

FIGURE 1 | An illustrative example of an α-RNN with an alternating hidden recurrent layer (with blue nodes) and a smoothing layer (white block), “unfolded” over a
sequence of six time steps. Each lagged feature xt−i in the sequence x_t is denoted by the yellow nodes. The hidden recurrent layer contains H units (blue nodes) and the
ith output, after smoothing, at time step t is denoted by ~h

i
t. At the last time step t, the hidden units connect to a single unactivated output unit to give ŷt+m (red node).

4Long memory refers to autoregressive memory beyond the sequence length. This
is also sometimes referred to as “stateful”. For avoidance of doubt, we are not
suggesting that the α-RNN has an additional cellular memory, as in LSTMs.

5The half-life is the number of lags needed for the coefficient (1 − α)s to equal a
half, which is s � −1/log2(1 − α).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511383

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

4. MULTIVARIATE DYNAMIC α-RNNS

We now return to the more general multivariate setting as in
Section 2. The extension of RNNs to dynamical time series
models, suitable for non-stationary time series data, relies on
dynamic exponential smoothing. This is a time dependent,
convex, combination of the smoothed output, ~ht , and the
hidden state ĥt :

~ht+1 � αt+ĥt + (1 − αt)+~ht , (10)

where + denotes the Hadamard product between vectors and where
αt ∈ [0, 1]H denotes the dynamic smoothing factor which can be
equivalently written in the one-step-ahead forecast of the form

~ht+1 � ~ht + αt+(ĥt − ~ht). (11)

Hence the smoothing can be viewed as a dynamic form of
latent forecast error correction. When (αt)i � 0, the ith component
of the latent forecast error is ignored and the smoothing merely
repeats the ith component of the current hidden state (~ht)i, which
enforces the removal of the ith component from the memory.
When (αt)i � 1, the latent forecast error overwrites the current ith

component of the hidden state (~ht)i. The smoothing can also be
viewed as a weighted sum of the lagged observations, with lower or
equal weights, αt−s+∏ s

r�1(1 − αt−r+1) at the s≥ 1 lagged hidden
state, ĥt−s:

~ht+1 � αt+ĥt +∑
t−1

s�1
αt−s+∏

s

r�1
(1 − αt−r+1)+ĥt−s + g(α),

where g(α) :� ∏ t−1
r�0(1 − αt−r)+~y1. Note that for any (αt−r+1)i � 1,

the ith component of the smoothed hidden state (~ht+1)i will have
no dependency on all the lagged ith components of hidden states
{(ĥt−s)i}s≥ r. The model simply forgets the ith component of the
hidden states at or beyond the rth lag.

4.1. Neural Network Exponential Smoothing
While the class of αt-RNN models under consideration is free to
define how α is updated (including changing the frequency of the
update) based on the hidden state and input, a convenient choice
is use a recurrent layer. Remaining in the more general setup with
a hidden state vector ĥt ∈ RH , let us model the smoothing
parameter α̂t ∈ [0, 1]H to give a filtered time series

~ht � α̂t+ĥt + (1 − α̂t)+~ht−1. (12)

This smoothing is a vectorized form of the above classical
setting, only here we note that when (αt)i � 1, the ith component
of the hidden variable is unmodified and the past filtered hidden
variable is forgotten. On the other hand, when (αt)i � 0, the ith

component of the hidden variable is obsolete, instead setting the
current filtered hidden variable to its past value. The smoothing
in Eq. 12 can be viewed then as updating long-term memory,
maintaining a smoothed hidden state variable as the memory
through a convex combination of the current hidden variable and
the previous smoothed hidden variable.

The hidden variable is given by the semi-affine transformation:

ĥt � σ(Uh
~ht−1 +Whxt + bh), (13)

which in turn depends on the previous smoothed hidden variable.
Substituting Eq. 13 into Eq. 12 gives a function of ~ht−1 and xt :

~ht � g(~ht−1, xt; α) (14)

:� α̂t+σ(Uh
~ht−1 +Whxt + bh) + (1 − α̂t)+~ht−1. (15)

We see that when (αt)i � 0, the ith component of the smoothed
hidden variable (~ht)i is not updated by the input xt . Conversely,
when (αt)i � 1, we observe that the ith hidden variable locally
behaves like a non-linear autoregressive series. Thus the
smoothing parameter can be viewed as the sensitivity of the
smoothed hidden state to the input xt .

The challenge becomes how to determine dynamically how
much error correction is needed. As in GRUs and LSTMs, we can
address this problem by learning α̂ � F(Wα ,Uα ,bα)(x_t) from the
input variables with the recurrent layer parameterized by
weights and biases (Wα,Uα, bα). The one-step ahead forecast of
the smoothed hidden state, ~ht , is the filtered output of another
plain RNN with weights and biases (Wh,Uh, bh).

5. RESULTS

This section describes numerical experiments using financial
time series data to evaluate the various RNNmodels. All models
are implemented in v1.15.0 of TensorFlow (Abadi et al., 2016).
Times series cross-validation is performed using separate
training, validation and test sets. To preserve the time
structure of the data and avoid look ahead bias, each set
represents a contiguous sampling period with the test set
containing the most recent observations. To prepare the
training, validation and testing sets for m-step ahead
prediction, we set the target variables (responses) to the t +
m observation, yt+m, and use the lags from t − p + 1, . . . t for

FIGURE 2 | The partial autocorrelogram (PACF) for 1 min snapshots of
Bitcoin mid-prices (USD) over the period January 1, 2018 to November
10, 2018.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511384

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

each input sequence. This is repeated by incrementing t until
the end of each set. In our experiments, each element in the
input sequence is either a scalar or vector and the target
variables are scalar.

We use the SimpleRNN Keras method with the default
settings to implement a fully connected RNN. Tanh
activation functions are used for the hidden layer with the
number of units found by time series cross-validation with
five folds to be H ∈ {5, 10, 20} and L1 regularization,

λ1 ∈ {0, 10− 3, 10− 2}. The Glorot and Bengio uniform method
(Glorot and Bengio, 2010) is used to initialize the non-recurrent
weight matrices and an orthogonal method is used to initialize
the recurrence weights as a random orthogonal matrix. Keras’s
GRU method is implemented using version 1,406.1078v, which
applies the reset gate to the hidden state before matrix
multiplication. See Appendix 1.1 for a definition of the reset
gate. Similarly, the LSTM method in Keras is used. Tanh
activation functions are used for the recurrence layer and

FIGURE 3 | The four-step ahead forecasts of temperature using the minute snapshot Bitcoin prices (USD) with MSEs shown in parentheses. (top) The forecasts for
each architecture and the observed out-of-sample time series. (bottom) The errors for each architecture over the same test period. Note that the prices have been
standardized.

TABLE 1 | The four-step ahead Bitcoin forecasts are compared for various architectures using time series cross-validation. The half-life of the α-RNN is found to be
1.077 min (α̂ � 0.4744).

Architecture Parameters λ1 H MSE (test) MSE (val) MSE (train)

RNN 461 0 20 2.432 × 10−5 1.921×10− 5 8.453 × 10− 6

α-RNN 132 0 10 1.342 × 10−5 9.610×10− 6 7.664 × 10− 6

αt-RNN 86 0 5 9.875 × 10−6 8.614×10− 6 7.734 × 10− 6

GRU 371 0 10 1.055 × 10−5 7.293 × 10− 6 6.293 × 10− 6

LSTM 491 0 10 8.164 × 10−6 5.711 × 10− 6 4.922 × 10− 6

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511385

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

sigmoid activation functions are used for all other gates. The
AlphaRNN and AlphatRNN classes are implemented by the
authors for use in Keras. Statefulness is always disabled.

Each architecture is trained for up to 2000 epochs with an Adam
optimization algorithm with default parameter values and using a
mini-batch size of 1,000 drawn from the training set. Early stopping
is implemented using a Keras call back with a patience of 50 to 100
and a minimum loss delta between 10− 8 and 10− 6. So, for example,
if the patience is set to 50 and the minimum loss delta is 10− 8, then
fifty consecutive loss evaluations on mini-batch updates must each
lie within 10− 8 of each other before the training terminates. In
practice, the actual number of epoches required varies between
trainings due to the randomization of the weights and biases, and
across different architectures and is typically between 200 and 1,500.
The 2000 epoch limit is chosen as it provides an upper limit which is
rarely encountered. No random permutations are used in the mini-
batching sampling in order to preserve the ordering of the time
series data. To evaluate the forecasting accuracy, we set the forecast
horizon to up to ten steps ahead instead of the usual step ahead
forecasts often presented in the machine learning literature—longer
forecasting horizons are often more relevant due to operational
constraints in industry applications and are more challenging when
the data is non-stationary since the fixed partial auto-correlation of
the process ŷt+m + ut will not adequately capture the observed

FIGURE 4 | The PACF of the tick-by-tick VWAP of ESU6 over the month
of August 2016.

FIGURE 5 | The ten-step ahead forecasts of VWAPs are compared for various architectures using the tick-by-tick dataset. (top) The forecasts for each architecture
and the observed out-of-sample time series. (bottom) The errors for each architecture over the same test period.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511386

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

changing partial auto-correlation structure of the data. In the
experiments below, we use m � 4 and m � 10 steps ahead. The
reason we use less thanm � 10 in the first experiment is because we
find that there is little memory in the data beyond four lags and
hence it is of little value to predict beyond four time steps.

5.1. Bitcoin Forecasting
One minute snapshots of USD denominated Bitcoin mid-prices
are captured from Coinbase over the period from January 1 to
November 10, 2018. We demonstrate how the different networks
forecast Bitcoin prices using lagged observations of prices. The
predictor in the training and the test set is normalized using the
moments of the training data only so as to avoid look-ahead bias
or introduce a bias in the test data. We accept the Null hypothesis
of the augmented Dickey-Fuller test as we can not reject it at even
the 90% confidence level. The data is therefore stationary
(contains at least one unit root). The largest test statistic is
−2.094 and the p-value is 0.237 (the critical values are 1%:
-3.431, 5%: -2.862, and 10%: -2.567). While the partial
autocovariance structure is expected to be time dependent, we
observe a short memory of only four lags by estimating the PACF
over the entire history (see Figure 2).

We choose a sequence length of p � 4 based on the PACF and
perform a four-step ahead forecast. We comment in passing that
there is little, if any, merit in forecasting beyond this time horizon
given the largest significant lag indicated by the PACF. Figure 3
compares the performance of the various forecasting networks
and shows that stationary models such as the plain RNN and the
α-RNN least capture the price dynamics—this is expected because
the partial autocorrelation is non-stationary.

Viewing the results of time series cross validation, using the first
30,000 observations, in Table 1, we observe minor differences in
the out-of-sample performance of the LSTM, GRU vs. the αt-RNN,
suggesting that the reset gate and extra cellular memory in the
LSTM provides negligible benefit for this dataset. In this case, we
observe very marginal additional benefit in the LSTM, yet the
complexity of the latter is approximately 50x that of the αt-RNN.
Furthermore we observe evidence of strong over-fitting in the GRU
and LSTM vs. the αt-RNN. The ratio of training to test errors are
respectively 0.596 and 0.603 vs. 0.783. The ratio of training to
validation errors are 0.863 and 0.862 vs. 0.898.

5.2. High Frequency Trading Data
Our dataset consists of N � 1, 033, 468 observations of tick-by-
tick Volume Weighted Average Prices (VWAPs) of CME listed

ESU6 level II data over the month of August 2016 (Dixon, 2018;
Dixon et al., 2019).

We reject the Null hypothesis of the augmented Dickey-Fuller
test at the 99% confidence level in favor of the alternative
hypothesis that the data is stationary (contains no unit roots.
See for example (Tsay, 2010) for a definition of unit roots and
details of the Dickey-Fuller test). The test statistic is −5.243 and
the p-value is 7.16 × 10− 6 (the critical values are 1%: –3.431, 5%:
–2.862, and 10%: –2.567).

The PACF in Figure 4 is observed to exhibit a cut-off at
approximately 23 lags. We therefore choose a sequence length of p �
23 and perform a ten-step ahead forecast. Note that the time-stamps
of the tick data are not uniform and hence a step refers to a tick.

Figure 5 compares the performance of the various networks
and shows that plain RNN performs poorly, whereas and the
αt-RNN better captures the VWAP dynamics. From Table 2, we
further observe relatively minor differences in the performance of
the GRU vs. the αt-RNN, again suggesting that the reset gate and
extra cellular memory in the LSTM provides no benefit. In this
case, we find that the GRU has 10x the number of parameters as
the αt-RNN with very marginal benefit. Furthermore we observe
evidence of strong over-fitting in the GRU and LSTM vs. the
αt-RNN, although overall we observe stronger over-fitting on this
dataset than the bitcoin dataset. The ratio of training to test errors
are respectively 0.159 and 0.187 vs. 0.278. The ratio of training to
validation errors are 0.240 and 0.226 vs. 0.368.

6. CONCLUSION

Financial time series modeling has entered an era of unprecedented
growth in the size and complexity of data which require new
modeling methodologies. This paper demonstrates a general
class of exponential smoothed recurrent neural networks (RNNs)
which are well suited to modeling non-stationary dynamical
systems arising in industrial applications such as algorithmic and
high frequency trading. Application of exponentially smoothed
RNNs to minute level Bitcoin prices and CME futures tick data
demonstrates the efficacy of exponential smoothing for multi-step
time series forecasting. These examples show that exponentially
smoothed RNNs are well suited to forecasting, exhibiting few layers
and needing fewer parameters, than more complex architectures
such as GRUs and LSTMs, yet retaining the most important aspects
needed for forecasting non-stationary series. Thesemethods scale to
large numbers of covariates and complex data. The experimental

TABLE 2 | The ten-step ahead forecasting models for VWAPs are compared for various architectures using time series cross-validation. The half-life of the α-RNN is found
to be 2.398 periods (α̂ � 0.251).

Architecture Parameters λ1 H MSE (test) MSE (val) MSE (train)

RNN 41 0 5 2.310 × 10−4 1.843 × 10− 4 5.843 × 10− 5

α-RNN 132 0 10 1.926 × 10−4 1.288 × 10− 4 3.456 × 10− 5

αt-RNN 86 0 5 1.682 × 10−4 1.311 × 10− 4 4.824 × 10− 5

GRU 1,341 0 20 1.568 × 10−4 1.036 × 10− 4 2.488 × 10− 5

LSTM 491 0 10 1.685 × 10−4 1.390 × 10− 4 3.154 × 10− 5

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511387

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

design and architectural parameters, such as the predictive horizon
and model parameters, can be determined by simple statistical tests
and diagnostics, without the need for extensive hyper-parameter
optimization.Moreover, unlike traditional time seriesmethods such
as ARIMAmodels, these methods are shown to be unconditionally
stable without the need to pre-process the data.

DATA AVAILABILITY STATEMENT

The datasets and Python codes for this study can be found at
https://github.com/mfrdixon/alpha-RNN.

AUTHOR CONTRIBUTIONS

MD contributed the methodology and results, and JL contributed
to the results section.

FUNDING

The authors declare that this study received funding from Intel
Corporation. The funder was not involved in the study design,
collection, analysis, interpretation of data, the writing of this
article or the decision to submit it for publication.

REFERENCES

Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., et al. (2016).
“TensorFlow: a system for large-scale machine learning,” in Proceedings of
the 12th USENIX conference on operating systems design and implementation,
Savannah, GA, November 2–4, 2016 (Berkeley, CA: OSDI’16) 265–283.

Akpinar N. J., Kratzwald B., Feuerriegel S. (2019). Sample complexity bounds for
recurrent neural networks with application to combinatorial graph problems.
Preprint repository name [Preprint]. Available at: https://arxiv.org/abs/1901.
10289.

Bao W., Yue J., Rao Y. (2017). A deep learning framework for financial time series
using stacked autoencoders and long-short term memory. PloS One 12,
e0180944–e0180924. doi:10.1371/journal.pone.0180944

Bayer J. (2015). Learning sequence representations. MS dissertation. Munich,
Germany: Technische Universität München.

Borovkova S., Tsiamas I. (2019). An ensemble of LSTM neural networks for high-
frequency stock market classification. J. Forecast. 38, 600–619. doi:10.1002/for.
2585

Borovykh A., Bohte S., Oosterlee C. W. (2017). Conditional time series forecasting
with convolutional neural networks. Preprint repository name [Preprint].
Available at: https://arxiv.org/abs/1703.04691.

Box G., Jenkins G. M. (1976). Time series analysis: forecasting and control.
Hoboken, NJ: Holden Day, 575

Chen S., Ge L. (2019). Exploring the attention mechanism in LSTM-based Hong
Kong stock price movement prediction. Quant. Finance 19, 1507–1515. doi:10.
1080/14697688.2019.1622287

Chung J., Gülçehre Ç., Cho K., Bengio Y. (2014). Empirical evaluation of gated
recurrent neural networks on sequence modeling. Preprint repository name
[Preprint]. Available at: https://arxiv.org/abs/1412.3555.

Dixon M. (2018). Sequence classification of the limit order book using recurrent
neural networks. J. Comput. Sci. 24, 277. doi:10.1016/j.jocs.2017.08.018

DixonM. F., Polson N. G., Sokolov V. O. (2019). Deep learning for spatio-temporal
modeling: dynamic traffic flows and high frequency trading. Appl. Stoch. Model.
Bus Ind 35, 788–807. doi:10.1002/asmb.2399

Dixon M. (2021). Industrial Forecasting with Exponentially Smoothed Recurrent
Neural Networks, forthcoming in Technometrics.

Dixon M., London J. (2021b). Alpha-RNN source code and data repository.
Available at: https://github.com/mfrdixon/alpha-RNN.

Glorot X., Bengio Y. (2010). “Understanding the difficulty of training deep
feedforward neural networks,” in Proceedings of the international
conference on artificial intelligence and statistics (AISTATS’10), Sardinia,
Italy, Society for Artificial Intelligence and Statistics, 249–256

Graves A (2013). Generating sequences with recurrent neural networks. Preprint
repository name [Preprint]. Available at: https://arxiv.org/abs/1308.0850.

Hamilton J. (1994).Time series analysis. Princeton, NJ: PrincetonUniversity Press, 592
Hochreiter S., Schmidhuber J. (1997). Long short-term memory. Neural. Comput.

9, 1735–1780. doi:10.1162/neco.1997.9.8.1735
Kirchgässner G., Wolters J. (2007). Introduction to modern time series analysis.

Berlin, Heidelberg: Springer-Verlag, 277
Li D., Zhu K. (2020). Inference for asymmetric exponentially weighted moving

average models. J. Time Ser. Anal. 41, 154–162. doi:10.1111/jtsa.12464
Mäkinen Y., Kanniainen J., Gabbouj M., Iosifidis A. (2019). Forecasting jump arrivals

in stock prices: new attention-based network architecture using limit order book
data. Quant. Finance 19, 2033–2050. doi:10.1080/14697688.2019.1634277

Pascanu R., Mikolov T., Bengio Y. (2012). “On the difficulty of training recurrent
neural networks,” in ICML’13: proceedings of the 30th international conference
on machine learning, 1310–1318. Available at: https://dl.acm.org/doi/10.5555/
3042817.3043083.

Sirignano J., Cont R. (2019). Universal features of price formation in financial
markets: perspectives from deep learning. Quant. Finance 19, 1449–1459.
doi:10.1080/14697688.2019.1622295

Tsay R. S. (2010). Analysis of financial time series. 3rd Edn. Hoboken, NJ: Wiley

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Dixon and London. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511388

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://github.com/mfrdixon/alpha-RNN
https://arxiv.org/abs/1901.10289
https://arxiv.org/abs/1901.10289
https://doi.org/10.1371/journal.pone.0180944
https://doi.org/10.1002/for.2585
https://doi.org/10.1002/for.2585
https://arxiv.org/abs/1703.04691
https://doi.org/10.1080/14697688.2019.1622287
https://doi.org/10.1080/14697688.2019.1622287
https://arxiv.org/abs/1412.3555
https://doi.org/10.1016/j.jocs.2017.08.018
https://doi.org/10.1002/asmb.2399
https://github.com/mfrdixon/alpha-RNN
https://arxiv.org/abs/1308.0850
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1111/jtsa.12464
https://doi.org/10.1080/14697688.2019.1634277
https://dl.acm.org/doi/10.5555/3042817.3043083
https://dl.acm.org/doi/10.5555/3042817.3043083
https://doi.org/10.1080/14697688.2019.1622295
https://Creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

APPENDIX

1. GRUS AND LSTMS

1.1. GRUs
A GRU is given by:

smoothing : ~ht � α̂t+ĥt + (1 − α̂t)+~ht−1
smoother update : α̂t � σ(1)(Uα

~ht−1 +Wαxt + bα)
hidden state update : ĥt � σ(Uhr̂t+~ht−1 +Whxt + bh)

reset update : r̂t � σ(1)(Ur
~ht−1 +Wrxt + br).

When viewed as an extension of our αt RNNmodel, we see that it
has an additional reset, or switch, r̂t , which forgets the
dependence of ĥt on the smoothed hidden state. Effectively, it
turns the update for ĥt from a plain RNN to a FFN and entirely
neglect the recurrence. The recurrence in the update of ĥt is thus
dynamic. It may appear that the combination of a reset and
adaptive smoothing is redundant. But remember that α̂t effects
the level of error correction in the update of the smoothed hidden
state, ~ht , whereas r̂t adjusts the level of recurrence in the
unsmoothed hidden state ĥt . Put differently, α̂t by itself can
not disable the memory in the smoothed hidden state (internal
memory), whereas r̂t in combination with α̂t can. More precisely,
when αt � 1 and r̂t � 0, ~ht � ĥt � σ(Whxt + bh) which is reset to
the latest input, xt , and the GRU is just a FFN. Also, when αt � 1
and r̂t > 0, a GRU acts like a plain RNN. Thus a GRU can be seen
as a more general architecture which is capable of being a FFN or
a plain RNN under certain parameter values.

These additional layers (or cells) enable a GRU to learn
extremely complex long-term temporal dynamics that a vanilla
RNN is not capable of. Lastly, we comment in passing that in the
GRU, as in a RNN, there is a final feedforward layer to transform
the (smoothed) hidden state to a response:

ŷt � WY
~ht + bY . (A1)

1.2. LSTMs
LSTMs are similar to GRUs but have a separate (cell) memory, ct ,
in addition to a hidden state ht . LSTMs also do not require that
the memory updates are a convex combination. Hence they are
more general than exponential smoothing. The mathematical
description of LSTMs is rarely given in an intuitive form, but the

model can be found in, for example, Hochreiter and Schmidhuber
(1997).

The cell memory is updated by the following expression
involving a forget gate, α̂t , an input gate ẑt and a cell gate ĉt

ct � α̂t+ct−1 + ẑt+ĉt . (A2)

In the terminology of LSTMs, the triple (α̂t , r̂t , ẑt) are respectively
referred to as the forget gate, output gate, and input gate. Our
change of terminology is deliberate and designed to provided
more intuition and continuity with RNNs and the statistics
literature. We note that in the special case when ẑt � 1 − α̂t we
obtain a similar exponential smoothing expression to that used in
our αt-RNN. Beyond that, the role of the input gate appears
superfluous and difficult to reason with using time series analysis.

When the forget gate, α̂t � 0, then the cell memory depends
solely on the cell memory gate update ĉt . By the term α̂t+ct−1, the
cell memory has long-term memory which is only forgotten
beyond lag s if α̂t−s � 0. Thus the cell memory has an adaptive
autoregressive structure.

The extra “memory”, treated as a hidden state and separate
from the cell memory, is nothing more than a Hadamard product:

ht � r̂t+tanh(ct), (A3)

which is reset if r̂t � 0. If r̂t � 1, then the cell memory directly
determines the hidden state.

Thus the reset gate can entirely override the effect of the cell
memory’s autoregressive structure, without erasing it. In contrast,
the αt-RNN and the GRU has one memory, which serves as the
hidden state, and it is directly affected by the reset gate.

The reset, forget, input and cell memory gates are updated by
plain RNNs all depending on the hidden state ht .

Reset gate : r̂t � σ(Urht−1 +Wrxt + br)
Forget gate : α̂t � σ(Uαht−1 +Wαxt + bα)
Input gate : ẑt � σ(Uzht−1 +Wzxt + bz)

Cell memory gate : ĉt � tanh(Ucht−1 +Wcxt + bc).
The LSTM separates out the long memory, stored in the cellular
memory, but uses a copy of it, which may additionally be reset.
Strictly speaking, the cellular memory has long-short
autoregressive memory structure, so it would be misleading in
the context of time series analysis to strictly discern the two
memories as long and short (as the nomenclature suggests). The
latter can be thought of as a truncated version of the former.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org February 2021 | Volume 6 | Article 5511389

Dixon and London Exponentially Smoothed Recurrent Neural Networks

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Financial Forecasting With α-RNNs: A Time Series Modeling Approach
	1 Introduction
	2 α-RNNs
	3 Univariate Times Series Modeling With Endogenous Features
	4 Multivariate Dynamic α-RNNS
	4.1 Neural Network Exponential Smoothing

	5 Results
	5.1 Bitcoin Forecasting
	5.2 High Frequency Trading Data

	6 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References
	Appendix
	1 GRUS and LSTMS
	1.1 GRUs
	1.2 LSTMs

