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The 2019 coronavirus disease (COVID-19) pandemic began in the city of Wuhan, China,

at the end of 2019 and quickly spread worldwide. The disease is caused by contact

with the SARS-CoV-2 virus, which probably jumped from an animal host to humans.

SARS-CoV-2 infects various tissues in the body, notably the lungs, and patients usually

die from respiratory complications. Mathematical models of the disease have been

instrumental to guide the implementation of mitigation strategies aimed at slowing the

spread of the disease. One of the key parameters of mathematical models is the basic

reproduction ratio R0, which measures the degree of infectivity of affected individuals.

The goal of mitigation is to reduce R0 as close or below 1 as possible, as it means that

new infections are in decline. In this work, we use the recursive least-squares algorithm

to establish the stochastic variability of a time-varying R0(t) from eight different countries:

Argentina, Belgium, Brazil, Germany, Italy, New Zealand, Spain, and the United States.

The proposed system can be implemented as an online tracking application providing

information about the dynamics of the pandemic to health officials and the public at large.

Keywords: COVID-19, epidemic spreading, pattern recognition, mathematical modeling, transmission dynamics,

disease prediction

1. INTRODUCTION

OnMarch 11, 2020, the World Health Organization (WHO) declared the 2019 coronavirus disease
(COVID-19) a global pandemic [1]. COVID-19 is caused by the SARS-CoV-2 coronavirus and was
first reported in Wuhan, China, in December 2019 [2]. Since then, COVID-19 has spread globally
with millions of laboratory-confirmed cases and hundreds of thousands of deaths [3]. The median
incubation period of COVID-19 is 5.1 days, and nearly all infected persons who have symptoms
will do so within 12 days of infection [4]. However, an unprecedented characteristic of COVID-19
is its capacity for asymptomatic transmission [5], which contributes to increase the probability of
transmission [6]. So far, there is no specific treatment for the disease, and many research teams
are currently working on a vaccine that, optimistically, will only be available in 2021. Even then,
it will take some time to inoculate a significant share of the population. Meanwhile, hospital
structures around the globe (e.g., intensive care units’ beds, ventilators, and so on) are becoming
overwhelmed with new patients, and the increasing caseload will prove most catastrophic for poor
countries, which lack the adequate healthcare capacity to deal with the unparalleled demand posed
by COVID-19 [7, 8].
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So far, efforts to control the spread of the disease have focused
on the adoption of non-pharmaceutical interventions (NPI)
based on population behavioral change and social distancing,
such as banning large gatherings, enforcing the use of face
masks, washing hands, or imposing severe lockdowns [9, 10].
Due to significant uncertainties regarding the transmissibility
of SARS-CoV-2 as well as other political, social, and economic
considerations, it is necessary to delineate effective social
distancing policies that are able to alleviate COVID-19’s burden
on healthcare structure and borrow time for the development of
a vaccine or drug candidates while also simultaneously reducing
the socioeconomic strain of living in a locked-down, confined
society [11]. The effective monitoring of the epidemic’s dynamics
plays a crucial role in the ongoing containment efforts but will
also continue to do so for some time ahead when social distancing
control measures are eventually relaxed, and the first wave of the
pandemic is followed somemonths later by second or third waves
of infection that may be more severe than the first [12].

Mathematical models, by providing a quantitative framework
for hypothesis evaluation and the estimation of changes in
transmission of infectious diseases over time and space, can
indicate whether containment measures are having a measurable
effect while guiding the design of alternative interventions [13].
Mathematical models vary inmany aspects, including complexity
in terms of the number of variables and parameters used, spatial
and temporal resolution (e.g., discrete vs. continuous time), and
design (e.g., deterministic or stochastic) [14].Mechanistic models
of the susceptible–infected–recovered (SIR) type [15, 16] are
the standard framework for a wide array of infectious diseases,
including COVID-19 (see, for example, [17, 18]). However,
parameter estimates for a given model are subject to two major
sources of uncertainty: the noise intrinsic to the data and the ad
hoc assumptions used for ascertaining parameter estimates [14].

The basic reproduction number [19], R0, or the average
number of new infections caused by an infectious individual
[20], is widely used to characterize the dynamics of infectious
outbreaks and guide policy planning. For instance, the average
R0 at the start of the SARS pandemic in 2003 was estimated to
be around 2.75 and was later reduced to 1 due to intervention
strategies, including isolation and quarantine activities [21]. R0
is an imprecise estimate that is rarely measured directly [it
is the product of disease parameters: duration, opportunity,
transmission probability, and susceptibility (DOTS)] and rests
on particular model structures and assumptions [22]. Modelers
face many challenges when trying to provide robust estimations
of R0 in the current pandemics, such as the existence of
superspreaders, the fact that SARS-CoV-2 can also be spread by
asymptomatic individuals and the scarce availability of testing
supplies [17]. Several methods have been proposed to track
trends in R0 during the course of an epidemic [23–27]. The access
to reliable estimates of R0 could provide useful information about
the efficacy of containment measures and allow their effective
management in order to keep hospitalization rates within a
desired approximate range [28].

In the present study, we model the transmission dynamic
of COVID-19 in eight countries (Figure 1) using least-squares
algorithm (LSA) techniques. The criteria used to select the

eight countries were due to their geographical location in
either the northern/southern hemisphere or due to specificities
regarding their first response to the pandemic threat as reported
in the news media. Some (e.g., New Zealand and Argentina)
were very effective in responding rapidly to the pandemic
by implementing lockdown measures, whereas others (e.g.,
USA and Brazil) initially downplayed the virus’ threat and
took longer to initiate containment protocols. Our goal is to
contribute to understanding the spread of SARS-CoV-2 and
compare R0 uncertainty arising from noise in the time series data
gathered from public online sources. We used machine learning
algorithms to optimally estimate a time-varying R0(t), which
allows the monitoring of the ongoing pandemic in almost real
time. We compared the daily country reports for R0 to those we
estimated in the present work in order to assess the reliability of
official data. Besides, LSA-based techniques were used to reveal
clues regarding the dynamics of R0(t) and its stochasticity in
terms of the linear power of the estimation error and provide
information on how such stochastic behavior is correlated to the
outcome of the ongoing pandemics.

The LSA is one of the most popular estimation methods
in machine learning and has been used in many scientific and
engineering applications [30–32], including epidemiology, for
calibratingmathematical models’ parameters based on time series
data while also generating disease forecasts in the near or long
terms [14, 33–35]. While it has been used for centuries as a classic
curve-fitting technique [31, 32], it is still a basic tool in modern
data science because of its least-squares Euclidean ℓ2-norm
minimization that is advantageous over other norms andmetrics,
such as the ℓ∞ and ℓ1 norms, granting reduced sensibility to
outliers due to the squared error [32, 36]. Higher-order norms
and the use of more generalized cost functions, both linear and
non-linear, often require gradient descent solutions, which are
the foundation of deep learning algorithms with none, many,
or infinite solutions. In comparison, LSA is computationally
inexpensive and can even be solved analytically.

LSA estimation is based on the least mean squares (LMS)
algorithm, a special case of Bayesian estimation and the
foundation of classical optimal estimation theory, where its
applicability is commonly attributed to offline batch processing,
that is, the whole data set must be a priori available and be
processed at once “in one single step into the estimate” [36],
involving complex algebraic procedures, such as the inversion of
high-order matrices, with dimension equal to the length of the
data set. Its offshoot, the recursive least squares (RLS) algorithm,
has been used for real-time estimation applications in diverse
areas, such as signal and data processing, communications, and
control systems [37, 38], since it benefits from the recursive
method and avoids matrix inversion by working one sample at
a time, both speeding up processing and avoiding a possible
ill-conditioned (non-invertible) information matrix formation.

Some of the advantages of RLS algorithm over LMS
algorithm, and other more complex gradient descent-based
estimation methods, are as follows: its recursive or sequential
processing, which requires less memory over a single iteration
step; the possibility to capture the dynamics of non-linear
and time-varying systems; its native discrete-time synthesis to
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FIGURE 1 | Sociodemographic and COVID-19 data for the eight countries targeted in this study. COVID-19 data accessed on 22/05/2020 on https://coronavirus.jhu.

edu/map.html. Intervention data gathered from reference [29]. GDP per capita in US$. Interventions are categorized into Alert Levels 1 to 4 according to the New

Zealand framework (L1, Level 1, Prepare; L2, Level 2, Reduce; L3, Level 3, Restrict; L4, Level 4, Eliminate) [29]. Map from mapchart.net.

deal with discrete-time signals; and its dead-beat convergence
characteristics, that is, convergence in minimal time [31].
However, one important drawback is the possibility of RLS
getting stuck in local minima and becoming unstable when
tracking certain classes of signals, as remarked in reference [31].
Thankfully, the exponential functions used in epidemic modeling
are within the stable scope of convergence of the RLS method.

In this work, we compare the performance of both the
RLS and LMS algorithms on estimating R0(t), in terms of
processing speed and accuracy. While both are LSA-based
methods apparently differing just by the sequential-recursive and
the batch-processing forms of implementation, we are dealing
with a general case problem of estimating a random variable
R0(t) given random variables as well in a maximum-likelihood
estimation problem that “implies ignorance of any statistics
of the estimated variable” [36], R0(t). Thus, if the available
measurements are independent, RLS and LMS algorithms should
achieve the same accuracy performance. Otherwise, the RLS
algorithm should perform better.

Our modeling approach is based on a discrete-time multiple-
input, multiple-output (MIMO) setup that uses a well-established
concept in the design of aerospace navigation systems called
sensor fusion, which is summarized by the following statement,
“one always gains by adding a new measurement in terms of
navigation error, and this no matter how bad the additional
measurement is” [39, Remark 4.8]. In this work, we combine data
from the number of susceptibles, infections, recoveries, deaths,
and individual parameters of three coupled differential equations
in order to improve the estimation of R0(t).

2. METHODS

2.1. Data Sources
The COVID-19 data used in this report are publicly available
from The Center for Systems Science and Engineering of the
Johns Hopkins University (JSU CCSE) [40], which maintains a
Repository on Github [41].
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2.2. Procedures
The transmission dynamics of the COVID-19 outbreak is usually
described by a compartmental model SEIR, where S denotes
susceptible, E denotes exposed, I denotes infected, and R denotes
removed [42, 43]. In a closed population of Pn individuals,
the transitions between the compartments (cf. Figure 2) are
described through the following set of differential equations:

d

dt
s(t) = −λ̄s(t)i(t) (1)

d

dt
e(t) = λ̄s(t)i(t)− κe(t) (2)

d

dt
i(t) = κe(t)− γ i(t) (3)

d

dt
r(t) = γ i(t) (4)

where λ̄ = λ/Pn, λ is the infection rate, γ is the remove rate,
and κ is the incubation rate. From these parameters, it is possible
to calculate the basic reproduction ratio, R0 = λ/γ . Thus, R0
is not solely dependent on the infection rate but also on the
frequency of removals due to death or recoveries.

Assuming that the incubation period of the disease is
instantaneous, and the duration of infectivity is the same as the
length of the disease, we can consider both groups E and I as
contagious and E(t) : = I(t). Also, according to the Akaike
information criterion (AIC), the simpler SIR model performs
much better than an SEIR model in representing the information
contained in the confirmed-case data available for COVID-19
[44]. The basic SIR model is described by the set of Kermack–
McKendrick equations [45]:

d

dt
s(t) = −

λ

Pn
s(t)i(t) (5)

d

dt
i(t) =

λ

Pn
s(t)i(t)− γ i(t) (6)

d

dt
r(t) = γ i(t) (7)

2.3. Discrete-Time
Susceptible–Infected–Recovered System
Parametric Estimation in Real Time
Traditionally, mathematical epidemiology models have been
approached with a continuous-time perspective, due in part
to the fact that these are more tractable mathematically [46].
However, in order to use machine learning techniques, there is a
need for a discrete-time equivalent realization to cope with daily-
sampled data [47]. Due to the slow dynamics of the pandemics,

a first-order continuous to discrete Euler approximation can be
applied to the Kermack–McKendrick equations.

For a general f (t) function, a backward discrete-time
derivative approximation is given as:

d

dt
f (t) : =

f (k+ 1)− f (k)

Ts
= 1f (k+ 1)/Ts (8)

where Ts = 1 is the sampling interval in days, and 1 = 1 − q−1

is the discrete difference operator, defined in q−1, the backward
shift operator domain. The discrete-time approximations of
Equations (5)–(7) are given by the following difference equations,
respectively:

s(k) = s(k− 1)− λ(k− 1)
s(k− 1)i(k− 1)

Pn
(9)

i(k) = i(k−1)+λ(k−1)
s(k− 1)i(k− 1)

Pn
−γ (k−1)i(k−1) (10)

r(k) = r(k− 1)+ γ (k− 1)i(k− 1) (11)

The discrete-time SIR system described above considers time-
varying parameters in order to continuously adapt the model as
new data become available. Using the time series of infections and
removals (due to death or recovery), Equations (9)–(11) can be
used to estimate the model parameters.

Since Equation (11) has an exclusive dependence with γ (k),
this poses a direct estimation problem that can be stated as
“for N registered samples, minimize the following quadratic cost
function”:

Jr =
1

2

N
∑

0

e2r (k) =
1

2

N
∑

k=0

[

r(k)− r̂(k)
]2

(12)

Equation (12) is based on the estimation error of r(k). By applying
the RLS method to minimize Jr , it is possible to optimally
estimate γ̂ (k) using the following equation:

r̂(k) = r(k− 1)+ γ̂ (k− 1)i(k− 1) (13)

We assume that the estimation error is Gaussian, er(k) ∼

(0, σ 2
er
), with zero mean and variance σ 2

er
, such that r(k) = r̂(k)+

er(k). The estimator gain, the parametric estimation, and error
covariance minimization are solved recursively as follows:

Lr(k) =
pr(k− 1)i(k− 1)

1+ i(k− 1)pr(k− 1)i(k− 1)
(14)

γ̂ (k) = γ̂ (k− 1)+ Lr(k)
[

r(k)− r̂(k)
]

(15)

pr(k) = [1− Lr(k)i(k− 1)]pr(k− 1) (16)
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FIGURE 2 | SEIR (S denotes susceptible, E denotes exposed, I denotes infected, and R denotes removed) model structure.

where the error covariance matrix pr(k) can be reset periodically
to prioritize more recent data. Specifically in this work, pr(k) is
a scalar, since only a single parameter is being estimated. Choices
to initialize the covariance matrix may vary, depending on
prior available covariance information or other positive definite
matrix. The higher its magnitude, the higher the estimator gain
in the transitory dynamical stage of the estimation procedure.

In regard to Equation (11) and the estimation of γ̂ (k), since
the infection numbers increase before any removal report is
available during the first stages of the pandemic, during this
period γ̂ (k) tends to zero and eventually makes the time-varying
estimated reproduction number tend to infinity:

R̂0(k) =
λ̂(k)

γ̂ (k) → 0
= ∞ (17)

As a consequence of Equation (17), the estimation method
proposed in this work cannot be applied when the number of
recovered is not available.

Since Equation (10) depends on both SIR parameters, due to
its stronger dependence on γ̂ (k) and Equation (11), its estimated
value is substituted into Equation (10), and another RLS problem
is constructed to estimate λ̂(k), using

î(k) = i(k− 1)+ λ̂(k− 1)
ŝ(k− 1)i(k− 1)

Pn
− γ̂ (k)i(k− 1) (18)

The solution is akin to minimizing the estimation error ei(k) =
i(k) − î(k), using the following equations for estimator
gain, parametric estimation update, and error covariance
minimization, respectively:

Li(k) =
pi(k− 1)ŝ(k− 1)i(k− 1)/Pn

1+
[

ŝ(k− 1)i(k− 1)pi(k− 1)ŝ(k− 1)i(k− 1)
]

/P2n
(19)

λ̂(k) = λ̂(k− 1)+ Li(k)
[

i(k)− î(k)
]

(20)

pi(k) =

{

1− Li(k)

[

ŝ(k− 1)i(k− 1)

Pn

]}

pi(k− 1) (21)

Time-series data for Equation (9) is not available, and the
evolution of the susceptible compartment in time is in fact

estimated based on the known initial condition (i.e., the
population Pn) and on the estimated λ̂(k). Thus, it is always
estimated and fed back to Equation (18), such that the correct
form to represent it, within this time-varying SIR model, is by
rewriting Equation (9) based on the estimated susceptible:

ŝ(k) = ŝ(k− 1)− λ̂(k)
ŝ(k− 1)i(k− 1)

Pn
(22)

The estimation of the time-varying reproduction number, based
on the derived discrete-time SIR model, is given by:

R̂0(k) =
λ̂(k)

γ̂ (k)
(23)

We also adopted two modifications to the nominal R̂0(k)
equation: a moving 4-days average to compensate for the
randomness of daily updates on incidence data, as seen in the
German Daily Situation Report of the Robert Koch Institute on
COVID-19 [48], and the proportion of susceptible individuals in
the population, known as the effective reproduction number [14]:

R̄0(k) =
ŝ(k)

Pn

[

R̂0(k)+ R̂0(k− 1)+ R̂0(k− 2)+ R̂0(k− 3)

4

]

(24)
Figure 3 shows a block diagram of the proposed R̄0(k) estimator.
This diagram presents a clearer view of the coupled multivariate
dynamics and closed-loop characteristics of the proposed
estimation approach.

With this formulation, it is possible to analyze the
transmission ratio of the pandemics on a daily basis, as with a
sensor. Besides, estimations of the transmission ratio produce a
dynamic representation from the perspective of the time series of
R̄0(t) [henceforth designated simply as R̂0(t)], which allows the
modeling of its dynamics and its randomness in order to assess
stochastic properties correlated to the time-varying reproduction
number, which might reflect how health authorities have been
handling the challenges posed by the pandemics in each country
considered in this work.

2.4. Modeling of R0
Henceforth, we assume that we are able to estimate the
reproduction number on a daily basis and it is thus possible to
consider it as another output of the proposed pandemic model.
Thus, by relying on the time series of R̂0(k) and knowing it is
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FIGURE 3 | Block diagram of the estimation system. Notice how its subsystems are interconnected using closed-loop strategies and data fusion.

correlated with the number of infected and removed individuals,
we deploy machine learning techniques to identify a dynamic
system that fits the data.

Different from the real-time monitoring/sensing procedure
adopted to estimate R̂0(k), now, we are interested in obtaining
a general model that can describe the dynamics of a
system, R̂0(q

−1), for a certain period of interest. In order tomodel
such a system, we used the LMS algorithm, which is a non-RLS
estimation technique [31, 32], and propose a black-box linearized
polynomial model:

R̂0(q
−1) =

B̂(q−1)I(q−1)+ Ĉ(q−1)R(q−1)+ eR0 (q
−1)

Â(q−1)
(25)

Â(q−1) = 1+ â1q
−1

+ â2q
−2

B̂(q−1) = b̂0q
−1

+ b̂1q
−2

Ĉ(q−1) = ĉ0q
−1

+ ĉ1q
−2

(26)

where eR0 (q
−1) is the Gaussian process based on the estimation

error eR0 (k) of estimated polynomials shown in Equation (26).
This second-order autoregressive with exogenous input

(ARX)-based model structure is assumed considering the
fundamental simplicity of the SIR model, in which the infected
and removed systems together form a second-order system.

The non-RLS estimator is a batch-processing technique used
to optimally estimate the set of parameters that minimizes a
quadratic performance index as the one shown in Equation (12),

but using a vector–matrix form of error, eR0 = R̂0 − 8θ̂ . This
vector–matrix system is defined as:

eR0 =
[

e(0) · · · e(N)
]T

(27)

R̂0 =
[

R̂0(0) · · · R̂0(N)
]T

(28)

θ̂
T
=

[

â1 â2 b̂0 b̂1 ĉ0 ĉ1

]

(29)

8
T
=

[

φT(0) · · · φT(N)
]

(30)

The above equations represent, respectively, the vector of errors,
the vector of observed outputs, the estimated parameter vector,
and the matrix of regressors. The latter is based on the vectors of
regressors formed up to N registered samples, with such vectors
defined as:

φT(k) =
[

r̂0(k− 1) r̂0(k− 2) i(k− 1) i(k− 2) r(k− 1) r(k− 2)
]

(31)
The solution to obtain the estimated parameters is
straightforward and given by

θ̂ =

(

8
T
8

)−1
8

T
R̂0 (32)
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By assuming an ARX linear model, it is possible to evaluate
the pandemics from the perspective of linear stochastic systems
theory, assessing how the reproduction number decays linearly in
time in different countries and how the random nature of events
associated with the pandemics affects the model’s uncertainties,
that is, eR0 (k) ∼ (0, σ 2

eR0
). This calculated uncertainty can

give us some clues regarding the effectiveness of pandemic
control measures.

We propose that by analyzing the linear power of the R̂0(q
−1)

estimation error, that is, σ 2
eR0

, we can use this stochastic property

to generate stochastic ratio curves based on the estimated
linearized model of Equation (25). The higher the variability
associated with the stochastic ratio, the higher we expect the
variance or linear power of the error to be, and consequently,
the more uncertain is the official COVID-19 data reported by
health authorities.

3. RESULTS

We used publicly available data to validate the algorithms and
the estimated time-varying SIR model parameters. This section is
organized as follows: we first present the estimated results based
on the number of infectious and removals available from different
countries. Then, we present time series of daily estimates onR0(k)
based on the RLS-estimated λ̂(k) and γ̂ (k) and compare both
processing time and accuracy results to the classical LMSmethod
to verify the efficiency of the proposed technique.

These results are followed by the presentation of linearized
estimated outputs generated by the ARX-based R̂(q−1) models
[shown in Equation (25)] using non-recursive or batch
processing of 30-days of R0(k) estimates. The modeling residuals
were assumed to be Gaussian (zero mean). Estimated error
variances were used to produce 200 discrete Gaussian sequences
as surrogates to additive white noises, depicted by eR0 (k) in
Equation (25). These 200 additive noise sequences were used to
generate, for every analyzed country, 200 stochastic reproduction
ratio trajectories, shown together with the linearized ratio and
the real-time estimated ratio. It must be remarked, however,
that this value of 200 Monte Carlo simulations were selected
heuristically in order to give the necessary visual information
in our figures, such that the readers could verify by themselves
how the modeling uncertainties of the pandemics could mislead
our judgment of the probable effective reproduction number of
COVID-19 during the studied period. The number of Monte
Carlo simulations thus affects only a post-modeling phase and
do not interfere with the estimation of the reproduction number.

3.1. Discrete-Time
Susceptible–Infected–Recovered Model
Estimation Results
The Achilles’ heel of the RLS algorithm for parametric estimation
may be the setup of initial conditions and whether they
are optimal or not. However, this is a major problem only
if the estimated parameters are to be used in a real-time
adaptive control system where the closed-loop stability must be
guaranteed [31]. This is not the case in the present work, which

is interested only in the modeling question itself. Thus, the initial
RLS parameters can be either arbitrarily set or set at zero since,
theoretically, the RLS estimator is dead-beat and converges in the
minimum possible number of iterations [32, 36].

The discrete SIR model proposed in this work is described
by three coupled differential equations, each based on a single
recursive regression and thus forming a third-order system.
Then, theoretically, as a dead-beat estimator, the RLS estimator
would take three iterations to converge and estimate optimal
parameters. However, we used plenty more iterations than the
theoretical requirements by commencing to process data from
March 22, 2020 onward but evaluating the results after April 23,
2020, thus giving more than 30 days/iterations for the RLS to
converge to an optimal set of parameters by April 23, 2020, when
we started our analysis.

The estimators were implemented with arbitrary initial
parameters of γ̂ (0) = λ̂(0) = 1 and the initial guess for R̂0(0) =
1. The magnitudes of the estimation error covariance matrices
were initialized as pr(0) = pi(0) = 1, considering that the initial
error is large. Both pr(k) and pi(k) were reset to 1 every 7 days
to prioritize more recent data [49]. The selection of the reset
period considered not only the number of days required to wash-
out outliers but also to allow weekly changes in the parameters’
dynamical behavior, such as due to lockdowns or quarantine
relaxation. We also adopted a moving 4-days average for R̂0(k),
shown in Equation (24), to compensate for daily random effects
[48]. We only used data from March 22, 2020 onward, when all
eight countries already had more than 100 infections reported.

Figures 4, 5 show the dynamics of both infected and removed
cases using the SIR model. It must be remarked that the infected
curve in the United States was downscaled by a factor of 4 in
order to fit in the graph along with the other studied countries. It
is evident from Figure 4 that the RLS method provide parametric
estimates that fit the reported data. The same goodness of fit
cannot be observed in Figure 5, as the number of removals for
the United States, for example, poses some difficulties for the
RLS estimator, as depicted by the estimated removals (dotted
lines) showing a certain dispersion from the real data (continuous
lines). However, the inclusion of the removed data set, even with
bad measurements, leads to a better estimate of R̂0(k).

Figure 6 presents the R̂0(k) of the eight different countries
during a period of 2 weeks. Despite the large variability of both
Argentina and the United States, there are other countries that
are already reducing the number of new infections and where the
frequency of removals has increased, such as in Germany, Italy,
and New Zealand (see Table 1).

The trajectory of the curves shown in Figure 6 can also
be associated with some extraordinary events that occurred
during the same period. For example, after May 3, 2020, when
some U.S. states had relaxed social distancing guidelines, it is
possible to observe a corresponding phasic increase in the basic
reproduction ratio of the United States, which was also reported
in the Washington Post on May 9, 2020 [50].

One interesting trajectory in Figure 6 regards Argentina. For
most of the time, the estimated reproduction ratio of Argentina
was one of the highest and comparable only to the United States,
despite its low number of infected individuals (cf. Figure 4).
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FIGURE 4 | Estimation (dotted lines) of infected individuals (continuous lines)

using the recursive least-squares (RLS) technique (the U.S. data was

downscaled four times to fit in the graph).

FIGURE 5 | Estimation (dotted lines) of removed individuals (continuous lines)

using the RLS technique.

This apparent contradiction is related to the low number of
removals at the beginning of the pandemic that tends to raise
the R̂0(k) (see Equation 17). Recoveries in Argentina, based
on the data of May 16 (cf. Table 1), are ∼30.5% of its total
infected, close to Belgium with 26.6% and whose transmission
ratio is below Argentina’s ratio, reinforcing the notion that the
transmission ratio is not a static parameter and is best approached
by dynamical systems theory.

The results displayed in Figure 4 seem at odds with a recent
report that claimed that Brazil’s R0 had recently dropped to 1.4
[51]. However, on the same day a Brazilian newspaper quoted

FIGURE 6 | Daily monitoring of the COVID-19 pandemic: Dynamic behavior of

the estimated reproduction number for 2 weeks in May 2020.

TABLE 1 | Recoveries (May 21, 2020).

Country Recoveries (%)

Argentina 30.5

Belgium 26.6

Brazil 40.5

Germany 88.2

Italy 59.0

New Zealand 96.6

Spain 70.3

United States 23.5

this report, the country had a record number of new infections
and deaths [52]. This reinforces the notion that machine learning
methods might give better and faster clues regarding the severity
of the pandemic in terms of R̂0(k).

We compared the performance of the proposed RLS estimator
with its most common counterpart, the LMS algorithm. In this
comparison, we considered the average processing time and
the normalized relative estimation error based on the mean-
square-based cost function shown in Equation (12). The average
processing time results for the RLS and LMS algorithms were,
respectively, 14 and 20 ms. We used a computer with a fourth-
generation Intel Core i5-4200U CPU at 1.6 GHz, 4 GB of RAM,
running Ubuntu 18.04 LTS andMatlab R2018a (Mathworks, Inc.,
Natick, MA, United States). The accuracy results expressed by
normalized relative errors are summarized in Figure 7. Notice
that the RLS method outperformed the LMS method in all cases,
except for Argentina.
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FIGURE 7 | Comparison of normalized relative estimation error costs between

the proposed RLS-based technique and the least mean squares (LMS)

estimation algorithm. The average processing time of RLS and LMS algorithms

was, respectively, 14 and 20 ms.

3.2. Assessing the Pandemics Through R0

Dynamics
Figures 8–11 show R̂0(k) for a 30-days period for the eight
investigated countries. These figures show linearized R0 together
with the respective real-time estimated data that originated this
second-stage estimation. The variance of the estimation error is
then used to generate Gaussian sequences that are superimposed
on the linearized R0 estimate, the stochastic ratio, which
synthetically reproduces the stochasticity and uncertainties of R0
estimates. Both Germany and Italy (Figure 8) are through a
period of consistently decaying R0(t). Despite the hard way
COVID-19 hit Italy before, its stochastic ratio currently is among
the lowest.

Brazil and the United States (Figure 9) are the two most
populous countries of our sample and the most hard-hit
by COVID-19 among them. Both countries also have been
struggling with their uneven response to the pandemics [53].
This outcome is captured by our R0 sensors, with the Brazilian
stochastic ratio being in decrease, as recovered data becomemore
available (see Figure 9).

In Figure 10, we present linearized R0 estimates for Spain
and Belgium. Spain’s estimates have suffered the influence of
annotation errors (by subtracting infected individuals on April
24, 2020), which eventually provoked oscillations in the real-
time ratio estimate, making it zero-cross on April 27. Such an
error was washed out by the linearized estimate and has certainly
contributed to its increased degree of uncertainty (see Table 2).

Belgium’s degree of uncertainty was the worst among all the
countries, at least during the period we analyzed. One possible
clue to understand why Belgium’s stochastic ratio became so
variable is to consider the impossibility to linearize its dynamics
and the associated increase in error. However, our estimation

FIGURE 8 | Thirty days of linearized R0 dynamics for Germany and Italy. Both

countries display low variability in the stochastic ratio curve.

FIGURE 9 | Brazil and the United States display large variability in the

stochastic ratio curve, which probably reflects data uncertainty and difficulties

to control COVID-19’s spread.

procedure considers the error as Gaussian, and its mean value
in fact approaches zero. Thus, the linearized estimate based on 30
days of data has a high probability to be close to the values shown.

Belgium has also shown an increased R0 during the analyzed
period. The low number of recoveries (see Table 1) influenced
the frequency of removals and the basic reproduction number,
which is the ratio between the frequency of infections and the
frequency of removals (see Equation 23). Even though a recent
report [54] proposed that Belgium’s R0 at the beginning of May
2020 was 0.8, according to our adaptive SIR-basedR0 estimations,
the current situation in Belgium is uncertain with a probable R0
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FIGURE 10 | Thirty days of linearized R0 dynamics for Spain and Belgium.

Both countries exhibit high variability of the stochastic ratio, which is

suggestive of problems with either data compilation or difficulties to stabilize

the pandemic.

FIGURE 11 | Thirty days of linearized R0 dynamics for Argentina and New

Zealand. New Zealand has been able to control its COVID-19 infection rate,

which is reflected on the low variability of the stochastic ratio curve.

close to 3.0, which is the mean value of 30 days of linearized
dynamics (see Table 3).

Figure 11 shows the trends for Argentina and New Zealand.
The R0 estimates for the two countries, which have the lowest
number of infections of the group, suggest that several recent R0
reports are considering a ratio solely based on the number of
infections and population, without estimating and taking into
account the frequency of removals, which makes R0 increase.

We compiled a table of the uncertainty of the estimated
stochastic ratios by country (see Table 2), where the percentage

TABLE 2 | Pandemic’s uncertainty (up to May 23, 2020).

Country Power Uncertainty (%)

Argentina 0.3099 30.9

Belgium 0.2426 24.2

Brazil 0.0546 5.4

Germany 0.0220 2.2

Italy 0.0113 1.1

New Zealand 0.0349 3.4

Spain 0.0521 5.2

United States 0.1835 18.3

TABLE 3 | R0 estimates (on/up to May 23, 2020).

Country Real-time Linearized 30-days mean

Argentina 4.6 5.3 3.5

Belgium 2.7 3.1 3.0

Brazil 2.9 2.8 3.0

Germany 1.6 1.4 1.5

Italy 1.2 1.1 1.5

New Zealand 1.1 1.2 1.1

Spain 2.6 2.1 1.4

United States 2.9 3.1 4.0

of uncertainty is proportional to the linear power of the Gaussian
estimation error. Table 3 shows the estimated R0 estimates by
country and demonstrates the usefulness of our approach to
provide a real-time picture of the pandemic that can be used to
support decision making.

4. DISCUSSION

Almost 2 months after the WHO declared COVID-19 a global
pandemic, health complications due to SARS-CoV-2 have caused
many deaths and upended the routines of billions of people
around the world. Research efforts for the development of a
vaccine are being accelerated, but it is still a distant target [55].
At this moment, however, the most effective interventions are
NPIs aimed at reducing SARS-CoV-2 transmission rates in order
to increase the fraction of severe cases having access to scarce
medical resources, such as mechanical ventilation [56].

Mathematical modeling is a valuable instrument to gauge the
epidemics’ dynamics and evaluate the effects of interventions
aimed to control its spread. A crucial parameter is R0, the basic
reproduction number, which is closely followed by health officials
and the public alike. As the world hopefully transitions to a
gradual release from social distancing measures, many questions
still remain about the SARS-CoV-2 virus, and there is all but
the inevitability of secondary waves of infection ahead. Thus,
the continuing use of mathematical models to track the disease
will remain a necessity. However, the utility of models depends
on the quality of the data they are fed, and there are many
uncertainties regarding publicly available data on COVID-19
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cases. For instance, due to the lack of widespread testing and
subnotifications on the cause of deaths due to the disease, it
is almost impossible to have a definitive picture of transitions
between the compartments used to model the disease. Thus, in
this work, we provide a system that takes into consideration the
degree of uncertainty of the results presented by epidemiological
SIR-type models.

The NPIs aimed to control the spread of the COVID-19
pandemic are implemented in a way similar to feedback control
systems, with health authorities implementing social restriction
measures in response to real-time evaluation of the number of
infected and removed cases. Therefore, as in control systems,
we are interfering with COVID-19’s dynamics, affecting its
behavior and parameters, and even discussing the development
of real-time monitoring techniques using automation and
control systems technologies. However, such closed-loop, control
systems still need humans in the loop, and some data annotation
mistakes may occur, such as seasonal dynamic changes related
to workers shifts, weekend reduced reports, and even possible
data manipulation of the data log may compromise the stability
of estimators.

We showed that the RLS algorithm performed a better
estimation job than the LMS algorithm in the present work,
both in speed and accuracy. Real-time parametric estimation
techniques, such as RLS, are widely used in the automation and
aerospace industries to support adaptive control systems and
state estimators. In automation applications, the RLS and LMS
estimators are in fact divided into two different technologies,
respectively, self-tuning and autotuning [31], where the first
refers to real-time online adaptive process and the second
involves the following steps: on-demand user request, acquiring
the data set with sufficient samples, run offline processing
without time constraints, present the results to the user,
and decide whether to deploy or not the parametric update.
Autotuning is less costlier to implement and thus more common,
whereas the self-tuning technology requires online real-time
processing with time constraints and is more commonly applied
in the aerospace industry [31, 57].

LSA-based estimation is becoming more popular in industrial
settings, such as in single-input, single-output (SISO) systems
and in MIMO systems; in linear and non-linear system
identification; and in polynomial and state-space MIMO system
realizations [58, 59]. Such an increase in the use of RLS for real-
time applications is justified by the advances of microprocessors
to cope with the time constraints of fast dynamical systems,
where the sampling interval can go as short as a few nanoseconds.
Modern engineering applications with great impact in our
society are associated with discrete-time sampled systems and
signals, thus requiring adequate and reliable digital estimation
algorithms, such as LSA. At least from an engineering viewpoint,
the COVID-19’s pandemic is also a discrete-time system, since
the publicly available data for infections, deaths, and recoveries
are updated on a daily basis, thus generating discrete-time
sequences with the sampling period of 24 h.

During the COVID-19 pandemic, the scientific community is
struggling to study, design, and deploy engineering applications
to better assist society with information that could somehow
quantify the pandemic’s degree of severity based on R0(t)
estimates [60]. Different from traditional modeling approaches,
we propose a discrete-time MIMO system realization instead
of the continuous-time estimation using ordinary differential
equations; the MIMO-based parametric estimation of R0(t)
is obtained through data fusion in a closed-loop estimation
arrangement (see Figure 3).

The innovation of our modeling approach is the use of
a discrete-time MIMO setup based on sensor fusion, a well-
established strategy employed in the design of aerospace
navigation systems under the assumption that “one always
gains by adding a new measurement in terms of navigation
error, and this no matter how bad the additional measurement
is” [39, Remark 4.8]. Thus, by fusing data from the number
of susceptibles, infections, recoveries, deaths, and individual
parameters of the three coupled dynamical equations instead of
a single one based solely on infections, the chance of having
a better estimate of R0(t) in the maximum-likelihood sense is
higher. Of course, the drawback of our proposed approach is the
impossibility to apply it to nations lacking public reports on death
and recovery numbers.

Our comparative approach shows that the strict measures
adopted by some countries, such as Germany, Italy, Spain, and
New Zealand, managed to stabilize the epidemics. In others,
such as the United States and Brazil, the delay in adopting
such measures and lack of coordination proved decisive to keep
the R0 values high and with a high degree of uncertainty. The
real-time estimation of model parameters such as R0 provides
important insight into the underlying epidemic process and
provides robustness in the face of imperfect data. This strategy
can be eventually implemented as an online tracking application
providing information about the dynamics of the pandemic to
health officials and the public at large.
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