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Neural networks (NN) provide state-of-the-art performance in many problem domains.
They can accommodate a vast number of parameters and still perform well when classic
machine learning techniques provided with the same number of parameters would tend to
overfit. To further the understanding of such incongruities, we develop a metric called the
expected spanning dimension (ESD) which allows one to measure the intrinsic flexibility of
an NN. We analyze NNs from the small, in which the ESD can be exactly computed, to
large real-world networks with millions of parameters, in which we demonstrate how the
ESD can be numerically approximated efficiently. The small NNs we study can be
understood in detail, their ESD can be computed analytically, and they provide
opportunities for understanding their performance from a theoretical perspective. On
the other hand, applying the ESD to large-scale NNs sheds light on their relative
generalization performances and provides suggestions as to how such NNs may be
improved.
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1 INTRODUCTION

Neural networks (NN) have wide applications in machine learning [1]. For example, in the field of
computer vision, convolutional NNs, a specific type of feed-forward NN, greatly outperform any
previous traditional computer vision method [2]. However, there are many questions that arise when
analyzing large-scale NNs. A deeper theoretical understanding of NNs, besides being a useful goal in
itself, can often lead to improved performance on practical real-world problems. In this article, we
develop a method to measure the flexibility of an NN, independent of any input data, that is both
easily computed and is highly correlated with the testing accuracy of the NNs on standard
benchmark datasets. We accomplish this by considering a basis of functions to represent the
NN and then analyzing the dimension of the range of the function of the inputs of the NN to the
coefficients of the output of the NN with respect to that basis. In particular, our perspective is
inspired by classic results in analysis, such as Sard’s theorem [3] and the Reisz representation
theorem. Analyzing the rank of appropriately defined Jacobians, which arise naturally from NNs, is
one of our key analytical tools. Such Jacobians can be efficiently computed using the automatic
differentiation capabilities of deep learning libraries like PyTorch and TensorFlow. We demonstrate
how thinking about NNs from such a perspective leads naturally to NNs with improved
performance.
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NNs are quite popular in many applied problems. The
understanding of their performance is often measured in
relation to training data and specific learning algorithms [4,
5]. However, NNs often exhibit surprising properties which
seem to be at odds with other classic machine learning
techniques. For example, in [6], the authors provide strong
evidence that understanding the performance of NNs will
likely require a rethinking of generalization and the role that
the number of parameters of a given machine learning algorithm
play in its ability to generalize to new data. Analyzing NNs from
the perspective of their generalization performance has led to
several important research directions including recent work in
“double descent” analysis [7–9], the use of the Takeuchi
information criterion [10], the statistical capacity of NNs [11],
Kolmogorov Width decay [12], and even analyzing NN capacity
from the point of view of algebraic topology [13]. The idea of
“double descent” [7–9] begins with the classic bias–variance
trade-off curve, where the testing error of a given learning
system is small for moderately flexible algorithms but large for
under flexible or over flexible algorithms. It then proceeds to
observe that as algorithm flexibility increases even further, for
certain classes of algorithms, a point is reached at which
increasing flexibility begins to again improve testing accuracy
(this is the second of the “double descents”). In another direction
of research, the Takeuchi information criterion [10], classic
extension of the Akaike information criterion (AIC), is used to
study NNs. Other similar approaches have developed newer
estimators including considering flatness of minima [14] and
measures of NN sensitivity to their inputs [15]. The authors of
[11] take a wide view of such matters, and make connections
among measures of NN performance such as sharpness,
robustness, and norm-based control, and PAC-Bayes theory.
In [12], the authors study Kolmogorov Width decay in the
context of NNs, and they prove several interesting results,
including showing that wide NNs can be susceptible to the
curse of dimensionality, while shallow NNs are not. While
such methods have been widely used in domains such as
studying the properties of PDEs, such an approach would
seem to have computational hurdles to overcome when
applied to large-scale NNs. We also observe that many
interesting directions are possible for studying NNs, and even
ideas such as algebraic topology have an important role to play
[13]. In addition, a recent (2020) survey of NN architectures,
including discussion of their representation capacities, can be
found in [16]. Our work can be viewed as complementary to ideas
such as those in [10, 11], but instead approaching the problem of
evaluating NNs from a more analytic point of view.

In particular, our work differs from this body of work in a
number of ways. First, the main computational effort required
by our analysis is a natural by-product of the classic
backpropagation procedure widely used in the optimization
of NNs. We can leverage already existing and highly
optimized routines for constructing the Jacobians that we
require, and our analysis can be accomplished with a cost
that is roughly the same as that required by a few hundred
backpropagation steps. Second, our analysis applies to NNs
ranging from the smallest NNs of which we can conceive to

large-scale real-world networks used for practical tasks such as
image understanding. Third, and perhaps most importantly, our
proposed ESD metric is highly correlated with the
generalization performance on both small NNs, in which all
details can be theoretically justified, and large real-world
networks. As we will demonstrate, considering ESD provides
insights into the performance of NNs and provides suggestions
on how this performance can be improved.

2 BACKGROUND

2.1 A Simple Example to Inspire the
Approach
Consider the simple multilayer perceptron Nθ with one input, one
output, two hidden layers, each with one node, and activation
functions f (z) � z2.While quite simple, this function embraces two
key aspects of NNs. In particular, it is a composition of simple affine
transformations, as is classic for layers of an NN, but is not itself an
affine function because of the nonlinear activation function.

This simple NN can be written as

Nθ(x) � w3(w2(w1x + b1)2 + b2)2 + b3, (1)

where w � {w1,w2,w3} are the scalar weights of the NN, b �
{b1, b2, b3} are the corresponding scalar biases, and θ � w∪b. Note
that for our particular simple choice of activation functions, Eq. 1
is a 4th degree polynomial in x with six free parameters. We can
expand this polynomial to obtain the coefficients of the basis
1, x, x2, x3, . . .

Nθ(x) � (w4
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2
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� P(w, b)TΦ(x) (2)

for our set of polynomial basis functions Φ(x) � 1, x, x2, x3, . . ., and
a parameterized set of weights for these basis functions encoded in
P(w, b). A critical idea that will be discussed in detail is that this
representation Nθ(x) � P(w, b)TΦ(x) is not unique. The Reisz
representation theorem [3] shows that we could have selected
another basis for θ(x) such as Legendre polynomials or Fourier
basis functions. However, for this example, the standard polynomial
basis is the most natural setting and allows us to represent the NN
with a finite number of coefficients. As we generalize our analysis to
nonpolynomial NNs, we will consider other bases.

One can then compare 2 to the standard polynomial form with
five weights
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p(x) � ax4 + bx3 + cx2 + dx + e (3)

and consider whether the set of functions that 2 and 3 can
represent, given arbitrary weights, are equivalent. It is clear
that 3 can represent all 4th-order polynomials, but 2 is rather
more complicated. One might ask what set of 4th-order
polynomials 2 can represent.

Similar to the line of thought in [18] for linear models, one
can approach 2 and 3 as different parameterizations of the space
of all 4th degree polynomials. In particular, when comparing 2
and 3, it might seem reasonable, at first glance, to guess that the
six parameters of 2 would allow it to have the same
representation power as 3, since the latter has only five
parameters. However, this is not the case. In fact, the set of
all polynomials of degree 4 that Nθ(x) can represent is of
measure 0 in the space of all 4th degree polynomials. The
function Nθ(x) is less expressive than 3 due to the way the
weights are shared among the coefficients of the polynomial. We
note that this coefficient sharing between terms of the
polynomial expansion of the simple NNs Nθ(x) is not a
special aspect of Nθ(x) but rather a property of the fact that
Nθ(x) is written using a combination of function composition
and nonlinear activation functions, both of which are essential
properties of NNs.

To measure just how restricted the polynomial form of
Nθ(x) is, we consider the function P(w, b) : R6 →R5 that
maps the 6 parameters (weights and biases) to the five
coefficients of the polynomial basis Φ(x). While the domain
of P(w, b) encompasses all of R6, since each parameter can be
any real number, the range of this function does not fill all of
R5. In fact, as we will compute below, the dimension of the
range of is 4.

We can compute this dimension of the range of P(w, b) by
considering the rank of its Jacobian. By Sard’s theorem [3], this
rank is constant everywhere, except for a set of measure 0. If we
substitute (nonzero) random values for the 6 parameters and
compute the rank of the resulting matrix; with probability 1, the
result will be the dimension of the range of P(w, b). For example,
choosing arbitrary values w1 � 3, w2 � 9, w3 � 7, b1 � 2, b2 � −4,
and b3 � −6, we obtain,

Jc �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

61, 236 10, 206 6561 0 0 0
122, 472 27, 216 17, 496 61, 236 0 0
78, 624 26, 712 16, 848 122, 472 1134 0
16, 128 11, 424 6912 78, 624 1512 0

0 1792 1024 16, 128 448 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (4)

Here, we used integers so that we can compute the exact rank
without taking into account any floating point uncertainties.
Using standard symbolic manipulation software [19], the rank
of this matrix can be computed analytically without appealing to
any numerical approximations. The rank of this matrix is 4.
Again, as 2 is analytic function, we may apply Sard’s theorem [3]
to show that the rank is constant everywhere except for a set of
measure 0. As a numerical exercise, we computed the rank of the
Jacobian at thousands of other random input weights, and,
unsurprisingly, we consistently obtained a rank of 4.

The foundational idea is that, while the simple polynomial
NN, Nθ appears to have 6 degrees of freedom and be a multiple
covering of the space of all polynomials; it actually only has 4
degrees of freedom, and the representation power of the NN is
smaller than expected. However, this does not tell us which
polynomials are accessible to the NN. At first glance, one
might assume that having 4 parameters means that only 3rd
degree polynomials are representable, since representing all 3rd
degree polynomials required 4 parameters. However, there are
polynomials of degree 4 which are clearly expressible by the
network, just not all 4-th degree polynomials. For example, take
w1 � w2 � w3 � 1 and set the rest of the parameters equal to any
arbitrary values. Accordingly, the polynomial representation
Nθ(x) should not be thought of necessarily penalizing higher-
order polynomials, but rather selecting a subset of polynomials
that includes both high and low-order polynomial
representatives. This somewhat odd behavior arises from the
fact that the 4th order polynomials in question are represented by
way of function composition, which is one of the defining
characteristics of deep NNs.

2.2 Definition of Polynomial Spanning
Dimension
Inspired by the simple NN in 2, we now define the following.

Definition 1. Given a polynomial NN of the form Nθ(x) �
Φ(x)TP(θ) with P : Rm →Rk and Φ : R→Rk, where m is the
number of trainable weights, k is one more than the degree of the
polynomial, and Φ(x) � 1, x, x2, x3, . . ., we define the polynomial
spanning dimension (PSD) of Nθ(x) as the maximal rank of the
Jacobian matrix of zP(θ)zθ over all θ and x.From a theoretical point of
view, Definition 1 can have interesting implications. For example,
here is one theorem that naturally arises.

Theorem 2.1. Let N be an NN with a single input and output, l
hidden layers, and height 1 (a single node per hidden layer) with
polynomial activation functions in the hidden layers. LetD(N) be
the PSD of N, then D(N)≤ l + 2.The proof can be found in the
Supplementary Material.One can imagine that many theorems
of a similar flavor could easily be posed and proven.

3 DEVELOPING A MORE GENERAL
DEFINITION OF SPANNING DIMENSION

In Definition 1, we made three assumptions about the NN Nθ(x).

1) We assume thatNθ(x) is a polynomial. However, this rarely
occurs in practice.

2) We assumed that the activation functions are smooth.
Common activation functions like ReLU [20], though
differentiable almost everywhere, are not smooth.

3) The NN has only one input and output.

In this section, we will address and relax each of these
assumptions in turn and generalize our definition of PSD to
apply to a much larger class of NNs including those found in real-
world applications.
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3.1 Generalizing Spanning Dimension to
Nonpolynomial Neural Networks
In Definition 1, we are representing a polynomial as the
coefficients of the polynomial basis 1, x, x2, x3, . . .. A single
function Nθ(x) may have more than one representation as
Φ(x)TP(θ) for different choices of P and Φ. In particular, the
existence of the decomposition Nθ(x) � Φ(x)TP(θ) is a finite
dimensional special case of the famed Riesz representation
theorem [17], which guarantees, under quite general
circumstances, that the infinite dimensional analog of such
decompositions always exists for quite general classes of
functions. In this section, we will develop a definition of SD
that does not depend on the particular representation Φ(x)TP(θ)
chosen, but rather on more general properties of NNs
themselves.

When we computed the PSD of polynomial NNs, we
considered the coefficients of the polynomial in terms of the
polynomial basis 1, x, x2, . . . , xn. With 3, we saw that we could
independently adjust each coefficient without affecting the other
coefficients. However, with 2, this was not true. Adjusting one
coefficient has an impact on the other coefficients. It is precisely
this restriction which results in a PSD < 5.

With a polynomial of the form presented in 3, the number of
weights is equal to the number of points x1, x2, . . . , xn,
y1, y2, . . . , yn (provided that xi ≠ xj for j≠ i) that one can fit
exactly. A necessary condition to be able to fit n arbitrary points
is that the range of the function from the weights to the
coefficients of the polynomial is of dimension n or greater.
It is important to emphasize that this is only a necessary
condition and not a sufficient one. Consider the following
polynomial,

ŷ � p(x) � a2x2 + b2. (5)

Clearly, we cannot ever fit x � 1 and ŷ � −2 because p(x)≥ 0
for all x ∈ R no matter what the values of the weights a
and b happen to be. However, the PSD of this polynomial is
still 2.

In the case of polynomials with one input and output, we will
now show that an equivalent way to compute the PSD is to
determine the rank of the Jacobian of the function from w unique
fixed input points to the w output points with respect to the
weights of the polynomial, where w is the number of weights in
the NN. Note that with this definition, one no longer needs the
individual coefficients of the polynomial. One only needs to be
able to evaluate the polynomial for a given set of inputs. This is a
critical step in generalizing the definition of spanning dimension
to nonpolynomial NNs. We will start with a simple example to
illustrate the concept.

Consider the NN, Nθ(x), introduced in the previous section.
We select six random input points x1 � 1, x2 � 3, x3 � 5, x4 �
−1, x5 � −3, x6 � −4 and evaluate the NN at these input points to
obtain the six output points yi � n(xi,w1,w2,w3, b1, b2, b3),
i � 1 . . . 6. We now consider these input points as fixed and
compute the Jacobian of the function from the six weights to
these resulting six output points. This Jacobian evaluated at
w1 � 3, w2 � 9, w3 � 7, b1 � 2, b2 � −4, and b3 � −6 is,

Jn �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

278, 460 77, 350 48, 841 278, 460 3, 094 1
9, 022, 860 1, 837, 990 1, 177, 225 3, 007, 620 15, 190 1
55, 627, 740 10, 507, 462 6, 744, 409 11, 125, 548 36, 358 1

1, 260 70 25 −1, 260 70 1
2, 312, 604 299, 782 190, 969 −770, 868 6, 118 1
9, 031, 680 1, 254, 400 802, 816 −2, 257, 920 12, 544 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(6)

This Jacobian has rank 4. We can see that in this specific instance
that Jn has the same rank as Jc, which was computed in
Section 2.1.

We will now show that these two definitions are equivalent for
all polynomial NNs. Given a polynomial NN, we have the
following relationship,

Jn � VJc, (7)

where Jn is the Jacobian of the neural network with respect to the
weights as computed in 6, Jc is the Jacobian obtained from
computing the derivative of each coefficient of the polynomial
with respect to each weight as in 4, and V is the (re-ordered)
Vandermonde matrix arising from our choice of polynomial basis
[21]. One can see this by noting that N(x,w) � VC(w), where
N(x,w) is the polynomial neural network evaluated at the input
points, x, w are the weights of the neural network, and C(w) are
the coefficients of the neural network in terms of the standard
polynomial basis. Taking the Jacobian of both sides with respect
to the weights gives us 7.

Why does computing the rank of Jn allow us to compute the
rank of Jc? One merely needs to note that when xi ≠ 0, xi ≠ xj for
i≠ j, we have that V is full rank [21]. Thus, Jn is the same as the
rank of Jc.

Harkening back to 2, we see that V can be interpreted as our
basis functions Φ(x) evaluated at our training data x1, x2, . . . , xn
and that Jc can be interpreted as the Jacobian

zP(θ)
zθ . However, using

the above procedure, the rank of Jc and hence the value of PSD as
in Definition 1, can be computed without actually knowing the
decomposition P(θ)TΦ(x) of Nθ(x). This is the key benefit of our
approach. In particular, given the above method,

(1) computing Jn can be easily and efficiently achieved for NNs
using libraries like PyTorch [22], and

(2) we have a natural extension for the definition of PSD, which
we will simply call the spanning dimension (SD) to
nonpolynomial NNs since we do not need to actually pick
a basis representation of our NN. Rather, this definition is
based on the dimension of the range of the function from the
NN evaluated at our selected input points to its outputs and is
a necessary, but not sufficient, condition for being able to fit
those selected input points to arbitrary output points exactly.

3.1.1 Effective Rank
Our second assumption above was that the NN in consideration
had smooth activation functions, but that is not the case for real-
world NNs which use activation functions like ReLU [20], which
are differentiable almost everywhere but are not smooth. In
particular, while the ReLU function is piecewise linear, and
therefore has a Taylor expansion with only two non-zero
terms away from its singularity (as is not defined at the
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singularity), in the context of the effective rank, we suggest that it
is appropriate to think of the ReLU in two ways, which we will
explore numerically in Sections 3.1, 5, and 6.

First, as giving rise to a “faceted manifold” where the Jacobian
of interest is also piecewise constant, we observe that if the NN is
evaluated exactly at a point at which activation is nonsmooth,
then the Jacobian of interest will not uniquely be defined there.
However, for all standard activation functions, such as ReLU, the
set of nonsmooth points for that activation function is of
measure-0, so the Jacobian we require is defined uniquely
almost everywhere.

Second, as the ReLU being thought of as the limit of a SoftPlus
(i.e., smoothed ReLu) [23] type activation, we conjecture that the
difference between the ReLu-type activation functions and
sigmoid-type activation functions is the leading order
coefficients in their Taylor expansions. In particular, while the
first nonconstant term for the sigmoid activation function is
linear, the first nonconstant term for the SoftPlus is quadratic.

Furthermore, with polynomial NNs, we selected integer inputs
to create a Jacobian that consisted of integer entries. For
nonpolynomial NNs with many commonly used activation
functions, this is not possible. For example, the sigmoid
activation function contains an exponential which is irrational.
To estimate the rank of a matrix with floating point entries, and
thereby the SD, we can consider the singular values of that matrix.
One classic method to compute the rank of a matrix from its
singular values is to simply count the number of singular values
that are greater than a certain tolerance based on machine
epsilon. Of course, there are more sophisticated approaches,
and one that we use here is the idea of the effective rank and
defined in [24].

Let the n singular values of the Jacobian be σ1, σ2, . . . , σn and let

pi � σ i
‖σ‖1, (8)

where

‖σ‖1 � ∑n
i�1

σ i

∣∣∣∣∣∣∣∣∣.
∣∣∣∣∣∣∣∣∣ (9)

The effective rank of the Jacobian is then

erank(J) � e−∑ n

i�1pi log(pi). (10)

This approach has a number of important mathematical
properties that make it suitable for our analysis. The following
three properties are particularly relevant. For a matrix A, and
c≠ 0, we have,

(1) 1≤ erank(A)≤ rank(A), where rank(A) is the number of
nonzero singular values of A.

(2) 2) erank(A) � erank(AT ) � erank(cA).
(3) A unitary transformation on A does not change its

effective rank.

Using effective rank, the SD is no longer confined to the set of
integers, and the SD can vary based on the values of inputs and
weights for smooth activation functions. To account for this, and

to handle activation functions which are not smooth like ReLU
[20], where the rank of the function will vary depending on the
inputs, we introduce the expected SD (ESD) in the next section.

3.1.2 Expected Spanning Dimension
Consider the distribution of SDs for a given NN over all possible
inputs within some compact space. We can estimate this
distribution by choosing a number λ of sets of random weights
and input values and compute the SD for each of these sets. The
ESD of the NN is then the average value of these individual SDs,
and a formal algorithm for computing the ESD is presented in
Algorithm 1.

Figure 1 shows the SD distributions for an MLP with three
hidden layers, one input and output, and 8, 8, and 10 nodes for
the first, second, and third hidden layers, respectively. Figure 1A
shows the SD distribution for this MLP with ReLU activation
functions with an ESD of 2.81, and Figure 1B shows the SD for
this MLP with sigmoid activation functions with an ESD of 1.07.
We see that the SD of the MLP with ReLU activation functions,
which are not smooth, varies much more than the MLP with
sigmoid activation functions. Furthermore, even though both
MLPs have the same number of trainable parameters, the MLP
with sigmoid activation functions has a much lower ESD.

Note, in the case of nonsmooth activation functions, the SD
can change if the NN is evaluated at points that bracket a
singularity in an activation function such as ReLU. However,
as we show in Section 6, the ESD is quite stable even for real-
world networks with nonsmooth activation functions.

3.2 Multiple Inputs and Outputs
Here, we address our third assumption above, that Nθ(x) has one
input and one output. The method outlined in Section 3.1
naturally extends to NNs with more than one input. In this
case, x is a vector instead of a scalar, and we still compute the
gradient of this NN with respect to the weights of the NN. In our

FIGURE 1 | Estimated spanning distribution for an MLP with (A) ReLU
activation functions, and (B) sigmoid activation functions.
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experimental results below, we use this approach to compute the
SD of NNs with multiple inputs.

However, this approach does require that there is only one
scalar output. To compute the ESD of an NN with multiple
outputs, we recommend one of the following approaches.

(1) Compute the ESD of each output and then average the
results. This is the most computationally expensive
approach for larger networks.

(2) Compute the ESD of the first output. This approach is the
least expensive computationally.

(3) Compute the ESD of the sum of squares of the outputs. This
approach closely resembles the type of squared loss function
used in regression problems.

In Section 6, we will provide numerical results on real-world
networks that explore cases 2 and 3.

3.3 Singular Values and Connections to the
Riesz Representation Theorem
Previously, when considering exact rank, we did not need to
determine the actual magnitude of the singular values. However,
when considering effective rank, these singular values are
important.

Looking at 7 and Definition 1, some readers might be reminded
of ideas such as the Riesz representation theorem [22]. In particular,
as we pointed out earlier, when we define the PSD in Definition 1 in
terms of the decomposition Nθ(x) � Φ(x)TP(θ), we are merely
applying a finite dimensional version of the Riesz representation
theorem [17]. The idea of the Riesz representation theorem is that
such decompositions are actually quite general, and the Riesz
representation theorem is an important part of the theory of
infinite dimensional Hilbert spaces of functions [17].

Deriving such ideas in the Hilbert space setting would take us
too far afield for the current context. However, there is one idea
that is inspired by such considerations that we will leverage here.
In particular, it is important to note that the expansion 2 is only
one such possible expansion of the functionNθ(x). In 2,Np(x)was
expanded in terms of the standard polynomial basis 1, x, x2, ·, but
there are many other bases of the space of all polynomials, such as
the Legendre basis and the Chebyshev basis [21].

The fact that there are many decompositions of Nθ(x) leads to
many decompositions of Jn into V(x)Jc(θ), where we have chosen
our notation to emphasize the fact that V(x) is purely a function
of x, and represents some function basis of interest, and that Jc(θ)
is purely a function of the parameters θ, and represents
coefficients of the particular linear combination of the basis
function that represents Nθ(x).

We are now interested in computing the eigenstructure of Jc
for determining the effective rank. However, as opposed to the
simple example in Np(x), we will not necessarily have explicit
access to a decomposition such as 7, but we will only be able to
compute the gradient of an NN at particular values of x using
backpropagation. In effect, we do not have direct access to the
Jacobian whose eigenstructure we wish to compute, we instead
can only access information about the Jacobian by computing dot

products of the Jacobian with vectors x and then observing the
result. Fortunately, as discussed in [25], the eigenstructure of a
linear operator can indeed be estimated using such dot products.
These methods are akin to many other matrix-free methods in
linear algebra in which calculations can be preformed on a matrix
which is not directly available, but only accessible through some
function that can apply the unknown matrix to a vector [25].
However, our case is somewhat more complicated, since the
eigenstructure of Jc is masked by the eigenstructure of the
polynomial basis matrix V(x).

Fortunately, we have a trick that we can leverage. In the
decomposition Jn � VJc, we know that any sufficiently large
full rank V will leave the rank of Jn (which we can compute)
and the rank of Jc(which we wish to know) the same. However, V
can certainly cause the numerical values of the singular values of
Jn and Jc to be different. The question then becomes how to
reduce the impact of a choice of the polynomial basis V on the
eigenstructure of Jc?

Since we do not have access to the decomposition Nθ(x) �
Φ(x)TP(θ) for real-world NNs, and we have no a priori reason
to prefer a particular basis, we are free to interpret the SD in
terms of any convenient Φ(x)and to choose our samples x
with advantageous properties. In particular, for many
polynomials bases, such as the standard basis, each basis
function evaluated at x ∈ {−1, 1}n (i.e., a vector x each of
whose entries is −1 or 1) leads to a result which is also in
{−1, 1}. For example, if we have a scalar x ∈ {−1, 1} then for the
standard basis we have that x0 � 1 ∈ {−1, 1}, x1 ∈ {−1, 1},
x2 � 1 ∈ {−1, 1}, x3 ∈ {−1, 1}, and so on. A similar
construction holds for several other standard polynomial
bases such as the Legendre basis and the Chebyshev basis of
the first kind [21].

So, in our calculations, we are free to choose to interpret
Nθ(x) � Φ(x)TP(θ) in terms of a Φ(x) arising from either the
standard, Legendre, or first-kind Chebyshev basis. In all these
cases, for the choice of random x ∈ {−1, 1}n, we know that every
entry of our V will also be in {−1, 1}. While such a V in not
guaranteed to be unitary, it is the case that interpreting Φ(x) as
one of the above bases and using x ∈ {−1, 1}n will lead to rows of
Φ(x)with constant norm.While not eliminating the impact of the
choice of Φ(x) on our Jacobian Jn � V̂Jc, we have found that this
choice of x ∈ {−1, 1}n to reduces the noise in the numerical
calculation of the SD of Jn.

3.4 Expected Spanning Dimension
Algorithm
We are now ready to present the full algorithm for computing the
ESD of Nθ(x). Algorithm 1 details the steps to compute ESD for
an NN. This will be the key tool in our numerical studies in the
rest of this article.

3.5 Comparing Effective Rank vs. Actual
Rank
Figure 2 shows the estimated spanning dimension distribution
for the simple NN from Eq. 1. We see that the ESD (1.59) is
significantly smaller than the PSD (4.0). Effective rank does not
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just consider the number of nonzero singular values; it considers
the relative magnitude of these singular values. This distribution of
effective rank over the expected range of data inputs and weights
provides a rich set of information for the given NN. Effective rank
is always less than or equal to the actual rank and can be much
smaller if many of the singular values are close to zero. Considering
the singular value decomposition of the Jocobian, we can interpret
the Jacobian as a rotation or reflection followed by a scaling
followed by another rotation or reflection. The singular values
represent the amount we move in each dimension during a
backpropagation step. Whereas the actual rank considered only
how many of these dimension we can move at all, effective rank
considers how much we can move in each dimension.

4 MULTILAYER PERCEPTRONS

In this section, we explore the relationship between ESD and
learning capacity in terms of training error for multilayer
perceptrons. ESD measures the expressiveness of an NN, its
ability to fit input data points. An experimental framework
was created to investigate this relationship.

For these experiments, a set of eight random input and output
points were generated x1, x2, . . . x8, y1, y2, . . . y8, ensuring that
abs(xi − xj)> 0.0001, i≠ j. These points were used as training
data. Two hundred randomly generated multilayer perceptrons
were generated. These NNs were generated by first choosing a
random number of hidden layers l ∈ [1, 6], for each layer,
choosing a random number of nodes ni ∈ [2, 30], i ∈ [1, l], and
then choosing one of the following activation functions for each
layer, tanh, ReLU, or sigmoid. For each of these MLPs, we
computed the ESD and then used stochastic gradient descent
to try and fit these eight random points. Our goal was to find the
closest fit we could to the training data so we used stochastic
gradient descent with 10 initial seeds and then chose the lowest
training error of these 10 experiments.

Figures 3 and 4 show the results of these experiments. There is
a very strong relationship between the training error and the ESD
with a correlation of −0.91 and a p-value of 1.2 × 10− 70. In
comparison, the relationship between training error and the
number of trainable weights in the network is much weaker
with a correlation of −0.35 and a p-value of 5.3 × 10− 7. Having
more trainable parameters in no way guarantees that one will be
able to fit the data more closely.

4.1 Analyzing Multilayer Perceptrons With
Two Hidden Layers
In this section, we describe the results of an exhaustive set of
experiments that were run to investigate the ESD of 4800
multilayer perceptrons. For each activation function, sigmoid,
ReLU, and tanh, we compute the ESD of all multilayer perceptron
with two hidden layers where the first and second hidden layers
have i and j nodes, respectively, with i, j ∈ [1, 40].

These results show that in general ReLU has a much higher
ESD than sigmoid and tanh, and may partly explain why ReLU
tends to perform well in deep NNs. Sigmoid in contrast has a very
low ESD and appears to plateau earlier. In particular, both

FIGURE 2 | Estimated spanning dimension distribution (effective rank) with 2,000 samples of a neural network with f(z) � z2 activation functions, one node per
hidden layer, one input, one output, and two hidden layers with expected spanning dimension 1.59.
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sigmoid and tanh, unlike ReLU, do not appear to have a
significantly higher ESD when the first hidden layer has more
nodes. The number of nodes in the second hidden layer has a
greater impact on ESD.

4.2 Increasing the Expected Spanning
Dimension of Multilayer Perceptrons
Consider the simple multilayer perceptron in Figure 5A. This
multilayer perceptron with three inputs, two hidden layers, one
output, three nodes per hidden layer, and sigmoid activation
function has 27 weights and an ESD of 2.76.

Perhaps, we wish to have amore flexible NN that can represent
a larger family of functions. Interestingly, the ESD can be
increased without adding weights, merely by adding links
similar to those found in ResNets [26]. The full justification of
this idea is a subject of future work, but perhaps intuition can be
gained by looking back at 2. One may observe that the coefficient
in front of the high-order terms with respect to x are high-order
polynomials with respect to the coefficients of the NN. It is our
experience that such terms lead to low ESD. By adding additional
links, additional low-order terms with respect to the higher
powers of x are added, increasing the ESD.

Figure 5B shows a multilayer perceptron with shortcut
pathways added that skip over the hidden neurons. The input
of each hidden neuron is added directly to the output of that same
neuron, skipping the multiplication of the weight, the bias term,
and the activation function. Adding these extra pathways results
in a significant increase of the ESD to 4.28. We call an NN with
these extra pathways an add-shortcuts NN.

If adding these shortcuts increases the ESD considerably, a
natural extension of this idea is to replace the smaller shortcuts

with larger ones that skip over more of the hidden neurons. In
fact, inspired by DenseNets [27], we create shortcuts that go
directly from the inputs of the NN to the output of each hidden
node, as shown in Figure 5C. The inputs of each row in the NN
are added directly to the output of each node in the hidden layers.
We call this an add-inputsNN. This results in a further increase of
the ESD from 4.28 to 4.69.

It is interesting to note that, from the perspective of ESD, the
modifications to standard NN architectures used by high-
performance networks such as ResNets [26] and DenseNets
[27] seem well justified, as opposed to more ad hoc arguments
that are sometimes made with regard to these networks.

5 RESULTS ON BENCHMARK DATASETS

In this section, wemodify larger multilayer perceptrons by adding
shortcuts as shown in Figure 5B. Then, we add inputs directly to
the outputs of the hidden nodes as shown in Figure 5C. All
experiments in this section were performed on an Alienware M15
laptop with an external Alienware amplifier with an NVIDIA
GTX 2080 TI GPU.a

5.1 Fitting Random Noise
To measure the fitting power of an NN, we test its ability to fit
random noise given a certain number of inputs. One thousand
images of size 28 × 28 were generated with random noise and
assigned to one of ten arbitrary classes. Three NNs were
generated with three hidden layers and 28 × 28 � 784 nodes
per hidden layer. The first NN is a standard multilayer
perceptron with sigmoid activation functions. The second
NN adds shortcuts that skip over single hidden nodes to the

FIGURE 3 | Training error vs. (A) number of trainable weights and (B) ESD for 200 randomly generated multilayer perceptrons.
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first NN. We call this network an add-shortcuts network. The
shortcuts that are added are similar to those found in ResNet
(see [26]). The final NN, which we call the add-inputs network,
adds shortcuts that go directly from the inputs to the outputs of
the hidden nodes in the NN and, based upon our previous
results, should have a larger ESD. This is similar to the

procedure in Section 4.2, where the input in the same row of
the NN is added to each hidden node in that same row as shown
in Figure 5C.b

Indeed, that is the case, and Figure 6 shows that only the add-
inputs model is able to fit the noise with gradient descent,
indicating that it has greater fitting power or variance than

FIGURE 4 | The ESD for all MLPs with two hidden layers and nodes per hidden layer less than or equal to 40 with activation function ReLU, sigmoid, or tanh.

FIGURE 5 | (A) Amultilayer perceptron with ESD 2.76, (B) adding shortcut paths increases ESD to 4.28, and (C) adding inputs directly to the outputs of the hidden
nodes increases ESD to 4.69.
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FIGURE 6 | Fitting a multilayer perceptron, an add-shortcuts, and an add-inputs network to random noise images with ten arbitrary classes. The add-inputs model
is able to fit the noise images while the other two models are not able to. Accordingly, this NN has more flexibility than the other networks, and can overfit.

FIGURE 7 | Fitting a multilayer perceptron, a residual network, and an add-inputs network to 10, 000 MNIST images. With the additional training data using
structured images the flexibility of the add-inputs network leads to better performance (see Table 1 for the testing accuracies).
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both the add-shortcuts model and the original multilayer
perceptron.

5.2 Fashion MNIST
These three NN architectures were then trained on fashion
MNIST images to determine the effect of increased ESD on
performance in a practical setting [28]. Table 1 shows the
training and testing accuracy of the multilayer perceptron, the
add-inputs model, and the add-shortcuts model for various
numbers of epochs. We observe that the testing accuracy is
important for judging the performance of NNs, and we note
that increasing ESD improves both the training and testing
performance of the given NNs. This suggests that the original
NN is actually, and perhaps surprisingly, under-fitting the data
when only a small number of training epochs are used.

The testing accuracy for these architectures is higher than both
the multilayer perceptron and residual models in every test case.
Each experiment was run 3 times, and the average training and
test accuracies were computed.

5.3 Deep Residual Networks
Adding shortcuts that skip over individual nodes in a multilayer
perceptron was inspired by deep residual networks [26]. As

shown above, our findings indicate that replacing these
shortcuts with larger shortcuts, which add the inputs directly
to the outputs of the hidden neurons, increases ESD. Here, we
investigated the effect of replacing some of these shortcuts in the
ResNet architecture with these longer shortcuts. Our ResNet
implementation is based upon that found in https://keras.io/
examples/cifar10_resnet/. After each max pooling layer in the
ResNet architecture, the size of the intermediate images decreases
by a factor of 2. When this occurs, ResNet adds a subset of a
previous layer by sampling every other pixel using a
convolutional layer with kernel size 1 and stride 2. We replace
these shortcuts with convolutional layers that sample the inputs
directly with a stride of 2n, where n is the number of max pooling
layers in between the input and the given hidden node. These two
architectures have the same number of weights.

To see how well these NNs perform on a low number of
training inputs, these two networks were trained on 3,000 images
from the CIFAR-10 dataset for various numbers of epochs using
stochastic gradient descent [29]. Figure 8 shows the training
accuracy vs. number of epochs for the original ResNet
architecture and the add-inputs model. Table 2 shows the
final test accuracies for various experiments. For each
experiment, the add-inputs model has a higher test accuracy

TABLE 1 | Fashion MNIST training and test accuracy average of three runs comparing multilayer perceptron (MPL) to our proposed architectures.

Training accuracy Test accuracy

Epochs MLP Add-shortcuts Add-inputs Epochs MLP Add-shortcuts Add-inputs

10 0.369 0.846 0.906 10 0.340 0.785 0.880
20 0.693 0.892 0.919 20 0.658 0.865 0.886
30 0.831 0.908 0.924 30 0.768 0.880 0.893
40 0.867 0.9153 0.9284 40 0.822 0.890 0.898
50 0.888 0.9228 0.9328 50 0.856 0.891 0.897

FIGURE 8 | Fitting the original ResNet architecture and the add-inputs model to 3,000 images from the CIFAR-30 dataset. The add-inputs model learns faster and
has a higher final test accuracy than the ResNet network.
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than the original ResNet model. Again, we emphasize that
increasing ESD again improves both the training and testing
performance of the given NNs, and perhaps indicates that the
original NN is also under-fitting the data in this case.

6 THE EXPECTED SPANNING DIMENSION
OF REAL-WORLD NEURAL NETWORKS

In previous sections, we have demonstrated the ESD on NNs of
our own construction and have focused largely on training error
as a measure of the flexibility of an NN. However, these ideas can
be applied to arbitrary NNs. In this section, we demonstrate the
application of the ESD to eighteen NNs from the literature as
implemented by the PyTorch NN library [22] in
torchvision.models [30]. Our goal here is to look at the testing
error of larger NNs widely used in practice. We might expect that
if the ESD is too high, then over-fitting might occur and the
testing error will increase. In this section, we show that over-
fitting does not appear to be occurring with these real-world NNs.

There are a significant number of variables and challenges when
measuring the testing error of an NN including difficulty of
training, limitations of the learning algorithm, structure and
distribution of the input data, size of training data, and
outliers in the training data. Despite all of this noise, we see a
negative correlation between ESD and testing error. These
experiments were conducted on a multi-node high-
performance computing system with a variety of Intel-based
processors and NVIDIA K20 GPUs.c The network families we
examine include

(1) VGG (versions 11, 13, and 19) [31],
(2) ResNet (versions 18, 34, 50, 101, and 152) [32],
(3) SqueezeNet (versions 1.0 and 1.1) [33],
(4) DenseNet (versions 121, 161, 169, 201) [27],
(5) ShuffleNet (version 2-1.0) [34],
(6) MobileNet (version 2) [35], and
(7) ResNext (versions 50 and 101) [36].

Each NN f that we consider has been implemented to ingest
RGB images x of size 3 × 224 × 224 from the ImageNet dataset
and output a probability vector y of size 1,000, with each entry
being the probability of 1,000 possible image classifications. We
have for each NN a function of the following form,
f : R3*224*224 →R1000.

To demonstrate the effectiveness of our methodology, we
choose NNs with a number of parameters that range over
several orders of magnitude. We choose networks that range
in size from just over one one million parameters to networks
with over 100 million parameters. We will denote by θ the set of

TABLE 2 | CIFAR-10 training and test accuracy average of three runs.

Epoch Training accuracy Test accuracy

ResNet Add inputs ResNet Add inputs

10 0.153 0.230 0.147 0.228
20 0.263 0.304 0.274 0.315
30 0.329 0.369 0.316 0.357
40 0.371 0.411 0.364 0.384
50 0.402 0.436 0.388 0.404

FIGURE 9 | Plots of the best-1 testing error of NNs against their ESD. The testing errors are as provided by [30] and are error rates for testing on ImageNet crop
images. We also provide the range of the ESD over 10 different experiments using synthetic data of the form x ∈ {−1, 1}3×224×224, and, as can be observed, the ranges are
quite small relative to the differences between the various networks. In addition, the ESD shows a strong negative correlation with the best-1 error. The confidence
bounds on the linear fit are one-σ bounds based on 1,000 bootstrap samples.
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FIGURE 10 | Plots of the best-5 testing error of NNs against their ESD. As in Figure 9, the testing errors are as provided by [30] and are error rates for testing on
ImageNet crop images. We also provide the range of the ESD over 10 different experiments using synthetic data of the form x ∈ {−1, 1}3×224×224, and, again, the ranges
are quite small relative to the differences between the various networks. Also in this case, the ESD shows a strong negative correlation with the best-5 error. The
confidence bounds on the linear fit are one-σ bounds based on 1,000 bootstrap samples.

FIGURE 11 | Plots of the best-1 testing error of NNs against their ESD. As in Figure 9, the testing errors are as provided by [30] and are error rates for testing on
ImageNet crop images. We also provide the range of the ESD over 10 different experiments using an image from the ImageNet dataset for each x, and, again, the ranges
are small relative to the differences between the various networks, though somewhat larger than in the x ∈ {−1,1}3×224×224. Also in this case, the ESD shows a strong
negative correlation with the best-1 error. It is interesting to note that the ranges of the ESD for each NN are larger in this case than in 9 and 10. We conjecture that
this is because of the larger diversity of the ImageNet dataset. However, the p-values are still quite small, even in this case. The confidence bounds on the linear fit are one-
σ bounds based on 1,000 bootstrap samples.
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FIGURE 12 | Plots of the best-5 testing error of NNs against their ESD. As in Figure 9, the testing errors are as provided by [30] and are error rates for testing on
ImageNet crop images. We also provide the range of the ESD over 10 different experiments using an image from the ImageNet dataset for each x, and, again, the ranges
are quite small relative to the differences between the various networks, though somewhat larger than in the x ∈ {−1, 1}3×224×224. Also in this case, the ESD shows a
strong negative correlation with the best-5 error. It is again interesting to note that the ranges of the ESD for each NN are larger in this case then in 9 and 10. We
conjecture that this is because of the larger diversity of the ImageNet dataset. However, the p-values are still quite small, even in this case. The confidence bounds on the
linear fit are one-σ bounds based on 1,000 bootstrap samples.

FIGURE 13 | Plots of the best-1 and best-5 testing errors of NNs against the number of parameters. Again, the testing errors are as provided by [30] and are error
rates for testing on ImageNet crop images. The number of parameters in the network is not a statistically significant predictor of their performance. The confidence
bounds on the linear fit are one-σ bounds based on 1,000 bootstrap samples.
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all parameters of the network, so each network can be written as
fθ(x) � y.

To handle the multiple outputs of each NN, we compute the
ESD using two of the approaches outlined in Section 3.1. In these
calculations, we wish to compute a single Jacobian for each NN,
and so we turn each NN into a function g with a scalar output by
setting.

(1) gθ(x) � fθ(x)1 (what we will later call pick_1st), or
(2) gθ(x) � ∑ 1000

i�1 fθ(x)2i (what we will later call sum_squares).

With the above notation in mind, our experiments proceed as
follows.

We choose, at random, a set of 1, 000, 000 entries of the
gradient of gθ.

We generate these 1, 000, 000 entries of the gradient for 500
different random choices of x and call this 500 × 1, 000, 000
matrix J. For each row of J we choose x ∈ {−1, 1}3×224×224 as
suggested in Section 3.3 (shown in Figures 9 and 10) or x as
an image from the ImageNet dataset (shown in Figures 11
and 12).

In an optimization of Algorithm 1 to save memory for large
NNs, we compute the singular values of Jn by first computing
the Gram matrix JnJTn , computing the singular values of JnJTn ,
and taking their square roots.

This provides one set of singular values. We then iterate this
procedure 10 times to get 10 sets of 500 singular values for each
NN. Note, the choice of 500 in the above algorithm is not essential
to the performance of the algorithm, and many different choices
were tried as part of our experiments. 500 was chosen in this case
as all singular values for all networks past this point are small.

Fortunately, PyTorch makes the computation of Jn from a
particular NN simple by way of their torch.autograd.grad
function. This function exposes an API for computing
arbitrary derivatives of NNs with respect to both x and θ

analytically using the chain rule. Finally, as opposed to the
simple examples in “A Simple Example to Inspire the
Approach” section, the numerically computed Jacobians are of
higher rank.

Our results for real-world NNs can be found in Figures 9-13
and Tables 3 and 4. In these figures, we plot the ESDs of the 18
NNs we examine against their testing error, as provided by the
PyTorch torchvision library [30], along with their least-squares
fitting line. The ESDs are quite predictive of the NNs best-1 and
best-5 errors, with p-values’ orders of magnitude lower than the
classic statistical significance limit of 0.05. The sum_squares
method provides a stronger relationship between ESD and
testing error vs. the pick_first method. The correlation between
the testing error and the number of parameters in the NN is much
weaker, with p-values of only 0.553 for the best-1 error and 0.478
for the best-1 error.

A concise summary of the results for analyzing NNs with ESDs
can be found in Tables 3 and 4. In particular, we show results for
all possible combinations of best-1 vs best-5 accuracies, our two
vector to scalar mappings, pick_first and sum_squares, and real
and synthetic data. Our results show high correlations in all of
these cases between our ESD-based measures and the accuracies
of the 18 NNs, with the lowest p-values for all “sum-squares”
examples being less than 5.0e−5, which is 3-orders of magnitude
smaller than the classic limit of 5.0e−2. We also show, in Table 4,
that ESD results are robust to selecting different subsets of the
NNs we analyze.

7 CONCLUSIONS

In this article, we have defined the idea of an ESD for NNs and
have demonstrated how maximizing this ESD improves the
performance of real-world NNs. In many ways, a small ESD
can be thought of as a regularization of the NN, and increasing

TABLE 3 | p-Values for the linear relationship between ESD and accuracy over
several different scenarios including examples using both synthetic data and
real ImageNet data.

Scalar
network

Error
type

Data type p-Value for
mean

Max p-value in
range

pick_1st best1 {−1, 1} 4.84414e−05 5.45863e−05
pick_1st best5 {−1, 1} 3.56313e−05 4.06148e−05
sum_square best1 {−1, 1} 3.29885e−06 3.87184e−06
sum_square best5 {−1, 1} 3.18170e−06 3.74138e−06
pick_1st best1 ImageNet 1.84975e−03 2.53296e−03
pick_1st best5 ImageNet 1.07219e−03 1.65698e−03
sum_square best1 ImageNet 2.64016e−05 8.80155e−05
sum_square best5 ImageNet 1.35040e−05 4.81841e−05
The “max p-value in range” is the worst case p-value observed over the range of
computed ESD values for each NN

TABLE 4 | Comparison between the p-values for the number of parameters and
ESD for predicting testing accuracy.

Data type Error type p-Value ESD p-Value
parameters

ImageNet removed bottom
third

best1 3.23e−02 9.71e−01

ImageNet removed bottom
third

best5 3.24e−02 9.81e−01

ImageNet removed middle
third

best1 1.26e−04 5.00e−01

ImageNet removed middle
third

best5 6.78e−05 4.47e−01

ImageNet removed top third best1 1.15e−04 5.54e−01
ImageNet removed top third best5 6.48e−05 4.79e−01
{−1, 1} Removed bottom third best1 2.11e−02 9.71e−01
{−1, 1} Removed bottom third best5 1.86e−02 9.81e−01
{−1, 1} Removed middle third best1 7.99e−06 5.00e−01
{−1, 1} Removed middle third best5 8.67e−06 4.47e−01
{−1, 1} Removed top third best1 1.79e−05 5.54e−01
{−1, 1} Removed top third best5 1.77e−05 4.79e−01
We divide the NNs into three groups of six, based on their testing accuracies. We then do
the p-value calculations by removing each of the groups, one at a time. This leads to a
sequence of experiments where we just use 12 of the 18 NNs for each experiment. In all
cases, the p-values for the ESD experiments are less than 5e-2 and the ratio of the
p-values are at least a factor of 30 or better for the ESD using effective rank and sum of
the squares as the output.
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the ESD is an example of the bias–variance trade-off in machine
learning. ESD can be controlled by judiciously including
additional links in the NN and does not require changing the
number of parameters in the NN. Perhaps, most importantly, an
ESD analysis provides a mathematical foundation for the
superior performance of ResNet type NNs. There are many
possible directions for augmenting the results described here.
For example, Theorem 2.1 only scratches the surface of the
theoretical progress that can be made using ESD-type ideas for
the understanding of NNs, and the bounding of the ESD is
certainly a worthwhile direction for future work. However, such
results appear to be nontrivial, except in the smallest of cases. In
particular, the example can be analyzed in terms of algebraic
geometry using Gröbner bases [37] and similar ideas. However,
generating such results for activation functions with infinite
Taylor series has so far proved nontrivial. We expect that such
analysis can lead to superior NN architectures in many problem
domains.

As a final point, the interpretation of the ESD in context of
the recent work in “double descent” is a delicate and quite
interesting direction for future work. In particular, several of
our results demonstrate that the testing accuracy of NNs
improves as the ESD increases. There are two explanations
that present themselves. First, large-scale NNs are actually
somewhat under-parameterized or, more precisely, have
access to far fewer degrees of freedom than their number of
unknowns would indicate. Their performance is therefore
improved by the additional flexibility that a larger ESD
provides. Second, large-scale NNs are already in the “double
descent” range and increasing ESD is taking advantage of this
fact. Resolving this question would likely take a delicate

computational study involving the development of a
technique for slowly increasing the ESD in a large-scale NN.
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