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of Margin Dynamics
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Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, China

Margin enlargement of training data has been an important strategy for perceptrons in

machine learning for the purpose of boosting the confidence of training toward a good

generalization ability. Yet Breiman (1999) shows a dilemma: a uniform improvement on

margin distribution does not necessarily reduce generalization errors. In this paper, we

revisit Breiman’s dilemma in deep neural networks with recently proposed spectrally

normalized margins from a novel perspective based on phase transitions of normalized

margin distributions in training dynamics. Normalized margin distribution of a classifier of

the data can be divided into two parts: low/small margins such as some negative margins

for misclassified samples vs. high/large margins for high confident correctly classified

samples, which often behave differently during the training process. Low margins for

training and test datasets are often effectively reduced in training, along with reductions

of training and test errors, whereas highmargins may exhibit different dynamics, reflecting

the trade-off between the expressive power of models and the complexity of data. When

data complexity is comparable to the model expressiveness, high margin distributions for

both training and test data undergo similar decrease-increase phase transitions during

training. In such cases, one can predict the trend of generalization or test error through

margin-based generalization bounds with restricted Rademacher complexities, shown

in two ways in this paper with early stopping time exploiting such phase transitions.

On the other hand, over-expressive models may have both low and high training

margins undergoing uniform improvements with a distinct phase transition in test margin

dynamics. This reconfirms the Breiman’s dilemma associated with over-parameterized

neural networks where margins fail to predict overfitting. Experiments are conducted

with some basic convolutional networks, AlexNet, VGG-16, and ResNet-18, on several

datasets, including Cifar10/100 and mini-ImageNet.

Keywords: generalization ability, Rademacher complexity, margin theory, Breiman’s dilemma, phase transitions

1. INTRODUCTION

Margin, as a measurement of the robustness that allows some perturbations on classifiers without
changing decisions on training data, has a long history in characterizing the performance of
classification algorithms in machine learning. As early as [1], it played a central role in the proof on
finite-stopping or convergence of perceptron algorithm when training data is separable. Equipped
with the convex optimization technique, a plethora of large margin classifiers were triggered by
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support vector machines [2, 3]. For neural networks, Bartlett
[4, 5] showed that the generalization error can be bounded
by a margin-sensitive fat-shattering dimension, which is in
turn bounded by the ℓ1-norm of weights, shedding light on
the possible good generalization ability of over-parameterized
networks with small weights despite the large VC dimensionality.
The same idea was later applied to AdaBoost, an iterative
algorithm to combine an ensemble of classifiers proposed by
[6], often exhibiting a phenomenon of resistance to overfitting
that, during the training process, the generalization error does
not increase even when the training error drops to zero.
In pursuit of deciphering such resistance to the overfitting
phenomenon, Schapire et al. [7] proposed an explanation that
the training process keeps on improving a notion of classification
margins in boosting among later improvements [8] and works
on establishing consistency of boosting via early stopping
regularization [9–11]. Lately, such a resistance to overfitting was
again observed in deep neural networks with over-parameterized
models [12]. A renaissance of margin theory was brought by
[13] with a normalization of networks using Lipschitz constants
bounded by products of operator spectral norms. It has inspired
many further investigations in various settings [14–16].

However, margin theory has a limitation that the
improvement of margin distribution does not necessarily
guarantee a better generalization performance, which is at least
traced back to [17] in his effort to understand AdaBoost. In
this work, Breiman designed an algorithm arc-gv such that

FIGURE 1 | Demonstration of Breiman’s dilemma in convolutional neural networks. CNN of 50 channels: (A) training and test error, training margin error, and inverse

margins; (B) dynamics of training margin distributions. CNN of 400 channels: (C) training and test error, training margin error and inverse margins; (D) dynamics of

training margin distributions. Details are shown in Example 1.1.

the margin can be maximized via a prediction game. He then
demonstrated an example that one can achieve uniformly larger
margin distributions on training data than AdaBoost but suffer
a higher generalization error. At the end of this paper, Breiman
made the following comments with a dilemma:

“The results above leave us in a quandary. The laboratory
results for various arcing algorithms are excellent, but the theory
is in disarray. The evidence is that if we try too hard to make the
margins larger, then overfitting sets in. · · · My sense of it is that we
just do not understand enough about what is going on.”

In this paper, we are going to revisit Breiman’s dilemma
in the context of deep neural networks. We shall see margin
distributions on training and test data may behave differently on
the low and high parts during training processes. First of all, let
us look at the following illustration example.

Example 1.1 (Breiman’s Dilemma with a CNN). A basic five-
layer convolutional neural network of c channels (see section 3 for
details) is trained with the CIFAR-10 dataset whose 10% labels are
randomly permuted as injected noises. When c = 50 with 92, 610
parameters, Figure 1A shows the training error and generalization
(test) error in solid curves. From the generalization error in
Figure 1A, one can see that overfitting indeed happens after about
10 epochs despite the training error continuously dropping to
zero. One can successfully predict such an overfitting phenomenon
from Figure 1B, which shows the evolution of normalized training
margin distribution defined later in this paper. In Figure 1B, while
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low or small margins are monotonically improved during training,
high or large margins undergo a phase transition from increase to
decrease around 10 epochs such that one can predict the tendency
of generalization error in Figure 1A using high margin dynamics.
Two particular sections of high margin dynamics are highlighted in
Figure 1B, one at 9.8 on x-axis, which measures the percentage of
normalized training margins no more than 9.8 (training margin
error), and the other at 0.8 on the y-axis, which measures the
normalized margins at quantile q = 0.8 (i.e., 1/γ̂q,t defined
later). Both of them meet the tendency of generalization error in
Figure 1A and find a good early stopping time to avoid overfitting.
However, as we increase the channel number to c = 400 by about
5.8M parameters and retrain the model, Figure 1C shows a similar
overfitting phenomenon in terms of the generalization error; on
the other hand, Figure 1D exhibits a uniform improvement of
both low and high normalized margins without a phase transition
during the training and thus fails to capture the overfitting. This
demonstrates the Breiman’s dilemma in wide CNN.

A key insight into this dilemma is that one needs a trade-off
between the expressive power of models and the complexity of
the dataset to endorse training margins as a prediction power. On
one hand, when a model has a limited expressive power relative
to the training dataset, in the sense that the low and high training
margins cannot be uniformly improved during training, low
margins can be effectively enlarged during training by reducing
the training loss, though at the cost of sacrificing high margins,
which does not affect the training loss as much as low margins,
indicating misclassified samples. In this case, the generalization
or test error may be predicted from dynamics of normalized
training margin distributions by the increase-decrease phase
transition that high margins experience. On the other hand, if
we push too hard to improve margins by giving models too much
degree of freedom such that the training margins are uniformly
improved during training process, the predictability may be lost
and overfitting set in. A trade-off is thus necessary to balance
the complexity of model and dataset, otherwise one is doomed
to meet Breiman’s dilemma when the models arbitrarily increase
the expressive power.

The example above shows that the expressive power of the
models relative to the complexity of the dataset can be observed
from the dynamics of normalized margins in training instead
of counting the number of parameters in neural networks. In
the sequel, our main contributions are to make these precise
by revisiting the Rademacher complexity bounds on network
generalization error.

• With the Lipschitz-normalized margins, a linear inequality
is established between training margin and test margin
in Theorem 1. When both training and test normalized
margin distributions undergo similar phase transitions on
increase-decrease during the training process, one may predict
the generalization error based on the training margins, as
illustrated in Figure 1.

• In a dual direction, one can define a quantile margin via the
inverse of margin distribution functions to establish another
linear inequality between the inverse quantile margins and
the test margins, as shown in Theorem 2. Quantile margin is

far easier to tune in practice and enjoys a stronger prediction
power exploiting an adaptive selection of margins along model
training.

• In all cases, Breiman’s dilemma may fail both of the methods
above when dynamics of normalized trainingmargins undergo
different phase transitions to that of test margins during
training where a uniform improvement of training margins
results in overfitting.

Section 2 describes our method to derive the two linear
inequalities of generalization bounds above. Extensive
experimental results are shown in section 3 with basic CNNs,
AlexNet, VGG, ResNet, and various datasets, including
CIFAR10, CIFAR100, and mini-Imagenet. Conclusions and
future directions are discussed in section 4. More experimental
figures and proofs are collected in Appendices.

2. METHODOLOGY

2.1. Definitions and Notation
Let X be the input space [e.g., X ⊆ R

C×W×H in image
classification of size #(channel)-by-#(width)-by-#(height)] and
Y := {1, . . . ,K} be the space of K classes. Consider a sample set
of n observations S = {(x1, y1), . . . , (xn, yn) : xi ∈ X , yi ∈ Y} that
are drawn i.i.d. from PX,Y . For any function f :X × Y → R,
let Pf =

∫

X×Y
f (X,Y)dPX,Y be the population expectation and

Pnf = (1/n)
∑n

i=1 f (xi) be the sample average.
Define F to be the space of functions f :X → R

K represented
by neural networks:







x0 = x,
xi = σi(Wixi−1 + bi), i = 1, . . . , l− 1,

f (x) = Wlxl−1 + bl,
(1)

where l is the depth of the network, Wi is the weight matrix
corresponding to a linear operator on xi, and σi stands for either
the element-wise activation function (e.g., ReLU) or pooling
operator, which are assumed to be Lipschitz bounded with
constant Lσi . An example would be the convolutional network
Wixi + bi = wi ∗ xi + bi where ∗ stands for the convolution
between the input tensor xl and kernel tensor wl. We equip F

with the Lipschitz semi-norm, that is, for each f ,

‖f ‖F := sup
x 6=x′

‖f (x)− f (x′)‖2
‖x− x′‖2

≤ Lσ

l
∏

i=1

‖Wi‖σ := Lf , (2)

where ‖ · ‖σ is the spectral norm and Lσ =
∏l

i=1 Lσi . Without
loss of generality, we assume Lσ = 1 for simplicity. Moreover, we
consider the following family of hypothesis functions as network
mapping evaluated at (x, y),

H = {h(x) = [f (x)]y :X → R, f ∈ F , y ∈ Y}, (3)

where [·]j denotes the jth coordinate, and we further define the
following class induced by Lipschitz semi-norm bound on F ,

HL = {h(x) = [f (x)]y :X → R,

h(x) = [f (x)]y ∈ H with ‖f ‖F ≤ L, y ∈ Y}. (4)
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Now, rather than merely looking at whether prediction f (x) on
y is correct or not, we further consider the prediction margin,
which is defined as ζ (f (x), y) = [f (x)]y −max{j : j 6=y}[f (x)]j. With
that, we can define the ramp loss and margin error depending on
the confidence of predictions. Given two thresholds γ2 > γ1 ≥ 0,
we define the ramp loss to be

ℓ(γ1 ,γ2)(ζ ) =







1 ζ < γ1,

− 1
1
(ζ − γ2) γ1 ≤ ζ ≤ γ2,

0 ζ > γ2,

where 1 : = γ2 − γ1. In particular γ1 = 0 and γ2 = γ , we
also write ℓγ = ℓ(0,γ ) for simplicity. Define the margin error to
measure if f has margin no more than a threshold γ ,

eγ (f (x), y) =
{

1 ζ (f (x), y) ≤ γ

0 ζ (f (x), y) > γ
. (5)

In particular, e0(f (x), y) is the common mis-classification error
and E[e0(f (x), y)] = P[ζ (f (x), y) < 0]. Note that e0 ≤ ℓγ ≤ eγ ,
and ℓγ is the Lipschitz bounded by 1/γ .

2.2. Rademacher Complexity and the
Scaling Issue
The central question we try to answer is, can we find a proper
upper bound to predict the tendency of the generalization error
during training such that can stop the training early, near the
epoch, so that P[ζ (ft(x), y) < 0] is minimized?

We begin with the following lemma, as a margin-based
generalization bound with network Rademacher complexity
for multi-label classifications, using the uniform law of large
numbers [8, 13, 18, 19].

Lemma 2.1. (Rademacher Complexity based Generalization
Bound). Given a γ0 > 0, then, for any δ ∈ (0, 1) with probability
at least 1− δ, the following holds for any f ∈ F with ‖f ‖F ≤ L:

E[ℓγ0 (f (x), y)] ≤
1

n

n
∑

i=1

[ℓγ0 (f (xi), yi)]+
4K

γ0
Rn(HL)+

√

log(1/δ)

2n
,

(6)
where

Rn(HL) = Exi ,εi sup
h∈HL

1

n

n
∑

i=1

εih(xi) (7)

is the Rademacher complexity of function class HL with respect to
n samples, and the expectation is taken over xi, εi, i = 1, ..., n.

Unfortunately, direct application of such a bound in neural
networks with a constant γ0 will suffer from the so-called scaling
issue. To see this issue, let us look at the following proposition as
a lower bound of Rademacher complexity term.

Proposition 1. (Lower Bound of the Rademacher Complexity).
Consider the networks with activation functions σ , where we
assume σ is Lipschitz continuous and there exists x0 such that
σ ′(x0) 6= 0 and σ ′′(x0) exists. For any L > 0, then, it holds that

Rn(HL) ≥ CLES

√

√

√

√

1

n

n
∑

i=1

‖xi‖2, (8)

where C > 0 is a constant that does not depend on S.

This proposition extends Theorem 3.4 in [13] to general
activation functions and a multi-class scenario, and the proof is
presented in the Appendix.

The scaling issue refers to the fact that, if the network
Lipschitz L → ∞, by this Lemma the upper bound (6)
becomes trivial since Rn(HL) → ∞. On the other hand,
the gradient descent method with logistic regression (cross-
entropy) loss [20] and exponential loss (boosting) [21] will drive
weight estimates to approach infinity for max-margin classifiers
when the data is linearly separable. In particular, the latter
work shows the growth rate of weight estimates is log(t). As
for the deep neural network with cross-entropy loss, the input
of the last layer is usually viewed as several features extracted
from the original input. Training the last layer with other
layers being fixed is a logistic regression, and the feature is
linearly separable as long as the training error achieves zero.
Therefore, without any normalization, the hypothesis space
during training has no upper bound on L, and the upper bound
(6) is thus useless.

To solve the scaling issue, in the following we are going to
present normalization of margins and restricted Rademacher
complexity within a unit Lipschitz ball. We are going to see when
such bounds are tight enough to predict generalization errors
based on training data.

2.3. Generalization Bounds by Normalized
Margins and Restricted Rademacher
Complexity
The first remedy is to restrict our attention onH1 by normalizing
f with its Lipschitz semi-norm ‖f ‖F or some tight upper bound

estimates. Note that a normalized network f̃ = f /C has the
same mis-classification error as f for all C > 0. For the
choice of C, it is difficult in practice to directly compute the
Lipschitz semi-norm of a network; instead, some approximate
estimates on the upper bound Lf in (2) are available as discussed
in section 2.4.

In the sequel, let f̃ = f /Lf be the normalized network and

h̃ = h/Lf = ζ (f , y)/Lf = ζ (f̃ , y) ∈ H1 be the corresponding
normalized hypothesis function from (3). A simple idea is to
regard Rn(H1) as a constant when the model complexity is not
over-expressive against data; one can then predict the tendency
of generalization error via training the margin error of the
normalized network, which avoids the scaling issue and the exact
computation of Rademacher complexity. In the following we
present two bounds, with one on normalized margin error bound
as the direct application of Lemma 2.1 and the other on quantile
margin error bound as the inverse of the former that turns out to
be more effective in applications.

2.3.1. Normalized Margin Error Bound
The following theorem states that the probability of normalized
test margins rather than γ1 is controlled by the percentage of
normalized training margins less than γ2 > γ1 up to a constant
Rn(H1)/(γ2 − γ1) if the Rademacher complexity of unit ball
Rn(H1) is not large.
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Theorem 1. Given γ1 and γ2 such that γ2 > γ1 ≥ 0 and
1 : = γ2 − γ1 ≥ 0, for any δ > 0 with probability of at least
1− δ along the training epoch t = 1, . . . ,T, the following holds for
each ft :

P[ζ (f̃t(x), y) < γ1] ≤ Pn1[ζ (f̃t(x), y) < γ2]+
CH

1
+

√

log(1/δ)

2n
(9)

where CH = 4KRn(H1).

Remark 1. When we take γ1 = 0 and γ2 = γ > 0, the bound
above becomes

P[ζ (ft(x), y) < 0] ≤ Pn[ζ (f̃t(xi), yi) < γ ]+ CH

γ
+

√

log(1/δ)

2n
(10)

Remark 2. Recently, Liao et al. [16] investigated for normalized
networks the strong linear relationship between cross-entropy
training loss and test loss when the training epochs are large
enough. However, the bound here is applied to the whole training
process for all epoch t, which enables us to find the early stopping

time t∗ by looking at change points of Pn1[ζ (f̃t(x), y) < γ2] in
the dynamics of high training margin distributions that will be
discussed below.

Theorem 1 says that one can bound the normalized test

margin distribution P[ζ (f̃t(x), y) < γ1] by the normalized

training margin distribution Pn[ζ (f̃t(x), y) < γ2]. In particular,
one hopes to predict the trend of generalization (test) error by
choosing γ1 = 0 and a proper γ > such that the high training

margin errors Pn[ζ (f̃t(xi), yi) < γ ] enjoy a high correlation with
a test error of up to a monotone transformation. The following
facts make it possible to achieve this.

• First, we do not expect the bound; for example (10), is tight
for every choice of γ > 0. Instead, we hope there exists
some γ such that the training margin error almost changes
monotonically with generalization error. This indeed happens
when the model complexity is not too much where one cannot
uniformly enlarge the high training margins. For example,
Figure 5 below shows the existence of such γ whenmodels are
not too big by exhibiting rank correlations between training
the margin error at various γ and the test error for a CNN
trained on CIFAR10 dataset. Moreover, Figure 4 below shows
that the training margin error at such a good γ successfully
recovers the tendency of generalization error.

• Second, the normalizing factor is not necessarily an upper
bound of Lipschitz semi-norm. The key point is to prevent the
complexity term of the normalized network going to infinity.
Since for any constant c > 0, normalization by L̄ = cL
works in practice where the constant could be absorbed to γ ,
we could ignore the Lipschitz constant introduced by general
activation functions in the hidden layers.

However, such a strategy may fail. As shown by Example 1.1
using Figure 1 above, once the training margin distribution is
uniformly improved, the dynamic of training margin error fails
to capture the change point (minimum) of the generalization
error in the early stage. This is because when the network

structure becomes complex and over-expressive enough against
the data, the training margin distribution can be more easily
improved. In this case, the restricted Rademacher complexity
Rn(H1) in Theorem 1 will blow up such that it is invalid
to bound the generalization error using merely the training

margins, Pn[ζ (f̃t(xi), yi) < γ ], despite it is reduced in training.
This is exactly the same observation made in [17], casting doubt
on the margin theory in boosting type algorithms. More detailed
discussions will be given in section 3.3 with experiments.

2.3.2. Quantile Normalized Margin Error Bound
A serious limitation of Theorem 1 lies in that we must fix a γ

along the whole training process. In fact, the first and second
terms in the bound (10) vary in opposite directions with respect
to γ , and it is thus possible that different ft at different t may
prefer different γ for a trade-off. Can we adaptively choose good
γt at different t?

The answer is Yes. In fact, as shown in Figure 1B of Example
1.1 above, while choosing γ is to fix an x-coordinate section
of margin distributions, another direction is to look for a y-
coordinate section, which enables different margins for different
ft . This motivates us to define the quantile margin below. Let γ̂q,f
be the qth quantile margin of the network f with respect to sample
S, i.e.,

γ̂q,f = inf
{

γ :Pn1[ζ (f (xi), yi) ≤ γ ] ≥ q
}

. (11)

The following theorem bounds the generalization error by the
inverse of quantile margins on training data.

Theorem 2. Assume the input space is bounded by M > 0, that is,
‖x‖2 ≤ M, ∀x ∈ X . Given a quantile q ∈ [0, 1], for any δ ∈ (0, 1)
and τ > 0, the following holds with probability at least 1 − δ for
all ft satisfying γ̂

q,f̃t
> τ :

P[ζ (ft(x), y) < 0] ≤ Cq +
CH

γ̂
q,f̃t

(12)

where Cq = q +
√

log(2/δ)
2n +

√

log log2(4(M+l)/τ )
n and CH =

8KRn(H1).

Remark 3. We simply denote γq,t for γ
q,f̃t

when there is no

confusion.

Compared with the bound (10), Theorem 2 bound (12)
makes it possible to choose γt (varying with ft and the cost
is an additional constant term in Cq) as well as the constraint
γ̂q,t > τ , which typically holds for large enough q in practice.
In applications, the stochastic gradient descent method often
effectively improves the training margin distributions along with
the reduction of training errors; a small enough τ and large
enough q usually meet γ̂q,t > τ . Moreover, even with the choice

τ = exp(−B), constant term
√

[log log2(4(M + l)/τ )]/n =
O(

√

logB/n) is still negligible and thus very little cost is paid in
the upper bound.

In practice, tuning q ∈ [0, 1] is far easier than tuning γ > 0
directly, and setting a large enough q usually provides lots of
information about the generalization performance. The quantile
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margin works effectively when the dynamics of high margin
distributions reflect the behavior of generalization error, e.g., as
shown in Figure 1. In this case, after certain epochs of training,
the high margins have to be sacrificed to further improve the low
margins for reducing the training loss, which typically indicates a
possible saturation or overfitting in test error.

2.4. Estimate of Normalization Factors
It remains to be discussed how the Lipschitz constant bound
in (2) should be estimated. Given an operator W associated
with a convolutional kernel w, i.e., Wx = w ∗ x, there are
two ways to estimate its operator norm. We begin with the
following proposition, of which part (A) is adapted from the
continuous version of Young’s convolution inequality in Lp space
(see Theorem 3.9.4 in [22]) and part (B) is a generalization to
multiple channel kernels widely used in convolutional networks
nowadays. The proof is presented in the Appendix B.5.

Proposition 2. (A) For convolution operator W with kernel w ∈
R
Size where Size = (Sizei)

d
i=1 is the d-dimensional kernel size, it

holds that

‖w ∗ x‖2 ≤ ‖w‖1‖x‖2. (13)

In other words, ‖W‖σ ≤ ‖w‖1.
(B) Consider a multiple channel convolutional kernel w ∈

R
Cout×Cin×Size with stride S, which maps input signal x of Cin

channels to the output of Cout channels by

(Wx)(u, cout) = [w ∗ x](u, cout) :=
∑

v,cin

x(v, cin)w(cout , cin, u− v),

where x and w are assumed of zero-padding outside its support.
The following upper bounds hold.

1. Let ‖w‖∞,∞,1 := maxi,j ‖w(j, i, ·)‖1, then

‖w ∗ x‖2 ≤
√

‖w‖1‖w‖∞,∞,1‖x‖2; (14)

2. Let D :=
∏

i⌈Sizei/S⌉ where ⌈t⌉ := infk{k ∈ Z : k ≥ t}, then

‖w ∗ x‖2 ≤
√

D‖w‖1‖w‖∞‖x‖2. (15)

Remark 4. For stride S = 1, the upper bound (14) is tighter than
(15), while for a large stride S ≥ 2, the second bound (15) might
become tighter by taking into account the effect of stride.

In all these cases, the ℓ1-norm of w dominates the estimates.
In the following, we will thus simply call these bounds ℓ1-based

estimates. Another method is given in [14] based on power
iterations [23] as a fast numerical approximation for the spectral
norm of the operator matrix. We compare the two estimates in
Figure 10. It turns out both can be used to predict the tendency of
generalization error using normalized margins, and both will fail
when the network has large enough expressive power. Although
using the ℓ1-based estimate is very efficient, the power iteration
method may be tighter and have a wider range of predictability.

However, a shortcoming of the power method is that it cannot
be directly applied to the ResNet blocks. In the remainder of
this section, we will discuss the treatment of ResNets. ResNet is
usually a composition of the basic blocks shown in Figure 2 with
short-cut structure. The following method is used in this paper to
estimate upper bounds of spectral norm of such a basic block of
ResNet.

(a) Convolution layer: its operator norm can be bounded either
by the ℓ1-based estimate or by power iteration above.

(b) Batch Normalization (BN): in the training process, BN

normalizes samples by x+ = (x − µB)/
√

σ 2
B + ǫ, where

µB, σ
2
B are mean and variance of batch samples, while

keeping an online averaging as µ̂ and σ̂ 2. BN then rescales
x+ by using estimated parameters α̂, β̂ , and output x̂ =
α̂x+ + β̂ . The whole rescaling of BN on the kernel tensor
w of the convolution layer, therefore, is ŵ = wα̂/

√
σ̂ 2 + ǫ,

and its corresponding rescaled operator is ‖Ŵ‖σ =
‖W‖σ α̂/

√
σ̂ 2 + ǫ.

(c) Activation and pooling: their Lipschitz constants can be
known a priori, e.g., Lσ = 1 for ReLU and hence can be
ignored. In general, Lσ cannot be ignored if they are in the
shortcut as discussed below.

(d) Shortcut: In residue net with basic block in Figure 2, one
has to treat the mainstream (Block2, Block3) and the shortcut
Block1 separately. Since ‖f + g‖F ≤ ‖f ‖F + ‖g‖F , in this
paper we take the Lipschitz upper bound by Lσout (‖Ŵ1‖σ +
Lσin‖Ŵ2‖σ ‖Ŵ3‖σ ), where ‖Ŵi‖σ denotes a spectral norm
estimate of BN-rescaled convolutional operator Wi. In
particular Lσout can be ignored since all paths are normalized
by the same constant, while Lσin cannot be ignored due to its
asymmetry.

3. EXPERIMENTAL RESULTS

The spirit of the following experiments is to show when and how
the margin bound above could be used to numerically predict the

FIGURE 2 | A basic block in ResNets used in this paper. The shortcut consists of one block with convolutional and batch-normalization layers, while the main stream

has two blocks. ResNets are constructed as a cascading of several basic blocks of various sizes.
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tendency of generalization or test error along the training path.We
are going to show examples of both success and failure.

3.1. Networks and Datasets
The networks and datasets used in the experiments are
introduced in brief here. For the network, our illustration,
Example 1.1, is based on a simple convolutional neural network
whose architecture is shown in Figure 3 (more details in
Figure A1 in Appendix), called basic CNN(c), here with c
channels that will be specified in different experiments below.
It essentially has five convolutional layers of c channels at each
one, and this is followed by batch normalization and ReLU as
well as a fully connected layer in the end. Furthermore, we
consider various popular networks in applications, including
AlexNet [24], VGG-16 [25], and ResNet-18 [26]. For the dataset,
we consider CIFAR10, CIFAR100 [27], and Mini-ImageNet [28].

3.2. Success: Similar Phase Transitions in
Training and Test Margin Dynamics
In this section, we show that when the expressive power ofmodels
are comparable to data complexity, the dynamics of training
margin distributions and that of test margin distributions
share similar phase transitions, which enables us to predict
generalization (test) error utilizing the theorems in this paper.
In this experiment, we are going to demonstrate when there is

a nearly monotone relationship between training margin error
and test margin error such that Theorem 1 and Theorem 2 can be
applied to predict the tendency of generalization (test) error.

Let us first consider training a basic CNN(50) on CIFAR10
dataset with and without random noise. The relations between
test error and training margin error eγ (f̃ (x), y) with γ = 9.8,
inverse quantile margin 1/γ̂q,t with q = 0.6 are shown in Figure 4.
In this simple example, where the network is small and the dataset
is simple, the bounds (9) and (12) show a good prediction power:
they stop either near the epoch of sufficient training without noise
(Left, original data) or before an overfitting occurs with noise
(Right, 10% label corrupted).

Why does it work in this case? Here are some detailed
explanations on its mechanism. The training margin error

(Pn[ζ (f̃t(xi), yi) < γ ]) and the inverse quantile margin (1/γ̂q,t)
are both closely related to the dynamics of training margin
distributions. Figure 1B actually shows that the dynamics of
training margin distributions undergo a phase transition: while
the low margins have a monotonic increase, the high or large
margins undergo a phase transition from increase to decrease,
which is indicated by the red arrows. Therefore different choices
of γ for the linear bounds (9) [a parallel argument holds for q in
(12)] will have different effects. In fact, the training margin error
with a small γ is close to the training error, while that with a large
γ is close to test error. Figure 5 shows such a relation using rank

FIGURE 3 | Illustration of the architecture of basic CNN.

FIGURE 4 | Success examples. Net structure: basic CNN (50). Dataset: Original CIFAR10 (Left) and CIFAR10 with 10% label corrupted (Right). In each figure, we

show training error (red solid), training margin error γ = 9.8 (red dash), inverse quantile margin (red dotted) with q = 0.6, and generalization error (blue solid). The

marker “x” in each curve indicates the global minimum along epoch 1, . . . ,T. Both training margin error and inverse quantile margin successfully predict the tendency

of generalization error.
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FIGURE 5 | Spearman’s ρ and Kendall’s τ rank correlations between training (or quantile) margins and training errors, as well as training (or quantile) margins and test

errors, at different γ (or q, respectively). Net structure: Basic CNN(50). Dataset: CIFAR10. Top: Spearman’s ρ rank correlation. Bottom: Kendall’s τ rank correlation.

(Left) Blue curves show rank correlations between training margin error and test (generalization) error, while Red curves show that between the training margin error

and training error, at different γ . (Right) Blue curves show rank correlations between inverse quantile margin and test error, and Red curves show the same between

inverse quantile margin and training error at different q. Both Spearman’s ρ and Kendall’s τ show qualitatively the same phenomenon that dynamics of large margins

are closely related to the test errors in the sense that they have similar trends marked by large rank correlations. On the other hand, small margins are close to training

errors in trend.

correlations (in terms of Spearman-ρ and Kendall-τ 1) between
training margin errors (or inverse quantile margins) and training
errors, as well as training margin errors (or inverse quantile
margins) and test errors, for each γ (or q, respectively). In these
plots, we see that the dynamics of large margins have a trend
that is similar to the test errors, while small margins are close
to training errors in rank correlations. For a good prediction,
one should thus choose a large enough γ = 9.8 (or q = 6.8,
respectively) at the peak point of the rank correlation curve
between trainingmargins and test errors. Under these conditions,
the epoch when the phase transition above happens is featured
with a cross-over in dynamics of training margin distributions
in Figure 1B and exists near the optima of the training margin
error curve.

Although both the training margin error (Pn[ζ (f̃t(xi), yi) <

γ ]) and the inverse quantile margin (1/γ̂q,t) can be used here to
successfully predict the trend of test (generalization) error, the
latter can be more powerful in our studies. In fact, dynamics of
the inverse quantile margins can adaptively select γt for each ft
without access to the complexity term. Unlike merely looking at
the training margin error with a fixed γ , the quantile margin
bound (12) in Theorem 2 shows a stronger prediction power

1The Spearman’s ρ and Kendall’s τ rank correlation coefficients measure how two

variables are correlated up to a monotone transformation, and a larger correlation

means a closer tendency.

than (10) and is even able to capture more local optima. In
Figure 6, the test error curve has two valleys corresponding to a
local optimum and a global optimum, and the quantile margin
curve with q = 0.95 successfully identifies both. However, if
we consider the dynamics of training margin errors, it is rarely
possible to recover the two valleys at the same time since their
critical thresholds γt1 and γt2 are different. Another example of
ResNet-18 is given in Figure A2 in the Appendix.

In a summary, when training and test margin dynamics share
similar phase transitions, both theorems we developed can be
used to predict test (generalization) error via normalized training
margins, even leaving us with the data-dependent early stopping
rule to avoid overfitting when data is noisy. However, below
we shall see a different scenario when training and test margin
dynamics are of distinct phase transitions, such a prediction fails
as Breiman’s dilemma.

3.3. Failure: Distinct Phase Transitions in
Margin Dynamics and Breiman’s Dilemma
In this section, when model complexity arbitrarily increases to
be over-expressive against the dataset, the training margins can
be monotonically improved, while high test margin dynamics
undergo a distinct phase transition of decrease-increase. In this
case, the prediction power of training-margin-based bounds is
lost and overfitting may set in. This exhibits Breiman’s dilemma
in neural networks.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 October 2020 | Volume 6 | Article 575073

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Zhu et al. Rethinking Breiman’s Dilemma

We conduct three sets of experiments in the following.

3.3.1. Experiment I: Basic CNNs on CIFAR10
In the first experiment shown in Figure 7, we fix the dataset
to be CIFAR10 with 10% of labels randomly permuted
and gradually increase the channels from basic CNN(50)
to CNN(400). For CNN(50) [#(parameters) is 92,610] and
CNN(100) [#(parameters) is 365,210], both training margin
dynamics and test margin dynamics share a similar phase
transition during training: small margins are monotonically
improved while large margins are firstly improved then dropped

afterwards. The last row in Figure 7 shows the heatmaps as
Spearman-ρ rank correlations between these two dynamics
drawn in γ1-γ2 plane. The block diagonal structures in the
rank correlation heatmaps illustrates such a similarity in
phase transitions. To be specific, small (or large) margins in
both training margins and test margins share high-level rank
correlations marked by diagonal blocks in light color, while the
difference between small and large margins are marked by off-
diagonal blocks in dark color. Particularly at γ1 = 0, the test
(generalization) error dynamics can be predicted using large
training margins, as their rank correlations are high.

FIGURE 6 | Inverse quantile margin. Net structure: CNN(400). Dataset: CIFAR10 with 10% of the label corrupted. (Left) The dynamics of test error (blue) and inverse

quantile margin with q = 0.95 (red). Two local minima are marked by “x” in each curve. (Right) Dynamics of training margin distributions, where two distributions in

red color correspond to when the two local minima occur. The inverse quantile margin successfully captures two local minima of test error.

FIGURE 7 | Breiman’s Dilemma I: comparisons between dynamics of test margin distributions and training margin distributions. Net structure: Basic CNN(50) (Left),

Basic CNN(100) (Middle), and Basic CNN(400) (Right). Dataset: CIFAR10 with 10 percent labels corrupted. First row: evolutions of training margin distributions.

Second row: evolutions of test margin distributions. Third row: heatmaps are Spearman-ρ rank correlation coefficients between dynamics of training margin error

(Pn[eγ2 (f̃ (xi ), yi )]) and dynamics of test margin error (P[eγ1 (f̃t (x), y)]) drawn on the (γ1, γ2 ) plane. CNN(50) and CNN(100) share similar phase transitions in training and test

margin dynamics while CNN(400) does not. When model becomes over-representative to the dataset, training margins can be monotonically improved, whereas test

margins cannot be, as they lose their predictability.
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However, as the channel number increases to CNN(400)
[#(parameters) is 5,780,810], the dynamics of the training margin
distributions becomes a monotone improvement without the
phase transition above. This phenomenon is not a surprise, as,
with a strong representation power, the whole training margin
distribution can be monotonically improved without sacrificing
the large margins. On the other hand, the generalization or
test error cannot be monotonically improved. The heatmap of
rank correlations between training and test margin dynamics
thus exhibits such a distinction in phase transitions by changing
the block diagonal structure above to double column blocks for
CNN(400). In particular, for γ1 ≤ 0, test margin dynamics
have low rank correlations with all training margin dynamics
as they are of different phase transitions in evolutions. As a
result, one cannot predict test error at γ = 0 using training
margin dynamics.

3.3.2. Experiment II: CNN(400) and ResNet-18 on

CIFAR100 and Mini-ImageNet
In the second experiment shown in Figure 8, we compare the
normalized margin dynamics of training CNN(400) and ResNet-
18 on two different datasets, CIFAR100 and Mini-ImageNet.
CIFAR100 is more complex than CIFAR10 but less complex
than Mini-ImageNet. It shows that (a) CNN(400) does not
have an over-expressive power on CIFAR100, whose normalized
training margin dynamics exhibits a phase transition—a sacrifice
of large margins to improve small margins during training; it also
shows that (b) ResNet-18 does have an over-expressive power on
CIFAR100 by exhibiting a monotone improvement on training
margins but loses such a power in Mini-ImageNet with phase
transitions of training margin dynamics.

From this experiment, one can see that simply counting the
number of parameters and samples cannot tell us if the model
and data complexities are over-representative or comparable.
Instead, phase transitions of margin dynamics provide us a tool
to investigate their relationship. CNN(400) (5.8 M parameters)
has a power that is too expressive for the simplest CIFAR10
dataset such that the training margins can be monotonically
improved during training; but CNN(400)’s expressive power
seems comparable to the more complex CIFAR100. Similarly, the
more complex model ResNet-18 (11 M parameters) has a too
much expressive power for CIFAR100 but seems comparable to
Mini-ImageNet.

3.3.3. Comparisons of Basic CNNs, AlexNet, VGG16,

and ResNet-18 in CIFAR10/100 and Mini-ImageNet
In this part, we collect comparisons of various networks on the
CIFAR10/100 and Mini-ImageNet dataset. Figure 9 shows both
success and failure cases with different networks and datasets.
In particular, the predictability of generalization error based on
Theorem 1 and Theorem 2 can be rapidly observed on the
third column of Figure 9, the heatmaps of rank correlations
between training margin dynamics and test margin dynamics.
On one hand, one can use the training margins to predict the
test error as shown in the first column of Figure 9. In these
cases, model complexity is comparable to data complexity such
that the training margin dynamics share similar phase transitions
with test margin dynamics, indicated by block diagonal structures
in rank correlations [e.g., CNN(100)—CIFAR10, AlexNet—
CIFAR100, AlexNet—MiniImageNet, VGG16—MiniImageNet,
and ResNet-18—MiniImageNet]. On the other hand, such a
prediction fails when models become over-expressive against
datasets such that the training margin dynamics undergo
different phase transitions to test margin dynamics, indicated by
the loss of block diagonal structures in rank correlations [e.g.,
CNN(400)—CIFAR10, ResNet-18—CIFAR100, and VGG16—
CIFAR100].

As we have shown, phase transitions of margin dynamics
play a central role in characterizing the trade-off between model
expressive power and data complexity, hence the predictability of
generalization error by our theorems. If one tries hard to improve
training margins by arbitrarily increasing the model complexity,
the training margin distributions can be monotonically enlarged
but may lead to overfitting. This phenomenon is not unfamiliar
to us, since Breiman has pointed out that the improvement
of training margins is not enough to guarantee a small
generalization or test error in the boosting type algorithms
[17]. We find the same phenomenon ubiquitous in deep
neural networks. In this paper, the inspection of the trade-off
between expressive power of models and complexity of data via
phase transitions of margin dynamics provides us with a new
perspective to study the Breiman’s dilemma in applications.

3.4. Discussion: Effluence of Normalization
Factor Estimates
In the end, it is worth mentioning that different choices of
the normalization factor estimation may affect the range of

FIGURE 8 | Breiman’s Dilemma II. Net structure: Basic CNN(400) (Left), ResNet-18 (Middle, Right). Dataset: CIFAR100 (Left, Middle), Mini-ImageNet (Right) with

10% of the labels corrupted. With a fixed network structure, we further explore how the complexity of dataset influences the margin dynamics. Taking ResNet-18 as

an example, margin dynamics on CIFAR100 doesn’t have any cross-over (phase transition), but on Mini-Imagenet a cross-over occurs.
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FIGURE 9 | Comparisons of Basic CNNs, AlexNet, VGG16, and ResNet-18 in CIFAR10/100 and Mini-ImageNet. The dataset and network in use are marked in titles

of middle pictures in each row. (Left) Curves of training error, generalization error, training margin error, and inverse quantile margin. (Middle) Dynamics of training

margin distributions. (Right) heatmaps are Spearman-ρ rank correlation coefficients between dynamics of training margin error (Pn[eγ2 (f̃ (xi ), yi )]) and dynamics of test

margin error (P[eγ1 (f̃t (x), y)]) drawn on the (γ1, γ2) plane.
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FIGURE 10 | Comparisons on normalization factor estimates by power iteration and the ℓ1-based estimate. Dataset: CIFAR10 with 10 percent corrupted. Net

structure: Basic CNN with channels 50 (Top, Left), 100 (Top, Middle), 400 (Top Right), 200 (Middle, Left), 600 (Middle, Middle), and 900 (Middle, Right). In the

top row, the spectral norm in Lf is estimated via the ℓ1-based estimate method and in the middle row, the spectral norm is estimated by power iteration. Bottom

pictures show the estimates of Lf by power iterations (in green color) and by the ℓ1-based estimate method (in blue color), respectively. The curves of Lf estimates are

rescaled for visualization since a fixed scaling factor and training does not influence the occurrence of cross-overs or phase transitions. Note that the original ℓ1-based

estimates are of order 1e+ 17, 1e+ 19, and 1e+ 21 (100 channels, 400 channels, and 900 channels, respectively), and the power iteration estimates are of

1e+ 3, 1e+ 3, and 1e+ 3 (100 channels, 400 channels, and 900 channels, respectively). As shown above, a more accurate estimation of spectral norm may extend

the range of predictability but eventually faces Breiman’s dilemma if the model representation power grows too much against the dataset complexity.

predictability but may still exhibit Breiman’s dilemma. In all
experiments above, the normalization factor is estimated via the
ℓ1-based estimate in Proposition 2 in section 2.4. One could also
use power iteration [14] to present a more precise estimation on
spectral norm. Usually the ℓ1-based estimates lead to a coarser
upper bound than the power iterations, see Figure 10. It is a fact
that, in training margin dynamics, large margins are typically
improved at a slower speed than small margins. A more accurate
estimation of spectral norm with faster increases in training
may thus bring with it cross-overs (or phase transitions) in
large training margins and extend the range of predictability.
Breiman’s dilemma, however, still persists when the balance
between model representation power and dataset complexity is
broken as model complexity arbitrarily grows.

4. CONCLUSION AND FUTURE
DIRECTIONS

In this paper, we show that Breiman’s dilemma is ubiquitous
in deep learning, in addition to previous studies on Boosting
algorithms. We further show that Breiman’s dilemma is closely
related to the trade-off between the expressive power of models
and the complexity of data. Large margins within training data
do not guarantee a good control on model complexity. Instead,
we have shown that phase transitions in dynamics of normalized
margin distributions are able to reflect the trade-off between

model expressiveness and data complexity. In particular, if high
or large training margin distributions undergo decrease-increase
phase transitions during training, which is similar to that of test
margins, model expressiveness is comparable to data complexity
and normalized training margin-based generalization bounds
has the prediction power in capturing possible overfitting. We
have shown two theorems derived from normalized Rademacher
complexity bounds can be used to quantitatively capture a data-
driven early stopping rule to prevent overfitting. However, if
the training margin distributions, both high and low parts,
undergo a uniform increase during training, the model exhibits

over expressiveness with respect to the data, and the margin

theory above fails. Such phase transitions of margin evolutions
may reflect the degree-of-freedom of models with respect to
data, which measures the sensitivity of model prediction over
data response. Roughly speaking, an increase-decrease phase

transition in high margin distributions together with a decrease
in low margin distributions, indicates the degree-of-freedom of
models is relatively smaller than the data complexity where one

has to sacrifice the high margin predictions to improve the low

margin predictions. In contrast, a uniform increase of margins

over all sample suggests that the degree-of-freedom of models are
larger than the data complexity. A detailed study still remains to
be made for the future of designing a data-driven early stopping
rule and degree-of-freedom for models through the monitoring
of the margin dynamics.
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