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In complete markets there are risky assets and a riskless asset. It is assumed that the
riskless asset and the risky asset are traded continuously in time and that the market is
frictionless. In this paper, we propose a new method for hedging derivatives assuming that
a hedger should not always rely on trading existing assets that are used to form a linear
portfolio comprised of the risky asset, the riskless asset, and standard derivatives, but
rather should design a set of specific, most-suited financial instruments for the hedging
problem. We introduce a sequence of new financial instruments best suited for hedging
jump-diffusion and stochastic volatility market models. The new instruments we introduce
are perpetual derivatives. More specifically, they are options with perpetual maturities. In a
financial market where perpetual derivatives are introduced, there is a new set of partial and
partial-integro differential equations for pricing derivatives. Our analysis demonstrates that
the set of new financial instruments together with a risk measure called the tail-loss ratio
measure defined by the new instrument’s return series can be potentially used as an early
warning system for a market crash.

Keywords: option pricing, hedging, Merton’s jump diffusion model, stochastic volatility model, tail-loss ratio risk
measure

1. INTRODUCTION

In complete markets there are risky assets (such as stocks) and a riskless asset (such as government-
guaranteed bond). The risky asset and the riskless asset are traded continuously in time and the
market is assumed to be frictionless. These assets are referred to as “basic assets”. Given a derivative
with underlying assets being the risky and riskless asset, the derivative price is spanned over the risky
asset’s prices and the riskless asset’s price. That is, contingent pricing theory tells us that the
derivative price process is replicated by the price process of a self-financing portfolio consisting of
these existing assets.

In this paper we introduce new risky assets which we propose as trading assets (i.e., available for
trade continuously in time). The proposed new risky assets will be new assets if they are accepted by
the market as tradable assets. These new assets are perpetual options (i.e., options with perpetual
maturities). Because the proposed perpetual derivatives incorporate information about the
underlying risky asset, a riskless asset, and the underlying risky asset’s volatility, they could
potentially be of greater interest to market participants than the underlying asset itself. In a way,
our perpetual financial instruments are portfolios driven by the underlying risky asset, and we
suggest it as a potentially tradable product. We believe that introducing this new set of financial
instruments will contribute to enhancing market efficiency. Since real markets are not complete, the
introduction of the proposed financial instruments would benefit real financial markets.

Of course, a natural question is that in complete markets there are already contingent claims
traded (calls and puts), so why is it necessary to have new financial instruments for spanning? The
answer is simple. This is because existing traded options have a time to maturity and their value
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depends critically on the time to maturity. A preferred hedging
instrument should only depend on 1) the current time, 2) current
value of the underlying asset, 3) the prevailing riskless interest rate, and
4) the current value of the asset’s volatility. It should not depend on the
option’s time to maturity. That is the critical feature of the set of new
financial instruments we propose here, options with infinite maturity.
We believe that the new financial instruments we propose in this
paper will motivate market participants to recommend to exchanges
to design such contracts to help facilitate more efficient trading.

In creating the new financial instruments, we use the basic
framework that any asset in a complete market can be replicated
by existing assets. In the classical Black-Scholes-Merton (BSM)
model (see Refs. 1 and 9), the price of a risky asset is driven by
geometric Brownian motion and the riskless asset. In the classical
BSM model, one set of basic assets is the riskless asset and the
underlying risky asset. In this paper, we will show that our new
financial instrument is a basic asset. The new financial
instrument, together with the riskless asset and the underlying
risky asset, span any derivative in the BSM model.

So our new financial instrument can and should be replicated
by basic assets. Thus, if the new financial instrument is available
for trade as is the underlying asset, the seller of our perpetual
derivative can form a replicating portfolio so that a trader is
constantly able to hedge the risk exposure by investing in the risky
asset. That is why we view our new financial instrument (as any
risky asset in a complete market) both as an asset to be bought
(taking a long position) and at the same time to be sold (and thus
replicated using a perfect hedged replicating portfolio).

Extensions of the classical BSM framework allow for stochastic
volatility and jump risk in the price process which make the market
incomplete. For example, Merton [10] introduces a jump-diffusion
model and uses a short cut by averaging the jump risk noting that his
model is not equivalent to an equilibrium model. Yet, we show that
Merton’s model becomes complete if we introduce a special bond
with a maturity being the first arrival (default time) of a Poisson
process jump. In our paper we continue Merton’s line of research by
discussing how this new special bond should be used for hedging and
in doing so we derive a new partial differential equation for any
contingent claim that will make the market complete.

With respect to volatility markets, such markets are
incomplete markets in the sense that they too introduce two
sets of risk: price risk and volatility risk. However, if the volatility
of the asset is traded, the local volatility market becomes
complete. Furthermore, if the volatility of volatility is traded,
then we have four traded assets (underlying risks asset, volatility,
volatility of volatility, and riskless asset) forming a complete
market within the local volatility market model. Currently
market participants employ the CBOE’s VIX1 (as volatility of
SPDR2) and VVIX3 (as volatility of VIX) as traded assets (assets

available for trade). In our paper we derive the partial differential
equations for derivatives that will make the market complete.

Our general methodology, namely, to search for hedging
instruments that are most suited for hedging problems is
applied to three classical problems associated with option
pricing models. First, we apply our model to continuous-time
BSMmarkets. We derive a new set of perpetual derivatives which
can be as a potentially tradable product. We also extend this
approach to multi-asset markets (following general multivariate
Itô processes). Further, we explain and evaluate market risk
before and during the recent distressed market period by
using the new perpetual derivative. We demonstrate that the
new perpetual derivative, together with a risk measure which we
refer to as the tail-loss ratio (TLR), was capable of explaining and
evaluating market risk before and during the potential distressed
market period. We present the TLR index for the new perpetual
derivative and the SPDR S&P 500 index for the period from
2000–2018. We assess the forecasting performance of the new
perpetual derivative by comparing the TLR index with the TLR
index for the SPDR S&P 500 index. Our empirical evidence
suggests that the TLR derived by the new financial instrument
we propose performs well in predicting a real-world market crash.

The second problem associated with option pricing models
that we tackle in this paper deals with hedging in Merton’s jump-
diffusion option pricing model (see Ref. 10). Here the classical
approach is to use a riskless asset and the stock, but since these
two instruments cannot be used to hedge jump risk, this risk is left
unhedged. Now we again apply our general framework to answer
the following question: What kind of tradable (possibly non-
linear) financial instrument is best suited for designing a hedging
strategy to eliminate jump risk? Following the approach by Ref.
13; we answer the question and thus derive an analogue of
Merton’s partial integro-differential equation (PIDE) for the
derivative price of a fully hedged portfolio.

Our third application of the proposed approach is hedging in
the presence of stochastic volatility. Here there are two sources of
uncertainty: market risk and volatility risk. Although market risk
is readily hedged by trading the underlying asset, attempting to
hedge volatility risk requires an additional derivative with a
longer maturity than the option that the hedger seeks to
hedge. This approach creates a vicious circle in that the
hedger is trying to hedge an option using another option for
which the hedger does not know its contract value. Thus, an
analogue of the market risk premium is introduced (generally
understood as the volatility risk premium), which now enters the
model as a parametric function which should be potentially
calibrated. Instead, following the approach suggested by Ref. 4;
we take a different approach by posing the question of the most
suitable tradable instrument for that hedging problem and
describe the nature of the volatility risk premium by applying
the Consumption Capital Asset Pricing Model (CCAPM)
formulated by Ref. 2.

This is the essence of our methodology: in an incomplete
market, we do not leave the risk premia from different risk factors
as unknown functions (which should be eventually estimated or
calibrated). Rather we select the best suited financial instruments,
that should be introduced as publicly traded assets. These new

1VIX is an index created by the CBOE, representing 30-day implied volatility
calculated from S&P500 options (see http://www.cboe.com/vix).
2See SPDR S&P 500 ETF Indices, https://us.sprdrs.com/.
3The VVIX is an index created by the CBOE (see http://www.cboe.com/products/
vix-index-volatility/volatility-on-stock-indexes/the-cboe-vvix-index/vvix-
whitepaper). It is a volatility of volatility (vol-of-vol) measure, and represents 30-
day implied volatility calculated from VIX options.
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assets should make the underlying market complete.
Furthermore, even if the market is complete, we identify
various spanning bases of assets, best suitable for the hedging
problem under consideration.

We can sum up our methodology based on the following idea:
Every hedging problem has its own set of most-suited (“ideal”) set
of hedging instruments. There is no universal hedging
instrument, as there is no universal hedging problem.4

Furthermore, ideal hedging instruments cannot make a bad
model good; an intrinsically bad model cannot be made
acceptable with any enhancements.

The paper is organized as follows. In the next section, we
introduce a new set of perpetual derivatives that will serve as the
basis assets in hedging portfolios. In Section 3, we apply our
general methodology to determine what kind of tradable financial
instrument is best suited for the problem of eliminating the jump
risk in Merton’s jump-diffusion model. The solution is to use a
new financial instrument, which can be viewed as an interest-
bearing bond where the interest payments occurr at Poisson
arrivals. The next application of the general method is hedging
within a stochastic volatility model. In Section 4 we show that
volatility indexes should be used as desirable hedging
instruments. In all applications, the corresponding analogues
of the Black-Scholes and Merton’s equations are derived. In
Section 5 the TLR indices of the new perpetual derivative and
SPDR S&P 500 (an exchange-traded fund) index are presented
and the results then compared. The proofs are given in the
Appendix.

2. A CLASS OF “IDEAL” PERPETUAL
DERIVATIVES

Consider the classical Black-Scholes-Merton BSM-framework.
a) a risky asset (stock) with price dynamics given by

dSt � μStdt + σStdBt , t ≥ 0, S0 > 0, μ> 0, σ > 0 ; (1)

on a stochastic basis (Ω,F , {F t}t ≥ 0,P)5 representing the natural
world, μ is the instantaneous stock’s mean return, and σ is the
stock’s volatility;

b) a riskless bond given by

dβt � rβtdt, t ≥ 0, β0 � 1, r > 0, (2)

where r is the risk-free rate;
c) A European contingent claim (ECC) with price process Yt �

Y(St , t) at t ∈ [0,T],maturity T, terminal value YT � G(ST ), and
price dynamics given by the Itô process:

dYt � (zY(St , t)
zt

+ zY(St , t)
zx

μSt + 1
2
z2Y(St , t)

zx2
σ2S2t)dt

+ zY(St , t)
zx

σStdBt . (3)

Under the equivalent martingale measure (EMM) Q ∼ P the
discounted price process Yt/βt is a martingale. In the real world
P, the derivative is hedged by a self-financing strategy
Y(St , t) � atSt + btβt , with at � zY(St , t)/zx. The riskless
bond and the risky asset are not the only tradable assets that
can be used to replicate the ECC price-dynamics. In hedging the
ECC, the trader could use a perpetual derivative available for
trading as shown in the next proposition:

Proposition 2.1. Let ς ∈ R be a parameter and V(ς) is designated
as the risky asset with price process V(ς)

t � Sς
tβ

c

t , t ≥ 0, where
c � 1 − ζ/r[r + (1/2)ζσ2]. Then the price process V(ς)

t , t ≥ 0,
discounted by the riskless bond rate is a martingale under the
EMM Q ∼ P, and thus, security V(ς) can be traded within the
BSMmarket model Eqs 1 and 2 (seeAppendix A.1 for the proof).

We note that the assumption that V(ς)
t � Sςtβ

c

t , t ≥ 0 guarantees
that the new perpetual derivative market model is arbitrage free
and complete. The assumption, sufficient condition for market
completeness, also shows that the new perpetual derivative’s log-
return is a linear combination of the log-returns of the underlying
risky asset and the riskless bond.

Of interest is the perpetual derivative V � V(δ), where
δ � −2r/σ2, with price process Vt � V(δ)

t � Sδ
t , which arises with

c � 0 and is not a function of the bond price. Currently the
existing “basic” traded assets are a bond (designated as basic asset
of order 0, shortly W(0)) and the risky asset (designated as basic
asset of order 1, shortly, W(1)). For a given ς ∈ R , let W(ς) be a
derivative with price process W(ς)

t :� V(ς)
t defined in Proposition

2.1. Then W(ς), ς ∈ R(*)6 can be publicly traded, as W(ς)
t

discounted by the risk-free rate will be a Q-martingale. We
designate W(ς) as a basic asset of order ς.

Consider now the multidimensional case7: Bt �
(B(1)

t , . . . ,B(d)
t )T , t ≥ 0 is a d-dimensional standard Brownian

motion and the d-dimensional price process St �
(S(1)t , . . . , S(d)t )T is an Itô-process with

⎧⎪⎨⎪⎩ dS(i)t � μ(i)t S(i)t dt +∑d

j�1σ
(i,j)
t S(i)t dB(j)t , i �, 1 . . . d

μ(i)t � μ(i)(St, t), σ(i,j)t � σ(i,j)(St, t),
(4)

on a stochastic basis (Ω,F , {F t}t ≥ 0,P) generated by Bt, t ≥ 0.
The market (St, βt) with bond price

dβt � rtβtdt, t ≥ 0, β0 > 0, rt � r(St, t), (5)

is assumed complete.
Proposition 2.2 Assume that Eqs 4 and 5 hold. Let V(i)

t �
(S(i)t )δ

(i)
t t ≥ 0, i � 1, . . . d, then V(i)

t t ≥ 0 is a risky asset, that could

be publicly traded, if and only if δ(i)t � −2rt/∑ d
j�1(σ(i,j)t )2. The self-

4It is interesting to note that the renowned Russian mathematician Andrey N.
Kolmogorov used to comment that every approximation problem in functional
analyses and probability theory requires a specially designed distance measure
(best-suited metric) in its solution [12]. Similarly, in hedging problems, the choice
of the hedging instruments should not necessarily be the standard ones (the stock
and the riskless asset), but the ones that best reflect the nature of the hedging
problem.
5(Ω,F , {F t}t ≥ 0,P) is generated by the Brownian motion Bt , t ≥ 0.

6We denote R :� (−∞,∞) and R(*) � R∪  {∞}.
7See Sections 5.I and 6.I in Ref. 5 for the regularity and market completeness
conditions.
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financing replication of V(i)
t is given by V(i)

t � a(i)t S(i)t + b(i)i βt ,

where a(i)t � δ
(i)
t (S(i)t )δ

(i)
t − 1

(see Appendix A.2 for the proof).

3. ELIMINATING JUMP RISK IN MERTON’S
JUMP-DIFFUSION PRICING MODEL

Consider Merton’s jump diffusion model [10] in which there
is a stock and riskless bank account with stock price dynamics

dSt � (α − λκ)St−dt + σSt−dBt + (yt − 1)St−dNt , t ≥ 0, (6)

defined on a stochastic basis (Ω,F , {F t}t ≥ 0,P) generated by

• a standard Brownian motion Bt t ≥ 0;
• a homogeneous Poisson process Nt t ≥ 0, with intensity

λ, and
• independent of Bt , t ≥ 0, and Nt t ≥ 0, independent

identically distributed jumps of size

J(l)bJb{ lnψ w.p. p ∈ (0, 1)
0 w.p. 1 − p

, l ∈ N8, that is, in Eq. 6,

yt − 1by − 1b{ ψ − 1 w.p. p
0 w.p. 1 − p

(7)

where yt � y(l), t ∈ [τ(l), τ(l+1)), τ(l) :� inf {t : Nt � l}, l ∈ N, and
EP(y(l) − 1) � (ψ − 1)p �: κ. The riskless bank account dynamics
are given by Eq. (2).

Consider a ECC with a contract value Yt � Y(St , t) at
t ∈ [0,T], maturity T, and terminal value YT � G(ST).

Proposition 3.1. [10]: Y(x, t), x > 0, t ∈ [0,T) satisfies the
following jump-diffusion PIDE (see Appendix A.3 for the proof)

zY(x, t)
zt

+ 1
2
x2σ2z

2Y(x, t)
zx2

+ rx
zY(x, t)

zx
− rY(x, t)+

λEP[Y(yx, t) − Y(x, t)] − λx
zY(x, t)

zx
EP[y − 1] � 0.

(8)

We derive Eq. 8 by applying the CCAPM as a simple illustration
of the methodology that we will apply in more general cases as
shown in the Appendix. We believe that this proof is well-known,
but could not find it in the literature.

In Proposition 3.1 the jump-risk is left unhedged. This is
because Merton’s jump-diffusion framework lacks a security that
is publicly available for trading (designated asM(m), m> 0) with
which the market will be pricing the jump-occurrences.

Here we again illustrate our approach to achieving market
completeness: i) find the most suitable hedge instruments in the
market for the hedging problem under consideration, and ii) if the
market does not provide such special hedging instruments, then
introduce them as publicly traded assets and let themarket price them.

In the context of asset pricemodels, Ref. 13 showed that completed
marketmodels with a uniquemartingalemeasure are complete also in
the sense of hedging, if there are only a finite number of marks for the
jumping component (there is a finite number of sources of

randomness). However, if there are an infinite number of marks
(an infinite number of sources of randomness), Ref. 13 showed that
the completed market models with a unique martingale measure are
only approximately complete in the sense of hedging.

Following the approach in Ref. 13; we introduce the dynamic
price process of M(m) as a pure jump process with drift m:

dMt � mMt−dt + (yt − 1)Mt−dNt , t ≥ 0. (9)

We view M(r) as a “riskless bond with jumps”. To remove
portfolio’s jump-risk, the trader should form a jump-free self-
financing portfolio P(0) with price process Pt � Mt−St − St−Mt

and price dynamics given by dPt � Mt−dSt − St−dMt �
(α − λκ −m)StMt−dt + σStMt−dBt .

Having the bond, the stock and the new asset P(0), a trader could
applyMerton’s Intertemporal Capital Asset PricingModel (ICAPM) in
search of optimizing his or her wealth portfolio (see Ref. 5; section 9B).

Consider then an ECC written against the stock, with price
process Yt � Y(St ,Mt , t), 0≤ t ≤T , terminal value
YT � Y(ST , y, T) � G(ST ), for all y ≥ 0. We assume that
Y(x, y, t), x ≥ 0, y ≥ 0 is i) sufficiently smooth with respect to
x, and t, and ii) with respect to y, Y(x, y, t), y > 0, is left-
continuous with right limits as well as continuously
differentiable in the points of y-continuity.

Proposition 3.2. Under assumptions Eqs 6, 8, and 9, Y(x, y, t),
x > 0, y > 0, satisfies the following differential equation with
solutions having jumps (see Appendix A.4 for the proof):

zY(x, y, t)
zt

− r
zY(x, y, t)

zx
x − rY(x, y, t) + 1

2
z2Y(x, y, t)

zx2

+ (r −m){x + y
zY(x, y, t)

zy
}

− (r −m){zY(St−,Mt , t)
zx

[Y(St , y, t) − Y(St−, y, t)]
− rY(St , yt , t)} � 0.

(10)

For r � m, (10) becomes the BSM equation for all y > 0.
As a corollary of Proposition 3.2, it follows that asset M �

M(r) with price process: dMt � rMt−dt + (yt − 1)Mt−dNt t ≥ 0
could be introduced as a publicly traded asset, along with V � V(δ)
with price process Vt � V(δ)

t � Sδt , where δ � −2r/σ2. Hedging
strategies involvingM and V will be presented in Proposition 3.3.

A natural extension of Merton’s model is to assume that the
jump dynamics can be potentially dependent on the stock price itself

dSt � (α − λκ)St−dt + σSt−dBt + zt(yt − 1)St−dNt , t ≥ 0, (11)

dzt � a(z)ztdt + b(z)ztdBt , a(z) ∈ R, b(z) > 0 (12)

defined on a stochastic basis (Ω,F , {F t}t ≥ 0,P) as in Eqs 6 and 7.
The risk-free bond dynamics is given by Eq. 2.

Consider a ECC with price process Yt � Y(St , zt , t), where the
function Y(x, z, t), x > 0, z > 0, t ≥ 0, is sufficiently smooth. Our
goal is to apply a self-financing replicating portfolio which will
include i) the riskless bond, ii) the stock, iii) basic asset V � V(δ),
with price process Vt � V(δ)

t � Sδ
t , where δ � −2r/σ2, and iv) basic

asset M � M(r) with price process: dMt � rMt−dt +
(yt − 1)Mt−dNt t ≥ 0. Then the dynamics of the hedging
-portfolio is given by8‘‘b’’, stands for “equal in distribution”, N :� {1, 2, . . .}.
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dY(St , zt , t) � c(1)t dSt + c(2)t dSδt + rmtdMt + btβtdt. (13)

Proposition 3.3. Under the assumptions (11), (12), and (12),
Y(x, z, t), x > 0, z > 0, t ≥ 0 satisfies the PDE (see Appendix A.5
for the proof):

zY(x, z, t)
zt

+ r
zY(x, z, t)

zx
x + zY(x, z, t)

zz
{(α − λκ) b

(z)

σ
z − a(z)}

+ 1
2
z2Y(St−, zt , t)

zx2
σ2x2 + z2Y(St−, zt , t)

zxzz
σb(z)xz

+ 1
2
z2Y(St−, zt , t)

zz2
b(z)2z2 � 0.

(14)

4. HEDGING VOLATILITY RISK IN A
STOCHASTIC VOLATILITY OPTION
PRICING MODEL
To demonstrate how to hedge the volatility risk in a stochastic
volatility option pricing model, we use the same setting as in
Section 2. However, in this case we assume that he publicly
traded stock price dynamic are determined by a stochastic
volatility model with mean-reverting Ornstein–Uhlenbeck
process given by9

dSt � μStdt + σ(Vt)StdBt , t ≥ 0, S0 > 0, (15)

dVt � α(m − Vt)dt + φdWt , dBtdWt � ρdt, (16)

where V0 > 0, α> 0, m> 0, φ> 0, ρ ∈ (−1, 1). We assume that
St , Vt t ≥ 0 is defined on a stochastic basis (Ω,F , {F t}t ≥ 0,P)
generated by the correlated Brownian motions (Bt ,Wt) t ≥ 0. The
price of the riskless bond is

βt � ert , t ≥ 0. (17)

Let Yt � Y(St ,Vt , t) t ≥ 0, be the price process of an ECC with
maturity T > 0 and terminal value Y(ST ,VT ,T) � G(ST ). In the
standard stochastic volatility model an additional derivative is
needed in the replicating portfolio. Then the PDE for the
derivative Yt � Y(St ,Vt , t) is given by

zY(x, y, t)
zt

+ rx
zY(x, y, t)

zx
+ (α(m − v) − φ(ρ μ − r

σ(y)
+ c(x, y, t) �����

1 − ρ2
√ ) zY(x, y, t)

zy
) − rY(x, v, t)

+ 1
2
z2Y(x, y, t)

zx2
(σ(y)x)2 + 1

2
z2Y(x, y, t)

zy2
φ2

+ z2Y(x, y, t)
zxzy

ρφσ(y)x � 0 ,

(18)

for all x > 0, y ∈ R, t ∈ [0,T), with boundary condition:
Y(x, y,T) � G(x) for all x > 0, y ∈ R, and c(x, y, t) being an
arbitrary function representing the risk premium factor from
the second source of randomness Wt t ≥ 0.

FIGURE 1 | Daily time series process for the period from January 1993 to June 2019 for (A) V(−1)
t the basic asset of order –1; (B) V(0)

t the riskless bond; (C) St the
risky asset (S&P 500 index closing price, and; (D) V(1)

t the basic asset of order 1.

9See section 2.4 in Ref. 6.
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The objective in this section is to derive a PDE for the price of
an ECC in which together with market risk, volatility risk is also
expressed in tradeable volatility indexes, and thus the function
c(x, y, t) is removed.

Next, we follow our basic approach of introducing an
additional security as a publicly traded asset to achieve
market completeness. Following the approach by Ref. 4;
we assume that in the stochastic volatility market model,
defined by Eqs 15–17, and consisting of a stock and riskless
bond, an additional security V, which we label the “volatility
index”, and designated asMvol is introduced and publicly
traded. The price process, V, is the publicly traded price
process Vt . We assume that V, is a tradable financial
instrument such as, for example, the futures contract
where the underlying is the CBOE Volatility Index (VIX)
as a proxy (see Ref. 3).

A trader, having available a traded asset, the bond, the
stock and V, can form a traded portfolio with constant
volatility and then apply the ICAPM to optimize his or her
wealth process.

First, for a better understanding of the stochastic volatility
model we shall prove Eq. 18 using the CCAPM:

Et

dSt
St

� rdt + β(S,M)
t (Et r(M)

t − r)dt, (19)

Et

dYt

Yt
� rdt + β(Y ,M)

t (Et r(M)
t − r)dt (20)

where r(M)
t is the market instantaneous return.10 We assume that

from the available data for stock volatility, the trader estimates the
one-factor model for the volatility index security ν :

Et

dVt

Vt
� ηtdt + β(V ,Mvol)

t (Etr(Mvol)
t − r)dt (21)

Proposition 4.1. Under the assumptions Eqs 15–17 19–21, the
ECC-price process Yt � Y(St ,Vt , t)t ≥ 0, has price dynamics
determined by the following PDE for Y(x, y, t), x > 0, z > 0, t ≥ 0 :

zY(x, y, t)
zt

+ rx
zY(x, y, t)

zx
+ zY(x, y, t)

zy
(ηty + β(V ,Mvol)

t yθ(V)
t

− yβ(V ,M)
t θ(M)

t ) − rY(x, y, t) + 1
2
z2Y(x, y t)

zx2
(σ(y)x)2

+ z2Y(x, y, t)
zxzy

σ(y)xφρ + 1
2
z2Y(x, y, t)

zy2
φ2 � 0

(22)

where θ
(M)
t � Et r

(Mvol)
t − r is the market risk premium, and θ

(V)
t �

Et r
(Mvol)
t − r is the volatility risk premium (see Appendix A.6 for

the proof).
First, it should be noted, that if the stock’s volatility is a

security V with publicly traded price process Vt , then a trader
should apply a self-financing strategy

Yt � atSt + btβt + ctVt (23)

FIGURE 2 | Daily time series process for the period from January 1993 to June 2019 for (A) the SPDR S&P 500 index closing price (St); (B) the VIX index closing
price (σt); (C) 10-years Treasury yield (rt), and; (D) the perpetual derivative (Vt).

10This approach was initially used in Refs. 1 and 5, Section 6.D).
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with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

at � zY(St ,Vt , t)
zx

,

bt � 1
βt
{Y(St ,Vt , t) − zY(St ,Vt , t)

zx
St − zY(St ,Vt , t)

zy
Vt},

ct � zY(St ,Vt , t)
zy

.

(24)

Proposition 4.2 [4]. Under the assumptions Eqs 15–17, 23, and 24,
the ECC-price process Yt � Y(St ,Vt , t)t ≥ 0 has price dynamics
determined by the following PDE for Y(x, y, t), x > 0, y > 0, t ≥ 0:

zY(x, y, t)
zt

+ r
zY(x, y, t)

zx
x + zY(x, y, t)

zy
y − rY(x, y, t)

+ 1
2
z2Y(x, y, t)

zx2
(σ(y)x)2 + z2Y(x, y, t)

zxzy
σ(y)xφρ

+ 1
2
z2Y(x, y, t)

zy2
φ2 � 0.

(25)

The proof of the proposition follows the same arguments as
Proposition 3.311 and thus is omitted.

Within the stochastic volatility model suggested by Ref. 7; if V
is a publicly traded asset, that will allow the trader to form a
synthetic self-financing portfolio P(S,V) of the stock and V so that
P(S,V) has constant volatility. As a second step the investor can
use Merton’s ICAPM to form an dynamically optimal wealth
portfolio.

Proposition 4.1 leads to the following generalization of the
stochastic volatility model. Let us remark here that trading
volatility options is gaining popularity, and involves models
for volatility options in which the “volatility of the volatility”
(designated as vol-of-vol, or shortly, VoV) must be modeled.
We now introduce a stock-price model (designated as
VoV-model) in which the volatility and the VoV are Itô
processes:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dSt � μtStdt + σ(Vt)StdBt ,
dVt � αtdt + φ(vt)dB(V)

t ,
dvt � btdt + ψtdB

(v)
t ,

dBtdB(V)
t � ρ(V)dt, dBtdB(v)

t � ρ(v)dt, dB(V)
t B(v)

t � 9dt,
S0 > 0, V0 > 0, v0 > 0, t ≥ 0, ρ(V), ρ(v), 9 ∈ (−1, 1).

(26)

The VoV-model is sufficiently flexible to capture volatility
clustering of the returns and a second-order volatility
clustering (“volatility clustering of the volatility”, or what can
be called the roughness of the price process).

FIGURE 3 | Daily time series process for the period from January 2001 to June 2019 for (A) the price process of SPDR S&P 500 index; (B) the log-return of SPDR
S&P 500 index with emperical VaR(0.99), and; (C) the TLR index for SPDR S&P 500 index.

11See Ref. 4.
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Let Yt � Y(St ,Vt , vt , t), t ≥ 0, be the price process of ECC
with maturity T > 0 and terminal value
Y(ST ,VT ,T) � G(ST). We first assume that security V with
price process Vt t ≥ 0, is publicly traded. Second, following
our approach toward market completeness, we assume that
the market has introduced VoV. The security VoV is
publicly traded with price process vt , t ≥ 0, having price
dynamics given in Eq. 6.12 Then applying Itô’s formula and
considering the self-financing strategy
Yt � Y(St ,Vt , vt , t) � Δ(S)t dSt + Δ(V)

t dVt + Δ(v)t dvt + btdβt , where
βt � ert , t ≥ 0, is the riskless bond, results in

Δ(S)
t � zY(St ,Vt , vt , t)

zx
, Δ(V)

t � zY(St ,Vt , vt , t)
zy

, Δ(v)
t

� zY(St ,Vt , vt , t)
zz

. (27)

Following standard no-arbitrage arguments leads to the PDE for
the ECC-price process:

zY(x, y, z, t)
zt

+ zY(x, y, z, t)
zx

rx + zY(x, y, z, t)
zy

ry

+ zY(x, y, z, t)
zz

rz − rY(x, y, z, t) + 1
2
z2Y(x, y, z, t)

zx2
(σ(y)x)2

+ 1
2
z2Y(x, y, z, t)

zx2
(σ(y)x)2 + 1

2
z2Y(x, y, z, t)

zy2
(φ(z)y)2

+ 1
2
z2Y(x, y, z, t)

zz2
(ψtz)2 + 1

2
z2Y(x, y, z, t)

zz2
(ψtz)2

+ z2Y(x, y, z, t)
zxzy

ρ(V)σ(y)xφ(vt)Vt

+ z2Y(St ,Vt , vt , t)
zxzz

ρ(v)σ(Vt)Stψtvt

+ z2Y(St ,Vt , vt , t)
zyzz

9φ(vt)Vtψtvt � 0.

(28)

Next we can extend the example of the use of CCAPM in the
previous section by applying CCAPM not only to the stock,
derivative, and the volatility security V, but to the new security
VoV as well:

FIGURE 4 | Daily time series process for the period from January 2001 to June 2019 for (A) the price process of the perpetual derivative index; (B) the log-return of
the perpetual derivative index with emperical VaR(0.99), and; (C) the TLR index for the perpetual derivative index.

12We view VIX (an index created by the CBOE, representing 30-day implied
volatility calculated from S&P 500 options) as a proxy for publicly traded security V
(see http://www.cboe.com/vix). As for VoV we do not have an existing market
proxy. However, the financial industry is already trying to construct a synthetic
security which mimics VoV-dynamics, and, it is our belief, that it should not be
long before such a “vol-of-vol-index” is introduced as a publicly traded asset.
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Et

dSt
St

� rdt + β(S,M)
t (Et r(M)

t − r)dt,
Et

dYt

Yt
� rdt + β(Y ,M)

t (Et r(M)
t − r)dt,

Et

dVt

Vt
� η(V)

t dt + β(V ,Mvol)
t (Et r(Mvol)

t − r)dt,
Et

dvt
vt

� η(v)t dt + β(v,Mvol)
t (Et r(Vvol)t − r)dt.

(29)

Applying the same arguments as in the previous section results
in the following PDE:

zY(x, y, z, t)
zt

+ zY(x, y, z, t)
zx

rx + zY(x, y, z, t)
zy

(η(V)t y

+ β(V ,Mvol)
t yθ(V)t − yβ(V ,M)

t θ(M)
t ) + zY(St ,Vt , vt , t)

zz
(η(v)t vt

+ β(v,Mvol)
t vtθ

(v)
t − zβ(V ,v)t θ(M)

t ) − rY(x, y, z)
+ 1
2
z2Y(x, y, z, t)

zx2
(σ(y)x)2 + 1

2
z2Y(x, y, z, t)

zy2
(φ(z)y)2

+ 1
2
z2Y(x, y, z, t)

zz2
(ψtz)2 + z2Y(x, y, z, t)

zxzy
ρ(V)σ(y)xφ(z)y

+ z2Y(x, y, z, t)
zxzz

ρ(v)σ(y)xψtz +
z2Y(x, y, z, t)

zyzz
9φ(z)yψtz � 0,

(30)

where θ
(M)
t � Et r

(Mvol)
t − r is the market risk premium, θ

(V)
t �

Et r
(Mvol)
t − r is the volatility risk premium, and θ

(v)
t � Et r

(Vvol)
t −

r is the vol-of-vol premium.

It is natural to seek an extension of stochastic volatility models
Eq. 30 allowing for jumps in the stock price. We suggest the
following one:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dSt � (α − λκ)St−dt + σ(Vt)St−dBt + zt(yt − 1)St−dNt ,
dzt � a(z)ztdt + b(z)ztdBt ,
dVt � α(m − Vt)dt + φdWt , dBtdWt � ρdt,
t ≥ 0, a(z) ∈ R, b(z) > 0,V0 > 0, α> 0, m> 0, φ> 0, ρ ∈ (−1, 1).

(31)

The triplet (St , zt , Vt), t ≥ 0, is defined on a stochastic basis
(Ω,F , {F t}t ≥ 0,P) generated by the correlated Brownian
motions Bt Wt and Poisson process Nt and an independent of
(Bt ,Wt ,Nt), jump-amounts (jump-sizes)

J(l)bJb{ lnψ w.p. p ∈ (0, 1)
0 w.p. 1 − p

(32)

The riskless bond dynamics are given by Eq. 2.
Then following the definitions of the new publicly traded

assets introduced in this and the previous section, we define a
hedging portfolio with the following dynamics:

dY(St , zt , t) � c(1)t dSt + c(2)t dSδt + ctdVt + rmtdMt + btβtdt,

where dMt � dMt � rMt−dt + (yt − 1)Mt−dNt t ≥ 0.
The corresponding PDE for Y(x, z, t), x > 0, z > 0, t ≥ 0, can be

readily derived following the same arguments as the proof of
Proposition 3.3.

FIGURE 5 | Daily time series process for the period from January 2001 to June 2019 for (A) the price process of FTSE 100 index; (B) the log-return of FTSE 100
index with emperical VaR(0.99), and; (C) the TLR index for FTSE 100 index.
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5. EMPIRICAL ANALYSIS

In this section we apply the new trading instrument we proposed
in this paper to explain and evaluate market risk before and
during an actual distressed market period. A standard risk
measure must be employed to measure financial industries
and market risk. The two measures we selected are Value at
Risk (VaR) and Conditional VaR (CVaR) because they are the
two most popular risk measures used in the finance industry.
CVaR, also called expected tail risk, is the average of VaRs less
than the VaR for a given tail probability. CVaR satisfies all
attributes of a coherent risk measure and is consistent with
performance relations of risk-averse investors (see Ref. 11).

TLR has been adapted as the risk measure to determine
financial market behavior before and during the high volatility
period we study later in this paper. For a given tail probability α,
we define TLR(α) as follows

TLR(α) � CVaR(α) − VaR(α)
VaR(α) , α ∈ (0, 1). (33)

The idea of the tail-loss ratio is that the tail behavior of the return-
distribution measured by the tail-loss can be used as a predictor of
future market crashes. Ref. 8 discussed a particular dynamic
model, ARMA (1,1)-GARCH (1,1) with tempered stable
innovations (ARMA-GARCH-TS), for the stock price. They
defined tail loss as the differences between 99% CVaR for the
ARMA-GARCH-normal and 99% CVaR for the ARMA-GARCH-
TSmodels and found that tail-losses can be used as an early warning

system for a forthcoming sharp market downturn. We decided to
use amodel-free tail loss by using historical returns only for the stock
price and the new security. We want to see whether the tail-losses
provide some early insight about a future crash.

Of interest is the perpetual derivative V � V(δ), where
δ � −2r/σ2, with price process Vt � V(δ)

t � Sδt . To form the price
process of Vt t ≥ 0 , we use market indices by the triplet (St , σt , rt)
t ≥ 0 where: i) St t ≥ 0 as the price process of the SPDR S&P 500
index; ii) σt t ≥ 0 as the cumulative VIX (i.e., σt represent the
cumulative of VIX in [0, t]), and iii) rt t ≥ 0 is the 10-year Treasury
yield published by the US Treasury on its website https://home.
treasury.gov/. The database to form the time series of Vt covers the
period from January 1993 to June 2019. There were 6,661
observations collected from Yahoo Finance. We selected a broad-
based market index, the S&P 500, as measured by the SPDR S&P
500 (St , t ≥ 0) which is an exchange-traded index as a benchmark
to compare it with our new financial instrument during the market
financial crisis. We evaluate the market risk prior to the distressed
period investigated and then assess whether the tail-losses provide
some early insight about the actual market crash.

In Figure 1 the price process of the perpetual derivative V(n)
t

(defined in Proposition 2.1) for n � {−1, 0, 1, 2} is plotted. We
designated V(0) as a basic asset of order 0 (riskless asset) and V(1)
as a basic asset of order 1 (risky asset). V(−1) and V(1) would be
viewed as a basic asset of order −1 and 1, respectively.

Figure 2 shows the time series price process of Vt

corresponding to daily price process for the St index and VIX
index based on the closing price and the 10-year Treasury yield.
The stable and small volatility values of Vt observed for a few

FIGURE 6 | Daily time series process for the period from January 2001 to June 2019 for (A) the FTSE 100 price process of the perpetual derivative index; (B) the
log-return of the FTSE 100 perpetual derivative index with emperical VaR(0.99), and; (C) the TLR index for the FTSE 100 perpetual derivative index.
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months preceding the 2008 market crash indicated an early
warning for a pending market crash. The volatility of Vt

increases while the VIX index falls. The apparent volatility of
Vt is higher in the prior four years than in the years preceding the
financial crisis.

Next we calculate CVaR and VaR at α � 99% confidence level
and thereafter obtain the TLR at 99% confidence level for log-
return of Vt and St indices. We then analyze the market before
and during the 2008 market crash.

Empirical daily VaR and CVaR are estimated by using rolling
windows time series analysis for a time period of eight years
(i.e., 2016 trading days). Then, the TLR index for the daily log-
return of St and Vt are calculated. The TLR indices associated
with St and Vt are shown in Figures 3, 4, respectively.

Comparing Figures 3, 4, one can graphically check the
difference between the two TLR indices. In particular, the
TLR index of St seems to be more volatile during the 2008
market crash. The index has low volatility from July 2007 to
May 2008 and starts slowly declining thereafter. Finally, it
sharply increases in September 2008. Because no specific
pattern is observed, we cannot observe any early warning
indicator of a pending market crash based on the TLR index
of St .

The TRS index ofVt begins to stabilize with low volatility a few
months preceding the market crash of 2008. It remains stable
during the market crash, while it can be seen that there is high
volatility in the TRS index of St during the 2008 market crash. We
consider this low volatility as an early warning indicator of a
pending market crash. Due to the presence of long memory in the
stock market, the volatility of the TLR remains stable after the
market crash. Hence, we consider the low volatility of the TLR
index for Vt as a good measure to indicate a forthcoming sharp
market downturn.

As further empirical support of the predictive power of the
TLR index for Vt as a good measure to indicate a forthcoming
sharp market downturn, we selected another broad-based
market index, FTSE 10013, as a benchmark to compare it
with our new financial instrument during the financial
market crisis. We again evaluated the market risk before
and during the 2008 market crash to make a stronger
argument and reveal the universality of the TLR index for
Vt in predicting a market crash. The TLR indices associated
with the FTSE 100 index and its perpetual derivative are shown
in Figures 5, 6, respectively. Comparing Figures 5, 6, we can
observe that the TLR index of the FTSE has no specific pattern,

while the TLR of the new instrument begins to stabilize a few
months preceding and during the market crash of 2008. This
observed pattern again indicates the power of the TLR index
for Vt in predicting a future sharp market downturn.

6. CONCLUSIONS

In this paper, we developed a novel approach to hedging
derivatives by proposing the creation of a set of specially
designed (“ideal”) publicly available perpetual derivatives. The
set of new proposed assets - perpetual options - allow the option
writer to form a hedging portfolio which 1) reduces the trading
costs in markets with frictions; 2) removes the jump risk when the
underlying price process is a jump-diffusion process, and; 3)
removes the volatility risk when the underlying price process
exhibits stochastic volatility. The corresponding PIDE and PDE
for the derivative price processes are derived. The tail-loss ratio is
used as the risk measure to determine financial market behavior
prior to the market high volatility period we study in this paper.
We demonstrate that the new financial instruments, together
with the tail-loss ratio, have potential power in predicting and
evaluating market risk before a distressed market period. Our
findings suggest that the tail-loss ratio can be potentially used as a
metric for an early warning system.
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APPENDIX

A.1. Proof of Proposition 2.1

Let Vt � g(St , βt) where g(x, y), x ≥ 0, y ≥ 0 is a sufficiently
smooth function. Then Vt/βt is a Q− martingale if and only
if z/zxg(x, y)rx + z/zyg(x, y)ry − rg(x, y) + 1/2(z2/zx2)g(x, y)
σ2x2 � 0, which is satisfied for g(x, y) � xζyc.

A.2. Proof of Proposition 2.2

For simplicity of the exposition we will consider the bivariate case
only. First let us recall the Black-Scholes Equation in the bivariate

case: The stocks dynamics is given by dXt � μ(X)t Xtdt +
σ(X,B)t XtdBt + σ(X,W)

t XtdWt , dYt � μ(Y)t Ytdt+σ(Y ,B)t YtdBt+ σ(Y ,W)
t

YtdWt , and given an ECC with price process Ct �C(Xt ,Yt , t).We
replicate Ct �C(Xt ,Yt , t) by a self-financing strategy

C(Xt ,Yt , t) � a(X)t Xt +a(Y)t Yt +btβt . Then

dC(Xt ,Yt , t) � a(X)t dXt + a(Y)t dYt + btdβt
� dt + (a(X)t σ(X,B)

t Xt + a(Y)t σ(Y ,B)
t Yt)dBt

+ (a(X)t σ(X,W)
t Xt + a(Y)t σ(Y ,W)

t Yt)dWt .

Equating the terms for dC(Xt ,Yt , t) leads to

a(X)t � zC(Xt ,Yt , t)/zx, a(Y)t � zC(Xt ,Yt , t)/zy, and the no-
arbitrage assumption holds if and only if

δ � −2r/[σ(X,B)t ]2 + [σ(X,W)
t ]2, and c � −2r/[σ(Y ,B)t ]2 + [σ(Y ,W)

t ]2,
which completes the proof of the proposition.

A.3. Proof of Proposition 3.1

Applying CCAPM and making use of Merton’s assumption.

Etr
(S)
t � r−β(S,M)

t (Etr
(M)
t − r), Etr

(Y)
t � r−β(Y ,M)

t (Etr
(M)
t − r),

β(Y ,M)
t � Covt(r(Y)t , r(M)

t )
vart(r(M)

t ) � zY(St , t)
zx

St
Yt
β(S,M)
t ,

we have two expressions for EtdYt � YtEtr
(Y)
t dt:

EtdYt � (zY(St−, t)/zt + 1/2σ2S2t−z
2Y(St , t)/zx2)dt + zY

(St , t)/zx St{r − β(S,M)[Etr
(M)
t − r]}dt

+{E[Y(ytSt , t) − Y(St−, t) − zY(St , t)
zx

St−(yt − 1)]}λdt
and EtdYt � rYtdt − zY(St ,t)

zx Stβ
(S,M)
t (Etr

(M)
t − r)dt. Equating

EtdYt terms and setting St � x completes the proof of the
proposition.

A.4. Proof of Proposition 3.2

Consider the self-financing trading strategy Y(St ,Mt , t) �
atSt + ctMt + btβt . Equating the terms for dY(St ,Mt , t) leads

to: at � zY(St− ,Mt ,t)
zx , and ct � zY(St− ,Mt ,t)

zz − St−
Mt− − zY(St− ,Mt ,t)

zx
Y(St ,Mt , t)−Y(St− ,Mt− ,t)

(ψ−1)Mt− . Comparing the term (. . .)dt completes the

proof of the proposition.

A.5. Proof of Proposition 3.3

We seek a self-financing portfolio of the form Y(St , zt , t) �
c(1)t St + c(2)t Sδt +mtMt + btβt with dYt � dY(St , zt , t) �
c(1)t dSt + c(2)t dSδt +mtdMt + btdβt . To capture the dzt-risk, we
use the replicating portfolio the representation: dSt �
{(α − λκ)St− − σSt−a

(z)
b(z)

1
zt
}dt + σSt− 1

b(z)
1
zt
dzt + zt(yt − 1)St−dNt in

the term c(1)t dSt . Thus

mt � (ψStzt , t) − Y(St−zt , t)(ψ − 1)Mt−
− zY(St−, zt , t)

zz
b(z)zt
σ

1
Mt−

− 1
δ

zY(St−, zt , t)
zx

St−zδt
[ψδ − 1](ψ − 1)Mt−

with similar expressions for c(1)t and c(2)t . Then equalizing the
terms with (. . .)dt results in the required PDE, completing the
proof of the proposition.

A.6. Proof of Proposition 4.1

Combining the expressions for.

EtdYt�
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

zY(St ,Vt t)
zt

+ 1
2
z2Y(St ,Vt t)

zx2
(σ(Vt)St)2

+z
2Y(St ,Vt t)

zxzy
σ(Vt)Stφρ + 1

2
z2Y(St ,Vt t)

zy2
φ2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭dt +

zY(St ,Vt t)
zx (Strdt + β(S,M)

t St(Et r
(M)
t − r))dt+

zY(St ,Vt t)
zy

Et[ηtVtdt + β(V ,Mvol)
t Vt(Et r(Mvol)

t − r)],
and

EtdYt � rYtdt + {zY(St ,Vt , t)
zx

Stβ
(S,M)
t + zY(St ,Vt , t)

zy
Vtβ

(V ,M)
t }

× (Et r(M)
t − r)dt

with

Ytβ
(Y ,M)
t � Cov(r(Y)t , r(M)

t )
� zY(St ,Vt , t)

zx
Stβ

(S,M)
t + zY(St ,Vt , t)

zy
Vtβ

(V ,M)
t

which proves the proposition.
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