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Actin is the major cytoskeletal protein of mammal cells that formsmicrofilaments organized
into higher-order structures by a dynamic assembly-disassembly mechanism with cross-
linkers. These networks provide the cells with mechanical support, and allow cells to
change their shape, migrate, divide and develop a mechanical communication with their
environment. The quick adaptation of these networks upon stretch or compression is
important for cell survival in real situations. Using atomic force microscopy to poke living
cells with sharp tips, we revealed that they respond to a local and quick shear through a
cascade of random and abrupt ruptures of their cytoskeleton, suggesting that they behave
as a quasi-rigid random network of intertwined filaments. Surprisingly, the distribution of
the strength and the size of these rupture events did not follow power-law statistics but log-
normal statistics, suggesting that the mechanics of living cells would not fit into self-
organized critical systems. We propose a random Gilbert network to model a cell
cytoskeleton, identifying the network nodes as the actin filaments, and its links as the
actin cross-linkers. We study mainly two versions of avalanches. First, we do not include
the fractional visco-elasticity of living cells, assuming that the ruptures are instantaneous,
and we observe three avalanche regimes, 1) a regime where avalanches are rapidly
interrupted, and their size follows a distribution decaying faster than a power-law; 2) an
explosive regime with avalanches of large size where the whole network is damaged and 3)
an intermediate regime where the avalanche distribution goes from a power-law, at the
critical point, to a distribution containing both 1) and (ii). Then, we introduce a time varying
breaking probability, to include the fractional visco-elasticity of living cells, and recover an
approximated log-normal distribution of avalanche sizes, similar to those observed in
experiments. Our simulations show that the log-normal statistics requires two simple
ingredients: a random network without characteristic length scale, and a breaking rule
capturing the broadly observed visco-elasticity of living cells. This work paves the way for
future applications to large populations of non-linear individual elements (brain, heart,
epidemics, . . . ) where similar log-normal statistics have also been observed.
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1 INTRODUCTION

Avalanche processes are very common in living systems, such
as firing rates in brain [1], fractures in living cells cytoskeleton
(CSK) [2], but also in amorphous [3] and randommedia [4], or
earthquakes. Actually, all the systems that can be considered as
composed by elementary threshold units, which are connected
and can transfer information to each other, are subject to
avalanches. Indeed, as soon as a unit reaches its threshold it
can cause other units to do the same in turn.

In statistical physics, avalanches are often treated in the
framework of critical systems. This is justified by the
observation of critical behavior of avalanche statistics, with
distributions usually approximated by power-laws, at least
for some length or energy scales. Power-laws are
reminiscent of self-organized criticality [5], and are
ubiquitous for avalanches in solids and amorphous
materials [6-9], describing for example the avalanche sizes
of a granular material falling apart. Self-organized criticality
has also been associated to neural dynamics (first in [10] and
later in [11, 12]), showing widely spread power-law statistics
with a typical exponent invariant among different species [12]
and in different environmental situations. Lately, sleep-wake
micro-architecture and regulation have been identified as non-
equilibrium processes to maintain a critical state of the brain
network [13, 14]. In all these examples, fluctuations, and thus
their distribution, play a major role in triggering the system to
the critical state. Recently, some doubts about the ubiquity of
power-law distributions have been advanced [15], pointing out
that many real system’s data are actually better fitted by other
skewed, fat-tailed distributions, such as the log-normal. This is
true for network degree distributions, in social, biological or
technological networks [15], but also for avalanche statistics,
in neural networks [16, 17] or living cells cytoskeleton [2].
Indeed, the growth of a network can be seen itself as an
avalanche process, thinking for example of the preferential
attachment rule [18]. In general, power-law distributions are
difficult to irrefutably hold for any kind of real data.
Remarkably, power-law and log-normal distributions are
closely related to each other and small variations in the
generative mechanisms can lead to one or the other [19, 20].

Nevertheless the power-law, with some adaptations, has
been the largely dominant model in the last decades for all data
showing a fat-tailed distribution, either for network theory or
for avalanche processes. There are mainly two reasons for the
large predominance of the power-law modeling up to now: 1)
because much is known about the modeling of power-laws,
thanks to the statistical physics of phase transitions, leading to
an ease of data treatment and interpretation. Concerning
network science theory, the same is true for scale free
networks [21], justifying a power-law interpretation of real
data distributions, while models for other fat tail distributions
do not exist so far [15, 22]; 2) due to the difficulty to fit real data
with fat-tailed distributions, because a power-law tail is only
visible beyond a given threshold of the random variable, and
not in the whole domain. Actually, any skewed distribution can
be approximated by a power-law, if only a finite and small scale

range is taken into account (see Figure 1C). In Figure 1,
comparing the distributions of hippocampal firing rates in a
linear scale (Figure 1A), in a log-lin scale (Figure 1B) and in a
log-log scale (Figure 1C), we realize that focusing on the tail of
the distribution in a log-log representation increases the risk of
missing some essential features of the underlying process [17].

The point 2) led to an ongoing debate about what is the
most appropriate fitting distribution for the considered data.
Some concepts such as low-degree saturation and large-degree
cutoff have been developed for example in network-science
theory, in order to account for important characteristics of real
systems, such as their finite size [22]. This solves point 2),
adapting the power-law distribution to be applied to real
systems. On the other hand, point 1) reveals the need of an
alternative modeling framework which could validate the
choice of other fat-tail distributions, in order to understand
the underlying mechanisms leading to one distribution or the
other. In the same way as degree distributions of networks, so
far there are no models accounting for log-normal
distributions of avalanches on networks, while there is
strong evidence that log-normally distributed avalanches
exist. In Figure 1, we show a few examples of processes
related to an avalanche dynamics showing log-normal
distributions: the distribution of the spine (small dendritic
protrusion crucial in the transmission of electrical signals)
sizes in neural networks [23] (Figure 1D); the distribution of
new numbers of Ebola cases per week [24] (Figure 1E); the
distribution of lags between two consecutive vehicles to cross
the stop line at a crossroad [25] (Figure 1F).

Beyond power-laws and log-normals, other skewed
distributions are sometimes used to model biological data. For
example, it is worth mentioning the Gamma distribution used to
model inter-spike intervals of neurons [26] or the inter-beat
interval variation of heartbeats [27, 28]. We should notice that
statistically it is not always easy to distinguish log-normal from
gamma distributions. In any case both are alternative to the
power-law framework.

Originally motivated by the experimental observation of
log-normal statistics in avalanches of fractures of the CSK of
living cells [2, 29], we focus in this paper on the modeling of
log-normal avalanches on random networks. Our model is
inspired by our previous 1-D model [2] and by works on
epidemics spreading on networks [30, 31], in our case the
population is represented by actin filaments, being in two
possible states: cross-linked or not. The network structure
models the CSK structure and the avalanche is a model for
rupture mechanics in living cells, when plastic deformations
are considered. Given that we do not consider here active
cross-linking carried out from myosin filaments, the same
framework can be applied to other cross-linked polymers
with glassy dynamics. Therefore similar conclusions can be
applied to amorphous glassy materials, like polymers, metallic
glasses or colloidal glasses, which all share slow dynamics, and
long mechanical relaxation delays [32]. This can be useful for
understanding all processes not showing good power-law
statistics, and in general what makes a distribution shifting
from power-law to log-normal, highlighting the characteristics
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that a process needs to have to deviate from the most common
power-law modeling.

2 EVIDENCE FOR LOG-NORMAL
STATISTICS IN CELL MECHANICS

2.1 Brief Introduction on Cytoskeleton
Mechanics
Among all the fascinating properties of living cells, we must
emphasize their ability to constantly remodel their structural
organization to withstand forces and deformations and to
promptly adapt to their mechanical environment [33, 34].
This versatility is fundamentally required for many vital

cellular functions, such as migration, mitosis, apoptosis or
wound healing, and an alteration of the cell mechanical
properties can participate in pathogenesis and disease
progression, such as cancer [35, 36].

The mechanical properties of living cells are mediated by their
CSK, a dynamic network of filamentous proteins composed of
actin filaments, microtubules, and intermediate filaments
[37–42].

We focus here with more details on the actin cytoskeleton.
These filaments are the most relevant for our modeling, since
they cover the perinuclear zone of cells, which is the cell
compartment poked by our micro-indenting tips. They
present a polar structure [43], a quite fast, with respect to
global active reorganization processes, polymerization rate
(larger than one per minute) and a depolymerization rate a

FIGURE 1 | (A) Non-normalized distribution of firing rates of hippocampal CA1 pyramidal neurons during slow-wave sleep. The firing rate is measured in Hz; (B)
Distribution (non-normalized) of the logarithm of the firing rate as in (A); (C)Distribution of the firing rate as in (A) in a log-log plot. Notice that by taking into account only the
tail of the distribution (black dots), the distribution could be fitted by a power-law, even though we may be missing some important information; (D) Distribution of the
spine size in arbitrary units (AU) (top), and probability density of the logarithm of the spine size (bottom); (E) Distribution of the new number of Ebola cases per week
(week incidence); (F) Probability density of the lag times at which 2 vehicles waiting at rest at a traffic light pass the stop line. This is what is called headway. The
distributions are reported for the lag between two successive vehicles considering the second position (top) and the fourth position (bottom) of the line: for instance the
bottom plot describes the distribution of the difference of times at which the third and the fourth vehicle of the queue cross the stop line. All times are given in seconds; (A)
(B) and (C) are adapted from [17] (D) is adapted with permission from [23] (E) is reproduced with permission from [24] and (F) from [25].
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little slower, of the order of one per a few minutes [44].
Moreover they can build a cross-linked network whose
mechanical properties depend in general on the cross-linker
proteins density and on the network structure.

Actin filaments networks are designed by a wide variety of
actin-binding protein cross-linkers, which can be passive or
active, i.e., activated by ATP (Adenosine Triphosphate)
hydrolysis, the latter having a slower dynamics (time scale
of tens of minutes) [37–42, 45, 46]. This cross-linked network
gives to living cells some properties of soft-glassy materials [47,
48], such as the weak power-law dependence of the shear
relaxation modulus G with both time and frequency. This
behavior was first modeled by an empirical law known as
structural damping from material engineering [49] and later
on associated to the fractional visco-elastic Kelvin-Voigt
model (a springpot and a dashpot in parallel), see e.g., [50].
The power-law decay (in time) is quite impressively not
depending much on the particular experimental technique,
neither on the different type of cell: the decay exponent α
mostly belongs to the interval [0.2–0.4] [47, 51–54]. Notice
that α � 0 corresponds to a purely elastic response and α � 1 to
a purely Newtonian fluid response. Other models for cell
rheology have been used (see for instance [50, 55]), but
they all require a fractional visco-elasticity to capture the
cell response, resulting in a power-law decay G(t) ∼ (t/τ)− α
or in more complicated functions such as the Mittag-Leffler
function [56], which can be approximated for t/τ→ 0+ by the
stretched exponential [57]:

G(t) ∼ e−(t/τ)
α/Γ(α+1). (1)

For our purposes the three functional forms will be considered as
equivalent, since they all account for a slow relaxation dynamics
given by the glassy structure and thus a memory of the past
deformation.

Considering cells as soft glassy materials, we can extrapolate that
they are constructed from a disordered structure of connected
discrete elements by weak attractive interactions. Each of these
elements would be in a metastable state [48], allowing cells to
flow, and therefore prone, for instance by an external forcing, to
generate avalanches of fractures, which are typically out of
equilibrium processes. Indeed, by tuning the proportions of
passive or active actin-binding proteins, and reorganizing the
network structure, living cells can control their power-law (scale-
free) CSK rheology [37, 58]. Interestingly, cells exhibit both solid and
liquid-like properties. Solid-like behavior is associated with strongly
cross-linked actin filaments which resist sliding and accumulate
tension [44, 59], while weakly cross-linking proteins produce actin
filaments which slide more readily, enabling the network to flow as a
liquid [60].

This paradox can be solved within the theory of soft glassy
materials, by considering that, upon external deformations, the
CSK of a living cell can undergo deep structural transformations
such as the unfolding of protein domains, the unbinding of
cytoskeletal cross-linkers, and the breaking of weak sacrificial
bonds. All these structural changes are inelastic (non-reversible in
a strict sense), they dissipate locally the elastic energy of the CSK
network (structural damping) [61, 62].

The ability of cells to switch quickly from fluid-like responses
to more brittle solid-like responses [2] is directly linked to the
interplay between stability/rigidity and flexibility, in a way similar
to what happens in neural networks [63]. This fast switch is likely
driven by avalanche processes, which allow fast transfer of
information. At the same time, such events reduce the
connectivity of the CSK and may result in permanent plastic
deformations or even more dramatic irreversible failures [38, 39]
which, for instance, could be at the origin of the recently observed
incomplete shape recovery of living cells after repeated creep [64].
These effects are reminiscent of those in cyclically loaded solids
which can lead to fatigue-induced failure [4, 6, 7].

The observation of universal relationships governing cell (and
not only) rheology is evocative of the universality of statistical
mechanics systems, such as the Ising model [65], in which
individual details of the filaments and particular molecular
interactions are unimportant to identify global behaviors.

2.2 Poking Living Cells With a Sharp Atomic
Force Microscopy Tip
Previous experiments done in our group motivated this study [2,
66, 67]. We introduce here the main characteristics of these
experiments useful for the modeling. Atomic force microscopy
(AFM) was operated in force-spectroscopy mode, therefore
giving as result the force indentation curves, i.e., the plot of
the instantaneous force against the indentation length inside
isolated adherent cells. The indentation was stopped at a
certain set-point force, after which the motion of the AFM tip
was inverted. This was achieved after some calibration steps
whose details can be found in [2, 66, 67]. It was important to
carry out this indentation with very sharp tips (pyramidal or
conical) with a tip curvature radius of only a few nanometers,
allowing their penetration inside the meshes of the cross-linked
network. The indentation was performed at constant velocity
(1 μm/s), and therefore constant strain rate, so that one
indentation-retract experiment lasted for only a few seconds.

The cell compartment poked by the AFM tip was the region
just above the nucleus (perinuclear), which besides being
better recognizable, is also very rich of actin stress fibers
and cross-linked filaments. As previously noted [2, 66, 67]
this indentation caused locally a strain stiffening, signature of
an increased tension in the network, eventually resulting in
local singularities in the force indentation curves, interpreted
as avalanche of fractures. We were able, thank to the wavelet
transform mathematical microscope [68–70], to quantify these
singular events and characterize them, by their force drop,
indentation length and finally energy released [2].

2.3 Rupture Event Statistics From Two
Primary Cell Lines
Some examples of the statistics of these singular fracture events,
together with global shear relaxation moduli distributions are
shown in Figure 2. We can see that both the force drop Fd
(Figure 2A), caused by the avalanche of failures, and the
indentation length ΔZ (Figure 2C) over which the avalanche
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takes place are log-normally distributed (the plots show the
distribution of the logarithm of the variable, then a log-normal
in a log-log representation is a parabola). For the indentation
length ΔZ we could separate two different regimes of avalanches
both of which approximately log-normally distributed. This log-
normal statistics was found with different cell lines: in Figure 2A
are shown myoblasts (red), myotubes (blue) and ATP depleted
myoblasts (black), while in Figure 2C are shown immature
CD34+ hematopoietic cells (blood cells) healthy (blue) and
leukemic (red). It follows that the energy released Ed � FdΔZ,
not shown here, is also log-normally distributed. The same log-
normal distribution is also observed on global quantities such as
the global shear relaxation modulus Gg (see Figure 2B,D),
extracted by the identification of the whole force indentation
curve with the Sneddon model [71].

We speculate that the log-normal statistics observed in
different living cell types on macroscopic elastic moduli (see
also results on breast tissue cells from [55]) is strictly
connected to the microscopic processes taking place in the
polymer network, i.e., avalanches of reorganization fractures.
Indeed, the log-normal statistics of avalanches would reflect in
a log-normal noise (skewed fluctuations are observed also e.g.,
in [55]) biasing the estimation of the global elastic moduli. We
can thus interpret the shear-relaxation modulus as the
response of a sum of microscopic avalanches, as results of a
dynamical reorganization of the network structure. This
interpretation is supported by Sollich’s theory of soft glassy
rheology [48], in which the glassy polymer is interpreted as
composed of individual units in metastable energetic states
(with different energy depths) and in which rearrangements

are due to disordered interactions summarized by an effective
temperature.

3 RANDOM NETWORK PRESENTATION

3.1 A Random Network Model for the Cell
Cytoskeleton
Let us now introduce our random network model for the cell
CSK.We consider a network withN nodes, being identified as the
actin filaments, connected by randomly assigned (in a way
explained hereafter) links, identified as the cross-linker
proteins. In light of what we said previously about CSK
mechanics (see section 2.1), if we want to build a random
network model for the cytoskeleton we need the network to be
in a percolating regime. Indeed, since a cell can be seen as a soft
glassy material there needs to be a giant, percolating cluster of
connected nodes, allowing for the transition between a fluid
material and a glassy one. A second important condition that
we ask the network to satisfy is the correct degree distribution
(i.e., the distribution of cross-links per filament) as observed in
real living cells CSK. Unfortunately, precise data on this
distribution do not seem to be available to our knowledge.
However, from the literature [72], we can deduce that the
degree distribution would not be well approximated by a
power-law and therefore the CSK could not be modeled as a
scale-free random network. There is also another reason why the
scale-free network may not be a good model for cell CSK: it has
been proved [73] that on scale-free networks the critical threshold
for an epidemic is exactly 0, meaning that avalanches would

FIGURE 2 | (A) Probability distributions of the logarithm of the local force drops Fd( nN) estimated from local disruption events collected from sets of myoblasts
(red), myotubes (blue) and ATP depleted myoblasts (black); (B) Probability distributions of the logarithm of shear relaxation modulusGg( kPa) estimated by a parabolic fit
of the Force-Indentation Curves (Sneddon model [71]), from healthy (blue) and leukemic (red) immature CD34+ hematopoietic cells; (C) Distribution of the indentation
lengths of the rupture events detected from healthy (blue) and leukemic (red) immature CD34+ hematopoietic cells; (D) Probability distributions of the logarithm of
shear relaxation modulus Gg( kPa) on the same sets of cells as in (A). Note that plots (A) and (C) are in log-log scale and plots (B) and (D) are in semi-log scale. All the
logarithms are here in base 10. Panels (A) and (D) are adapted from [67] (B) from [2] and (C) from [2].
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always affect a finite proportion of the population (in the large N
limit), thus implying irreversibly a large proportion of cross-
linkers, scaling as the size of the system. This is not what is
observed for avalanches of fractures in cells, since their
distributions are of finite size.

For all these reasons, we propose a Gilbert [74] random
graph to model the CSK structure. A Gilbert graph is a variant
of the Erd}os-Rényi graph [75], and the two graphs are
equivalent in the large N limit. The network is constructed
in the following way: 1) we define a network of N isolated
nodes, with N fixed; 2) we connect each possible pair of nodes
with probability pl .

This process creates a network with a binomially distributed
degree of connections:

pk � B(N − 1, pl) � (N − 1
k

)pkl (1 − pl)N− 1− k, (2)

where the binomial factor takes into account all the possible pairs
of nodes having a degree of k, out of all possible N − 1 links
coming out from a node. The probability pk indicates the
probability that a randomly picked node has k links. The
average degree of the random network can then be computed:

〈k〉 � ∑N−1

k�1
kpk � (N − 1)pl. (3)

In the limit of N→∞, keeping 〈k〉 fixed, the binomial degree
distribution is well approximated by the simpler (one parameter)
Poisson distribution, noted P(λ)k, with parameter λ � 〈k〉. The
average connectivity 〈k〉 will be a control parameter of our
model, since its value is not well-known from experiments.

The average global number of links of the network, and thus of
cross-linkers available for the avalanche, can also be computed by
multiplying the probability of connection of pair of nodes pl with
the number of all the possible pairs (by excluding double
counting):

〈Nl〉 � pl
N
2
(N − 1), (4)

and then for a network of N � 104 nodes, and pl � 5 · 10− 4, the
average number of links is 〈Nl〉x50000. The distribution of the
number of links is also a binomial.

Before moving on and describing the avalanche process, we
would like to observe some characteristics of this network useful
for our modeling. From probabilistic arguments it can be noticed
(see [75]) that, in the limit ofN≫ 〈k〉, with fixed 〈k〉 (as in all the
simulations of this article), the fraction u of nodes not belonging
to the largest connected component of the network is given by the
transcendental equation:

1 − u � 1 − e−〈k〉(1− u). (5)

This can be found by considering that the fraction of nodes u is
composed by the sum of two separated events. A node i not
belonging to the giant component is: i) either disconnected to an
other node j because the link i − j does not exist, and this happens
with probability 1 − pl , ii) or connected to a node j that also does

not belong to the giant component, and this occurs with
probability upl . Therefore u � (1 − pl + upl)N− 1, because j can
represent N − 1 different nodes. From Eq. 5 it can be proved [22,
75] that for 〈k〉> 1 a giant percolating cluster exists and its size
scales as the network size N.

At this point we can work out the probability pFC that we pick
up a random link not belonging to the giant cluster:

pFC � u(Nu − 1)
N − 1

, (6)

where the right hand side is the ratio of the average number of
links not belonging to the giant cluster plNu/2(Nu − 1) and the
average number of links of the network plN/2(N − 1).

On this network structure, an avalanche of ruptures is
described by the following algorithm. Notice that while the
probability of connection pl remains constant, the probability
of breaking p(t) can depend on time, and therefore is able to
capture time relaxing processes.

• we pick at random a link of the network and we break it
(removing it from the network), this initiates the avalanche

• we look for the links coming out from both extremities of
the broken link;

• we break all of them with a probability p(t), where at the
first time step t � 0;

• we consider the links coming out from the ones broken at
the previous time step from both extremities and break
them with probability p(t + 1).

We repeat the last point and increase the time step by one unit,
until the avalanche stops when there are no more links that break,
either because the probability of breaking is too low or because of
the damage caused to the network, which will have decreased the
abundance of unbroken links. The time at which the avalanche
stops, t*, defines the duration of the avalanche and the total size of
the avalanche Z is the total number of broken links. Here, we
focus on the distribution of Z, which is, up to some conversion
factors, equivalent to the energy released during the avalanche.
Overall the stochastic process has two sources of randomness: the
random structure of the network and the avalanche process itself
which is a stochastic process.

Rupture avalanches propagate on networks that remain static
during the rupture process, since actin polymerization and active
cross-linkers act on time scales much longer than the time scale of
the experiment, which is of the order of 1 s. Nevertheless this
assumption is relaxed in section 3.4, to account for the fact that
cross-linkers can be restored on very short time scales even by
physical contact.

Statistically speaking an avalanche is a binomial process of
probability p(t) of success, with a random number of trials (the
number of available links). If the number of available links were
always drawn from the same Poisson distribution, with parameter
λ � 2Npl (the factor 2 is because we consider both extremities of a
broken link), we could conclude that the distribution of broken
links at time t is also a Poisson distribution with a new parameter
λ1 � 2p(t)Npl . The choice of the Poisson distribution is
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motivated by the degree distribution, which, as we said, is
approximately Poissonian in the N≫ 〈k〉 limit keeping 〈k〉
fixed, and the parameter λ � 2Npl corresponds to the average
number of links available at the first time step. This can be shown
by applying the law of total probability to the probability of
having k broken links:

pb(k) � ∑∞
n�k

B(n, p)P(λ)n � (2pNpl)k
k!

e−2pNpl � P(λ1 � 2pNpl, k).
(7)

The probability of having k broken links is then given by the
product of the Poisson distribution, giving the probability of
having n links available for breaking, times the binomial
distribution giving the probability of having k successes out of
n trial. To include all possible disjoint events we have to sum over
n> k, up to N − 1, which in the considered limit tends to infinity.

The problem with this reasoning is that the number of
available links is not drawn from the same distribution as far
as the avalanche moves forward. Indeed the number of available
links depends on the particular path of the avalanche, since the
broken links disappear from the network. Therefore as far as the
avalanche progresses, the number of available links may not even
follow a Poisson distribution, making the analytic expression of
the number of broken links impossible. The same is true if we
consider the restoration of crosslinks, as in section 3.4, because
the avalanche process introduces an effective and uncontrolled
time dependence of p on t, by changing the actual number of
available links. This effect is the main reason why we do not find
perfect log-normals in our model, as in our first 1D model [2] or
related models without a network structure [20]. Actually, this
was checked on a random multiplicative process with a
multiplicative factor drawn at each time step from the same
distribution as in Eq. 7 for different parameters λ1 proving that, as
expected from [20], there is a region where the avalanche size
distribution is exactly log-normal.

We considered 〈k〉> 1 in all our simulations, in order to have
a giant component in the network, as explained previously. We
also checked the effect of picking the first link initiating the
avalanche out of the giant component. Indeed, from Eqs 5, 6 we
can compute pFC . For 〈k〉 � 2 for instance pFC � 0.04 is already
irrelevant for our results, and for 〈k〉 � 4, pFCx4 · 10− 4, is
completely negligible. This was checked numerically in all the
following simulations and the results do not change by running
the avalanches only on the giant component. We should also
mention that avalanches containing only the first randomly
chosen link are not taken into account for the statistics, this
making even more negligible the effect stated above.

It is conceptually interesting to note that the proposed
avalanche model is actually equivalent to an epidemic model
running with probability p(t) on the line graph of the original
network, i.e., on the graph obtained by transposing links into
nodes and nodes into links.

Simulations of avalanches were done with self-written codes
using open source software R version 4.0.2 and Python 3.6.
Figures and data analysis were done with Python 3.6 using
basic packages and a customized version of the module

powerlaw [76] with a corrected computation of the
cumulative distribution function and added graphical
features. For all the following simulations it was checked
that changing the size of the network N ((but keeping the
same values of 〈k〉), the phase diagram did not change
significantly, showing always the same types of distribution
for N � 1000, 5000, 20000, 50000. It was also checked that
running the avalanche algorithm on the same network for
each stochastic realization (of course with all links restored),
was equivalent, since the first initiating link is chosen
randomly, to run the avalanche on a different network for
each realization. The first option is computationally faster and
was then used for detailed results.

3.2 Avalanche Statistics With Constant
Probability of Breaking
First we implemented the avalanche model with a probability of
breaking p(t) constant with time. We detected three regimes with
different distributions of the avalanche size. A phase diagram is
shown in Figure 3B. The three phases are pop (blue), mixed
(purple), explosive (red). The pop regime presents avalanche size
distributions which decrease faster than a power-law, containing
then small avalanches, with a low number of broken links of less
than 100. On the other hand the explosive regime is composed of
large avalanches, scaling as the system size and then causing
global damage to the network. In between these two regimes the
mixed regime is composed of avalanches distributions made of a
mixture of the two previous regimes.

A likelihood-ratio test, based on the ratio of the likelihood of
the model fitted by two different distributions, can be done to
compare possible outcome distributions [77]. In Figure 3D, we
show the maximum of likelihood (ML) fit for the log-normal
distribution and the truncated power-law distribution, with
density function kx−αe−λx (a power law with an exponential
cutoff with λ decay rate and k normalization constant).

When applying the likelihood-ratio test to compare the two
distributions it turns out that the log-normal is always a better fit
than the truncated power-law. For the example of Figure 3D, the
p-value is 1 · 10− 22, rejecting the null hypothesis that the
likelihood ratio is equal to 1, and indicating that none of the
selected distributions is preferable. This result is coherent with
those obtained on 1-D models in [20], where for low
multiplicative factors, the size distribution is approximately
log-normal, with the difference that here the process is
discrete (not allowing sizes < 1). Therefore we have only the
right tail of the distribution, while in the 1-D models, the
multiplicative process is continuous. We can thus conclude
that in the pop regime the distribution is statistically
compatible with a log-normal tail.

The boundary between the pop and mixed regimes is
computed by an algorithm detecting for which parameters
〈k〉 and p the avalanche size distribution is better fitted by a
truncated power-law over the whole domain. We chose this
criterion because power-law distributions are typical of critical
points and we wanted to include the finite size cutoff (see for
instance Ch. 4 of [23]). Moreover, when comparing the tails of
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the distributions (by using the algorithm described in [78] and
implemented in [76]), at the boundary the most likely
distribution is the truncated power-law, with always a very
significant p-value ≪ 10− 4. The null hypothesis is again of a
likelihood ratio equal to 1 (between log-normal, exponential,
power-law). In Figure 3C is shown a typical distribution of the
avalanche size at the boundary between pop and mixed. For

comparison we also show the maximum of likelihood fit with a
power-law.

In the mixed regime the size distribution consists of two
separated parts: a small size part similar to the pop regime
distribution and a large size part corresponding to a very
narrow bump. In Figure 3E we show the full Z distribution in
a log-log plot, in the inset is shown in detail the distribution of the

FIGURE 3 | (A) Picture of the random networkmodel, embedded in a sphere. Notice that this is just a choice of representation, the shape of the network is not fixed:
our network model is only a set of connections, it can be embedded in any metric space. Dots are the nodes of the network and lines are the links. For better visibility the
network has here only N � 1000 nodes and a probability of connection pl � 0.003; (B) Phase diagram of the possible resulting avalanche size distributions with respect
to the model parameters 〈k〉 (the average number of connections of the network) and p (the probability of breaking a link). The three identified regimes are: pop
(blue), which has an avalanche distribution statistically compatible with a log-normal tail;mixed (purple) where a mixture of the two different behaviors, i.e., big large size
avalanches and pop avalanches, are observed at the same time; explosive (red) where almost only big avalanches spanning all the network size are observed. For details
about the detection of the transitions between regimes see text. The number of nodes of the network isN � 10000 and the statistics is done out of n � 10000 repetitions.
Symbols indicate the points taken to show some distribution examples in the remaining panels. Star has coordinates (2.6, 0.26), triangle (2, 0.2), diamond (4,0.4) and
doughnut (7, 0.7); (C) Avalanche size distribution exactly at the transition between pop andmixed. At this transition the distribution is a power-law for a range of almost 3
decades, more precisely the distribution is a truncated power-law, given the finite size of the system. Dots show the simulation distribution and the dashed (resp. full) line
shows the maximum of likelihood fit with a trucated power-law (resp. power-law) distribution; (D) Avalanche size distribution in the pop regime. Dots show the simulation
distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated power-law) distribution; (E) Typical distribution in the
mixed, regime, the inset shows a zoom on the distribution of large size avalanches not visible in the main panel; (F) Typical distribution in the explosive regime.
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large avalanche size narrow bump, represented by only one dot in
the large field view. In this regime, moving toward the explosive
regime causes a shift to the right of the large avalanche size bump
and a decrease of importance of the small avalanche size part.
Notice that the large avalanche size bump is not disappearing in
the largeN limit: if we take a distribution in themixed regime for a
given p and k and we increase the size of the network N (we did it
for N � 2000, 5000, 10000, 20000) the proportion of avalanches
in the bump stays the same, even though the bump shifts to the
right, because those avalanche sizes are proportional to the
system size.

Finally the explosive regime, of which a typical distribution is
shown in Figure 3F is detected by the criterion of less than 1% of
small size avalanches. In this regime the distribution of avalanche
sizes is a very narrow bump having a size comparable to the
number of links of the system. The integrity of the whole network
is therefore compromised and only a few sparse links are intact.

Note that even though it could be tempting to say that the
bump in mixed and explosive regimes is a log-normal
distribution (remember that in a log-log representation a
log-normal becomes a parabola), this cannot be assessed,

because the distribution is very narrow and therefore a log-
normal cannot be distinguished from a normal distribution. In
none of the three regimes observed so far we can recognize
avalanche size distributions similar to those observed
experimentally, i.e., approximately log-normal and of
finite size. Nonetheless, we observe that the distributions of
the pop regime (showing a log-normal tail) are strikingly
similar to those observed for avalanches of firing rates in
freely behaving rats in [16]. In that work, even though the
firing rate distributions were also claimed to follow a log-
normal tail, it was justified from data undersampling, keeping
the hypothesis of a critical state (and therefore power-law
distributed). Our simulation results suggest another possible
reason of the observed distributions, as given either by a small
connectivity of the network or by an extremely fast absorption
of the avalanches stress here the fact that our network model
does not have a metric, hence no concept of distance, it is only
a network of interactions. It does not matter if the links are
close in space (see Figure 3A), but only if they format of <<>>.
However, it is possible to embed the random network model in
any metric space and in any shape, considering for example

FIGURE 4 | Phase diagram of the resulting avalanche size distributions with respect to the model parameters 〈k〉 and p0, the constant pre-factor of the breaking
probability (see Eq. 8). The time constant is τ � 4 and the rheological exponent is α � 0.3. Symbols indicate the points taken to show some distribution examples in the
remaining panels. The pop (blue) and explosive (red) regimes are the same as in Figure 3, while the mixed regime changes, becoming composed of a broader bump,
approximately log-normally distributed (in magenta), together with some small avalanches reminiscent of the pop regime. This regime is called here log-normal
bump (magenta); (B) Example distribution of the log-normal bump regime with coordinates at the diamond point (4.5, 0.55); (C) Example distribution of the pop regime,
with coordinated at the triangle point (1.5, 0.2). Dots show the simulation distribution and the full (resp. dashed) line shows themaximum of likelihood fit with a log-normal
(resp. truncated power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point (8, 1).
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nodes that are connected to each other closer than others,
without impacting our results: as far as the interactions follow
this structure the shape of the network does not matter. With
this interpretation the small pop avalanches in the mixed
regime can be thought as a boundary effect: they represent
avalanches where the starting randomly chosen link is in a less
than average connected region.

3.3 Avalanche Statistics by Introducing
Visco-elasticity
We now introduce the exponential relaxation coming from
fractional visco-elasticity (see section 2.1). We let then the
probability of breaking be dependent on time in the
following way:

p(t) � p0e
−(t/τ)α . (8)

The Γ coefficient in Eq. 1, is here embedded in the constant τ.
This relation imposes some temporal correlation during the
avalanche, added to the interaction structure. Conceptually,
Eq. 8 assumes that the local fracture mechanics follows the
same mechanical response as the global network given by the

shear-relaxationmodulus (see section 2.1). It is important to note
that the limit τ≫ 1 is equivalent to setting α � 0, since in both
cases p(t) loses the dependence on time and we recover the results
of section 3.2. We can thus interpret the model in section 3.2 as a
purely elastic response.

In Figure 4 we show the results after introducing a time
dependent p(t). The phase diagram also shows three different
regimes. The pop and the explosive regimes have the same
statistics as in section 3.2, and an example of them is shown
in Figure 4C,D.

The important difference introduced by a fractional visco-
elastic relaxation is in the mixed regime, which shows now the
emergence of an approximately log-normal finite size bump, and
it is thus called the log-normal bump regime, in magenta. Indeed
the very narrow bump observed in the non-visco-elastic model
broadens here due to the time relaxing probability and it is not at
a size comparable to the size of the system, therefore not causing a
global destruction of the network. Observing Figure 4B we can
see that there are still some small avalanches of pop type in the
distribution. These may still be an effect of picking low reticulated
zones as starting point of the avalanche, but as previously said,
even running the avalanches only on the giant cluster they are still

FIGURE 5 | (A) Phase diagram of the resulting avalanche size distributions with respect to themodel parameters 〈k〉 and p0, the constant pre-factor of the breaking
probability (see Eq. 8). The time constant is here τ � 1 and the rheological exponent is again fixed at � 0.3. Symbols indicate the points taken to show some distribution
examples in the remaining panels. The pop (blue) and explosive (red) regimes are the same as in Figure 3, while the log-normal bump regime is composed of
approximately log-normally distributed avalanche sizes (in magenta). Note that here this regime is much wider than in Figure 4 because of the choice of τ. (B)
Example distribution of the log-normal bump regime with coordinates at the diamond point (4.5, 0.95); (C) Example distribution of the pop regime, with coordinated at
the triangle point (1.5,0.2). Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal (resp. truncated
power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point (8, 1).
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present. Notice that while moving toward the red region the log-
normal bumps shrinks and moves to larger sizes becoming then
similar to the distribution in Figure 3E.

The boundaries between the regimes are detected with the
same algorithms as described in section 3.2. Notice that here we
can let the probability p0 become larger than 1, since the stretched
exponential decay will always make p(t) converge toward 0.
Simulations in Figure 4 are shown for τ � 4, and the influence
of varying t has also been studied. Increasing τ produces a shift of
the distribution to the right, since the avalanche tends to last
longer. However for having a log-normal bump in the size
distribution, τ must not be too large, because otherwise the
distribution would tend to that one shown in Figure 3, with a
larger proportion of small avalanches similar to the pop regime
and a very narrow large avalanche size bump. On the other hand,
decreasing τ would make the relaxation very fast and shift the
distribution toward the pop region. If decreasing τ is compensated
by an increase of 〈k〉 the weight of the small size avalanches in 4B
is decreased, making the log-normal bump even more
pronounced (see Figure 5), and broadening the magenta
region. As a rule of thumb, τ < 5 (in arbitrary units) is a good

compromise to find an approximately log-normal bump. The
value of α, coherently to rheological experiments on living cells, is
set to 0.3 in all the simulations. Therefore the best receipt to have
log-normal without having small pop avalanches is then to
decrease τ in such a way that if increasing p0 or 〈k〉 the
avalanche stops fast enough to escape from the red regime
(and then a very narrow large avalanche size bump) possibly
together with a few pop avalanches, but still p0 or 〈k〉 has to be
large enough to quit the blue region. In other words we get log-
normal avalanches if the avalanche starts explosive and relaxes
fast, ending gently. We showed this in Figure 5, where the same
simulations as before were run, but with τ � 1. Comparing
Figures 4, 5 we can observe that the magenta region is
broadened, and in the new area, which from red became
magenta, distributions with a very low proportion of pop
avalanches emerge.

We note that these new distributions are not exactly log-
normal, but only approximately. It is for example possible that
they could be as well approximated by other skewed distributions,
as the Gamma distribution, but for sure not by power-laws. It is
interesting that these skewed distributions of the log-normal

FIGURE 6 | (A) Phase diagram of the resulting avalanche size distributions with respect to the model parameters 〈k〉 and p0 (see Eq. 8), in the case of link restoring.
The time constant is τ � 4 and the rheological exponent is α � 0.3. Symbols indicate the points taken to show some distribution examples in the remaining panels. The
pop (blue) and explosive (red) regimes are the same as in Figure 3, while the log-normal bump regime is composed of approximately log-normally distributed avalanche
sizes (in magenta), together with some small avalanches reminiscent of the pop regime. Compared to Figure 3 the phase diagram does not show significant
differences. (B) Example distribution of the log-normal bump regime with coordinates at the diamond point (4.5,0.55); (C) Example distribution of the pop regime, with
coordinated at the triangle point (1.5, 0.2). Dots show the simulation distribution and the full (resp. dashed) line shows the maximum of likelihood fit with a log-normal
(resp. truncated power-law) distribution; (D) Example distribution of the explosive regime, with coordinates at the doughnut point (8, 1).
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bump region are originated by both the introduction of time
correlation (in the form of visco-elastic relaxation) and the non-
linear dynamics of the avalanche propagation. Similar arguments
(but instead of time correlations it was for phase correlations)
were used in [27, 28] to explain the appearance of skewed
distributions for the temporal variability of the heart rate,
suggesting that an avalanche process may also be latent in
that case.

3.4 Avalanche Statistics With Local
Restoring of Cross-Linkers
In order to test the effects of local cross-linkers restoring on the
final avalanche size distribution, we consider the most extreme
case, where all broken links are restored after only one time
step. Therefore the broken links disappear from the network
only for the first time step after their rupture. This could be
interpreted as an extremely fast network restoring. In this
scenario, the probability of breaking must relax with time,
otherwise the avalanche would never stop as soon as λ1 > 1 (see
Eq. 7). We thus take the same law of breaking as in Eq. 8, with
τ � 4.

The phase diagram and the resulting avalanche size
distributions, when propagating avalanches with local restoring
of cross-linkers, are almost the same as in section 3.3 (compare
Figures 4, 6). We have chosen exactly the same points in the
phase diagram as in Figure 4 for ease of comparison. The pop
region is very similar to the one in Figure 4. The two other
distributions have the same shape as before, but they are shifted to
larger values, because the number of links available for the
avalanches is more abundant than in Figure 4, this is a direct
consequence of the link repair mechanism introduced for these
simulations. We can thus conclude that our results about the log-
normal bump regime are robust and do not seem to depend on the
details of the particular avalanche algorithm, provided a visco-
elastic relaxation is included in the model. However these details
can be important to tune the average and the width of the
resulting distributions.

4 DISCUSSION AND FUTURE DIRECTIONS

Our phenomenological model shows that it is possible to model
approximately log-normal avalanches, as experimentally
observed. We showed this on a network structure which does
not have a natural metric, but it is primarily a structure of
interactions. Therefore interactions are not necessarily due to
physical contacts, but can for example be given by vibrational
modes, or other forms of interaction. However, this characteristic
should not be thought of as a limitation, but rather as a feature
that makes the model more general. Indeed, the network
structure can always be embedded in some metric space if
desired, e.g., on a 3-D sphere, and the same results would
remain valid.

Interestingly, in order to have approximately log-normal
avalanches, an elastic-instantaneous breaking mechanism is
not sufficient. With this first rule we only get small pop

avalanches, explosive avalanches leading to a global destruction
of the network, or a mixture of both regimes. Along the critical
line, where large avalanches proportional to the network size start
being present, the distribution looks like an exponentially
truncated power-law, typical of critical systems in physics. A
key ingredient for having log-normal type avalanches is the
introduction of a breaking rule taking into account the visco-
elastic memory of cells (or other glassy materials), thus
introducing time correlations. This behavior is shown to be
robust even with different avalanche propagation rules, as for
example by introducing the local restoration of cross-linkers. We
should also mention that even with a completely different
breaking rule the qualitative avalanche behavior is the same.
We did preliminary studies on avalanches with a propagation rule
consisting in breaking at each time step only the weakest link (by
setting randomly attributed <<strength>> to the links),
supposing that the avalanche propagates along the weaknesses
of the material, and we could again recognize the same three
regimes. We were then able to obtain avalanche size distributions
closer to a log-normal by imposing faster relaxation times as in
Figure 5. In this way the log-normal bump region becomes larger,
thus showing slightly new distributions with a less important
proportion of small pop avalanches, while the other resulting
distributions stay the same.

Our model does not give quantitative information, because we
did not make the link with physical units. Accounting for this,
however, may be possible by introducing an appropriate scaling
factor to make the size of the avalanche a physical measurable
quantity (as the released energy). At the same time the
correspondence of the lasting time of the avalanche with the
experimental one can be done. This would attribute a unit to τ,
hence leading to an estimation of the physical relaxation time
needed to have log-normal avalanches. Altogether, these results
suggest that, for cells, the local fracture mechanism resembles that
of the global mechanical response of the cytoskeleton network.
The global shear-relaxation modulus can thus be interpreted as a
sequence of local avalanches of ruptures.

We conclude by saying that, in contrast to simpler 1-D
models without a network structure (see [2, 20]), here the
resulting distributions are not exactly log-normal. It is for
example possible that they can as well be approximated by
skewed distributions other than the log-normal, as the Gamma
distribution, yet our model is an alternative to the power-law
modeling. Furthermore our avalanches follow a skewed
distribution which does not depend on the system size.
Notably, these skewed distributions in the log-normal bump
region are originated by both the introduction of time
correlations (in the form of visco-elastic relaxation) and
non-linear dynamics in the avalanche propagation. These
are the same ingredients (but instead of time correlations it
was for phase correlations) identified to cause the appearance
of skewed distributions for the variations in the heart-rate
signal in [27, 28], behind which an avalanche process may also
be latent. This paves the way to possible applications to
physiological data, where non-linear units are organized in
a networked communicating structure, such as brain seizures,
heartbeats or chemical signaling inside cells.
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