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1 INTRODUCTION

Perhaps everything is just an illusion. But even an illusion might be useful. Therefore, in any case, we
should try to understand it. And scientific understanding of consciousness, like any other
phenomenon, should be based on the available facts. Let us recall some of them.

• Consciousness is a subjectively experienced phenomenon that cannot be doubted, as Descartes
famously observed. As such, while it may admit gradations, it is experienced as an all-or-none
phenomenon, that is, one is either conscious or not.

• It has different aspects, from a sense of awareness to the qualitative aspects of feelings and of the
sensations that give rise to feelings and to the sense of selfhood, identifying the self as an
integrated system distinct from the rest of the world.

• It is correlated with neurophysiological dynamics and depends on neuroanatomical structures
(see, for instance, [1]), although much has been argued about the underlying causality.
Neuroscience has identified some of these dynamics and structures, although the answers
at present are not yet conclusive. It is not simply a question of numbers of neurons, as some
parts of the brain, such as the cerebellum, apparently do not play an essential role for
consciousness. Some curious phenomena have been observed in split-brain patients where
for medical reasons, the corpus callosum that connects the two hemispheres of the brain has
been cut. It seems that in such patients, the two halves of the brain are separately conscious,
even though only the left hemisphere can express itself verbally.

• Human consciousness seems to depend on language and on a social context. Humans who have
been brought up in complete isolation cannot learn to speak normally and may only have some
rudimentary form of consciousness, if at all.

These facts raise many questions, among them.

• To what extent can animals be conscious? Some higher animals seem to possess a sense of self,
and they can assess the knowledge that others possess and understand their intentions and on
this basis anticipate their actions. That is, they seem to have some rudimentary form of a theory
of mind. They cannot, however, communicate that to us, and we can only reconstruct their
minds from indirect evidence. Also, human infants seem to be very clever in their own way (see,
for instance, [2]) [3], but they strikingly lack any episodic memory from their first years of life.
We nevertheless grant them consciousness, even though it is a robust criterion for the conscious
thinking and decisions of adults that it can be recalled and remembered (and of course be
forgotten later). What we consider as significant conscious acts, we can remember for the rest of
our lives.

• To what extent does consciousness depend on neural wetware? That is, could computers or
distributed programs possibly become conscious? Functionalism, as first advocated [4] and
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then rejected [5] by Putnam, would admit that possibility.
Other scientists, such as Koch [6], maintain that
consciousness can only emerge in human or perhaps
animal brains and requires particular neural and/or
(thalamo)cortical structures. We shall argue below that
consciousness at least does not automatically arise when
a system becomes sufficiently complex. We are not
conscious simply because we have a large brain, but
rather humans have evolved to become conscious when
exposed to other conscious humans during a critical phase
of their development. That is, first, consciousness is partly a
social phenomenon, even though it seems that a main aspect
of consciousness is to distinguish a self from others, and
second, there were evolutionary reasons for the emergence
of consciousness.

• Whether the evolution of consciousness was a gradual
process or a sudden jump is another question to which
research on nonhuman primates can provide some partial
answers. More generally, one tries to associate conscious
wakefulness, the orienting and focusing of attention,
sensory perception, the immediacy of memory, and
perhaps even the emergence of a sense of self with the
evolution of the mammalian brain, in particular the
neocortex or the thalamocortical loop.

• In any case, it seems that so far neuroscience has not
identified any qualitative difference between human
brains and those of other mammals. Human brains are
larger than those of other great apes. In particular, in human
brains, the prefrontal cortex is enlarged (see [7] for some
possible evolutionary explanation that intertwines
functional and structural aspects), but the prefrontal
cortex, while important for action planning for instance,
does not seem decisive for consciousness. Also, human
brains are not the largest mammalian brains. Mammalian
brains scale with body size, simply because a larger body
requires more neural control, and human brains are
somewhat larger than this scaling relation would suggest,
but certainly not spectacularly so. Perhaps the ongoing
investigation of the connectivity pattern of the human
brain, the so-called connectome (see, for instance, [8]),
may identify some crucial differences in the wiring
pattern. But this remains to be seen.

• This also leads to the question of whether different brain
structures, such as those of birds or cephalopods, that is, of
other branches in the animal kingdom that have evolved
versions of intelligent behavior, could, at least in principle,
support forms of consciousness that are possibly very
different from ours (Nagel [9] famously discussed the
case of bats that have a sensory system, the sonar, that
we do not possess, and therefore experience their
environments very differently. But, on the other hand,
the example of aircontrollers shows that we are in
principle able to build up a sophisticated intuition about
a novel class of inputs, radar images in their case, and
perceive our environment accordingly.).

• In this regard, we should also keep in mind that
evolutionary origin and current function of a structure or

a feature need not coincide.What had originally evolved in a
specific context for a particular function, or even as the
sideproduct of some other functional structure, may have
subsequently acquired a very different function, as
systematically argued by Gould [10]. Furthermore, many,
if not all, of our systems and structures have a variety of
functions, and also general human abilities such as language
cannot be reduced to a single function. We should expect
that this also applies to consciousness. In particular, we
should keep this in mind in the discussion of the next items.

• The famous observations and experiments of Libet [11]
show that the brain prepares acts and apparently decides to
execute them some time before they enter consciousness.1 Is
consciousness therefore only an inconsequential side effect
of a neural decision that occurs subconsciously in the brain?
Or is the only function of consciousness to intervene when
such subconsciously determined acts might have unwanted
consequences? But conscious decisions take much longer
than subconscious routines, and so, there seems to be some
fundamental difference. Even if consciousness were only a
side effect or somemechanisms that offer an opportunity for
subsequent control, what decides which decisions become
conscious? Why some and not others? And why does
learning a new skill usually require a conscious effort? Is
this simply a mechanism that evaluates whether the
execution of the corresponding action has been
sufficiently successful?

• Or is the purpose of consciousness the rationalization of
subconsciously generated actions? In addition to Libet’s
findings, also some observations from split-brain patients,
where the left hemisphere invents explanations for actions
triggered by stimuli presented to the right hemisphere,
might indicate such a function. However, one should
always be careful in drawing conclusions from the
apparent misfunctioning of some system under abnormal
conditions, here the severing of the connection between the
two halves of the brain, about its normal functioning.

• Is our version of consciousness perhaps still very imperfect?
Could evolution produce superior ones?

In this contribution, the issue of consciousness is approached
from the conceptual framework of information theory. This does
not mean that a formal theory of consciousness will be developed,
but only that information theoretical principle will guide our
thinking. I believe that this is helpful for clarifying some
important conceptual issues in the discussion of consciousness.
Of course, information theory has been applied to the theory of
cognition in general, but we do not intend to provide an overview
here, as the subject is too vast, but only refer to [12] for a

1It could be and has been argued that one has to be careful in drawing strong
implications about consciousness from Libet’s experiments. The decision about
whether or when their arm is raised made in the experiment is not really important
for the persons involved. It could well be that in important and consequential
decisions, the temporal order can become reversed.
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systematic approach that introduces some concepts and touches
some aspects that are also relevant here.

2 INFORMATION AND STRUCTURE

In this section, we recall some basic principles concerning
information theory and complexity measures. Let X be a
random variable, for example the state of the environment as
perceived in some sensory modality. Thus, X can assume several
states, denoted by x, taken from some setX , with probability p(x).
Here, 0≤ p(x)≤ 1, and

∑
x∈X

p(x) � 1. (1)

The Shannon information or entropy [13] of X then is

H(p) :� −∑
x∈X

p(x) log2 p(x), (2)

with the convention 0log0 � 0, to also include cases where p(x) �
0 for some x. H(p) quantifies the reduction of uncertainty when
we initially only know the probabilities p(x) and then observe
which of the possible values of x actually occurs. When we haveN
possible events, the entropy can be at most log2N , and this value is
only achieved if all states have the same probability 1/N . In that
case, we can learn most from an observation of the actual state, as
our uncertainty had been highest before the observation. When
the probabilities are different, then H(p) becomes lower. Now
assume that we have two random variables X1,X2, with joint
probabilities p(x1, x2) for the corresponding states, as well as
marginal probabilities

p1(x1) � ∑
ξ2

p(x1, ξ2) and p2(x2) � ∑
ξ1

p(ξ1, x2). (3)

Again, the information

H(p) � − ∑
x1 ,x2

p(x1, x2) log2 p(x1, x2), (4)

is highest when all possible pairs (x1, x2) occur with the same
probability. In particular, in that case

p(x1, x2) � p1(x1)p2(x2), (5)

that is, the joint probability is simply the product of the individual
probabilities. This means that the two random variables X1,X2

are independent of each other. And when (4) is maximal, again
the marginal probabilities p1(.) and p2(.) have to be constant, that
is, independent of the particular value of x1 or x2, resp.

Now, there are two possibilities to decrease the entropy H(p)
in Eq. 4. One possibility consists in keeping the product structure
(5), but varying the marginal probabilities. The other possibility
consists in keeping the marginal probabilities p1 and p2, but
introducing correlations between them so that p no longer is a
product. Let us consider the simplest nontrivial example. Both X1

and X2 can only assume two possible states, denoted by 0 and 1.
Thus, there are four combinations, (0, 0), (1, 0), (0, 1), (1, 1).

When each of them occurs with probability 1/4, then 5) holds,
and H(p) � 2. Also, all marginals are 1/2 in this case. We could
then vary the marginals p1 and p2. One example is where one of
the two variables, say X1, becomes deterministic, for instance
p1(0) � 1, p1(1) � 0, but the other assumes its two values with
equal probability p2(0) � p2(1) � 1/2. Then H(p) � 1. The
uncertainty has been reduced by knowing the state of the
variable x1 in advance. When both variables are deterministic,
the entropy H(p) becomes 0. Now let us consider the other
possibility for reducing H(p), introducing correlations. Again, we
consider an extreme possibility, where only the two combinations
(0, 0) and (1, 1) can occur, both of them with probability 1/2.
Then H(p) � 1 again, but 5) no longer holds, even though all
marginals are still 1/2. In fact, this is the most extreme case for the
failure of Eq. 5 (of course, the correlations could also be such that
only the cases (0, 1) and (1, 0) occur, but this makes no formal
difference). In a sense, we have most structure here. Ay [14]
therefore considers this as the most complex situation in the
present example, as the entropy is still relatively large, but we are
as far away as possible from a product distribution (5). The
distribution where only (0, 0) and (1, 1) can occur is
distinguished from a product distribution by the fact that it
possesses some regularity that can be expressed by a rule. In
this example, the rule is simply that the two variables always
have to assume the same state. For the distribution that only
allows (0, 1) and (1, 0), the rule would be that the two variables
always assume opposite states. In general, quantified notions
of complexity measure to what extent the regularities of a
structure allow for a compressed description, see for instance
[15–17].

Returning to our concrete setting, with more than two random
variables, this construction needs to be refined. When, for
instance, we have three variables X1,X2,X3, we could again
have a product distribution

p(x1, x2, x3) � p1(x1)p2(x2)p3(x3), (6)

with hopefully obvious notation. We can then again search for
other probability distributions that are as far away as possible
from such a product distribution. But it becomes more
interesting, if we also consider the intermediate class of
probability distributions where we admit only pairwise
correlations between two of the three variables, but no triple
ones. The most complex structures then should be those that are
very different from the product ones, but also from those with
only pairwise correlations. Obviously, this principle can be
extended to an arbitrary number of variables. This has been
systematically developed in [18] (see also the systematic
exposition in [19]), and a class of complexity measures has
been introduced that includes the particular measure of [20]
and gives it a new interpretation. Since such measures are
fundamental for the approach to consciousness of [6, 21] and
since for our purposes also a second aspect, the role of memory,
will be important, we shall now sketch the approach of [18] (see
also [17]) which includes and unifies both aspects. We first need
the concept of the Kullback-Leibler divergence for two probability
distributions p and q on X ,
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D(p ‖ q) :� ∑
x∈X

p(x) log2
p(x)
q(x), (7)

where we require that whenever q(x) � 0 for some x, then also
p(x) � 0; if that requirement is not satisfied, we putD(p ‖ q) � ∞.
This is positive, i.e.,

D(p ‖ q)> 0 if p≠ q. (8)

More generally, we can look at the case where we have an
additional random variable Y with state space Y. We then have
joint probabilities p(x, y) for the simultaneous realization of the
value x of X and the value y of Y, as well as the marginals p(x) for
the occurrence of x and p(y) for that of y (from now on, in
contrast to the more careful notation of Eq. 6, we use the same
letter p here, although the distributions of X,Y and (X,Y) live on
different spaces). We have

p(x) � ∑
y

p(x, y) and p(y) � ∑
x

p(x, y). (9)

Importantly, the joint distribution p(x, y) is in general different
from the product p(x)p(y) of the marginals, due to correlations
between X and Y. This is quantified by the mutual information

MI(X : Y) � D(p(x, y) ‖ p(x)p(y)). (10)

When X and Y are independent, that is, p(x, y) � p(x)p(y) for
all x, y, then the mutual informationMI(X: Y) vanishes, because
in that case, observing the value of X will not reduce our
uncertainty about Y, and conversely. If there are dependencies,
however, then MI(X: Y)> 0, and one variable provides
information about the other. We also note that in contrast to
the Kullback-Leibler divergence D(p ‖ q) which in general is not
symmetric between p and q, the mutual informationMI(X: Y) is
symmetric between X and Y. That is, if observing X provides
information about Y, then also the converse holds, and the
amount of information is the same in either direction.

We can also interpret the product distribution p(x)p(y) as the
result of projecting our original distribution p(x, y) onto the
simpler class of product distributions. That is, among all
product distributions of the form q(x)q(y), the production
distribution p(x)p(y) is that for which the divergence D(p(x, y) ‖
q(x)q(y)) is smallest. That is, the product distribution p(x)p(y)
preserves as much information about p(x, y) as is possible for a
product distribution. Also, the product distribution p(x)p(y) has
higher entropy than p(x, y), unless the latter is already a product
distribution, because p(x)p(y) ignores all the information that one
variable has about the other. In fact, p(x)p(y) has the highest
entropy among all distributions with the same marginals as
p(x, y).

This principle can be iterated. When we have distribution
p(x, y, z) for the values of three random variables, we can not only
look at the product distribution p(x)p(y)p(z), but also at those of
the form p(x, y)p(z), p(x, z)p(y) or p(y, z)p(x), that is, where only
correlations between at most two of the variables are allowed.

For the general principle, we assume a state set V that consists
of the possible values of N variables X1, . . . ,XN . We letBk be the
family of subsets of V with ≤ k elements, from which we get the

set of probability distributions EBk with dependencies of order
≤ k. Thus, EB1 is the family of distributions that are simply the
products p(x1)p(x2)/p(xN ) of their marginals. In particular, for a
probability distribution in this family, there are no correlations
between the probabilities of two or more of the variables. In EB2,
we then allow for pairwise correlations, but no triple or higher
order ones. We can also consider other families of subsets of V
and the corresponding probability distributions. For instance,
when V is the ordered set of integers {1, . . . ,N}, one could
consider the family of those subsets that consist of
uninterrupted strings of length ≤ k. For example, for N � 3,
we would consider distributions of the form p(x1, x2)p(x3) or
p(x1)p(x2, x3).

We consider the hierarchy

B14B24 . . .4BN−14BN :� 2n, (11)

We let p(k) be the projection of p onto EBk. This means that for
a distribution p, we seek that distribution p(k) ∈ Bk for which

D(p ‖ p(k)) is smallest. For instance, p(1) is the product
distribution with the same marginals as p.

These projections are related by the Pythagoras relation

D(p(ℓ) ‖ p(m)) � ∑
ℓ−1

k�m
D(p(k+1) ‖ p(k)), (12)

for ℓ,m � 1, . . . ,N − 1, m< ℓ. In particular,

D(p ‖ p(1)) � ∑
N−1

k�1
D(p(k+1) ‖ p(k)). (13)

The Pythagoras relation Eq. 12 implies that we can leave out or
insert intermediate steps into our hierarchy Eq. 11 of projections,
without changing the final result. That is, instead of first
projecting onto BN−1, then onto BN−2 and so on, until we
finally project onto B1, we could also directly project onto B1,
and the end result will be the same.

We can then introduce the complexity measure of [18] with
weight vector α � (α1, . . . , αN−1) ∈ RN−1.

Cα(p) :� ∑
N−1

k�1
αk D(p ‖ p(k)) � ∑

N−1

k�1
βk D(p(

k+1) ‖ p(k)), (14)

where βk � ∑k
l�1αℓ because of Eq. 12 or Eq. 13.

p(k) is the distribution of highest entropy among all those with
the same correlations of order ≤ k as p.

Eq. 14 is a weighted sum of the higher order correlation
structure. We can then choose the weights. For instance, when we
choose αk � k

N, we obtain the Tononi-Sporns-Edelman (TSE)
complexity [20].

The TSE measure was introduced to capture the interplay
between differentiation and integration, and it served as the basis
of the consciousness measure of [21]. The idea is that a conscious
state should be one that is capable of many distinctions between
different possibilities, but at the same time integrates the different
variables into a coherent whole.

Thus, the preceding information theoretical considerations can
capture the interplay of differentiation and integration in neural (and
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other) dynamics. It can also capture the temporal aspects of memory
utilization, as we shall now explain. We need the notion of aMarkov
process. We consider a sequence . . . ,X−2,X−1,X0,X1,X2, . . . of
random variables, called a stochastic process, where the index n of
Xn now stands for discrete time n ∈ Z (an analogous notion can be
developed for continuous time t ∈ R, but for simplicity, we only
discuss the case of discrete time here). We say that this stochastic
process has the Markov property if for all n and all values xm of
the Xm.

p(xn+1|xn) � p(xn+1|xn, xn−1, . . . ), (15)

that is, if at time n, taken as the present, the value at the future
time n + 1 depends only on the present state, but not on any
further values from past times. (Here, p(x

∣∣∣∣y) is a conditional
property, the probability that a random variable assumes the
state x when the state y of some other variable is assumed or
known.) Thus, a Markov process does not have or does not
need a memory.

More generally, a kth order Markov process has the property

p(xn+1|xn, . . . xn+1−k) � p(xn+1|xn, . . . , xn+1−k, xn−k, . . . ), (16)

that is, for the best possible prediction, it may need k − 1
memory steps in addition to the knowledge of the present state,
but not more. A 0th order Markov is of course one that does
not need any memory, and not even the knowledge of the
current state, i.e.,

p(xn+1) � p(xn+1|xn, . . . ). (17)

Tossing a fair coin, for instance, is such a process.
For technical reasons, we assume that the process

. . . ,X−2,X−1,X0,X1,X2, . . . is stationary in the sense that the
marginals are invariant under time shifts, that is, for all k, ℓ,m.

p(xk, xk+1, . . . xm) � p(xk+ℓ , xk+1+ℓ , . . . xm+ℓ). (18)

We then consider subprocesses of lengthN. By stationarity, we
may take X1,X2, . . . ,XN . We denote its probability distribution
by pN As in Eq. 11, we consider the hierarchy

B(0)4B(1)4 . . .4B(N), (19)

where B(k) now consists of the Markov processes of order k. As
before, we let p(k)N be the projection of pN onto EB(k)

. And we
have the Pythagoras relation Eq. 12, i.e.,

D (p(ℓ)N ‖ p(m)
N ) � ∑

ℓ−1

k�m
D (p(k+1)N ‖ p(k)N ), (20)

for ℓ,m � 0, . . . ,N − 1, m< ℓ. And we can measure the
complexity of the subprocess X1, . . . ,XN by Eq. 14, i.e.,

Cα(pN) � ∑
N−1

k�0
αkD (pN ‖ p(k)N ) � ∑

N−1

k�0
βkD (p(k+1)N ‖ p(k)N ), (21)

with weight vectors α, β related by βk � ∑k
l�0αℓ .

Now, for such stationary stochastic processes, there is a
fundamental complexity measure, the excess entropy
introduced by Han [22] and Grassberger [23]. It is given by

lim
N→∞

∑
N−1

k�1

k
N − k

D (p(k+1)N ‖ p(k)N ). (22)

Thus, again the complexity measure Eq. 21 of [18] generalizes
a fundamental quantity that evaluates the complexity of a process.

Thus, following [17–19], we have developed complexity
measures that can capture both families of processes running
in parallel as in [20], as well as sequential processes as in [22, 23].
For measuring neural brain complexity, both seem relevant, and
also both can be estimated from brain recordings. In particular,
for a sequential process, one may derive an estimate from
recordings without spatial, but good temporal resolution, like
EEG. If one accepts the thesis of [21] that such measures might
even allow us to assess the level of consciousness, then what we
have provided here enlarges the array and the scope of such
measures.

3 SOME FORMAL ASPECTS

The dynamics of the world might be a Markov process. That has
two aspects.

1. The dynamics is not completely deterministic. There are only
probabilities for future events, conditioned on the present state
of the world. (This uncertainty about the future may ultimately
arise from the quantum world, but that is not our topic here.)

2. When we know the present completely, we cannot improve
our predictions for future events by using additional
information about the past.

In addition.

3. for us as finite beings, the information about the present state
of the world is always incomplete.

And this has consequences.

1. While our sensory data may provide us only with some probability
distribution over the actual state of theworld and for possible future
developments, we need to perform concrete actions, and not
probability distributions over actions, as pointed out in [24].
That is, we need some mechanism that transforms a probability
distribution into a single action. This need not necessarily invoke
consciousness, as also actions that are subconsciously planned and
executed are determinate, but consciousness may be important
when prior experience and learned patterns are not able to directly
select a unique action. Even though according to Libet’s findings
[11], the action itself may be decided before it becomes conscious,
the process is different from subconscious routines and typically
takes much longer. Consciousness may thus not be the ultimate
cause, but only awitness of such an action selectionmechanism, but
making it conscious may at least help to guide future behavior in
similar situations, that is, be an efficientmechanism formemorizing
the process. Insight can be gained here from investigating the neural
processes of long-term memory formation.
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2. Even if the dynamics satisfy the Markov property, our partial
representation of it will not. It is a general result that the
projection or the coarse graining of a Markov process typically
is no longer Markovian, see the analysis in [25]. That is,
memory will help to make better predictions.

Let us explain in more detail why the coarsening of a Markov
process need no longer be Markovian. For a simple example, take
a random process on the integers where at each integer time t a
state m(t) ∈ Z is selected, with the transition that at time t + 1,
there are two possible successor states,m(t) + 1 andm(t) − 1, each
attained with probability 1/2. This is a Markov process. But when
we now coarse grain the integers, and lump five consecutive
numbers together, defining n � {5n, 5n + 1, 5n + 2, 5n + 4, 5n +
5} ⊂ Z for n ∈ Z, we get an induced process where n(t + 1) can
take the values n − 1, n, n + 1. But this is no longer a Markov
process, because memory about the underlying process n(t) helps
to improve the prediction. In fact, whenm(t − 1) � 5n + 2, thenwe
can conclude that n(t + 1) � n(t). And when m(t − 1) � 5n or
5n + 1, then the value n(t + 1) � n(t) + 1 is not possible.

Another example (taken from [26]) shows the phenomenon even
more drastically. We cast a fair die. The result at time t ∈ Z is
denoted by w(t). The values 1, 2, 3, 4, 5, 6 occur with equal
probability, independently of any prior results. This is a 0th order
Markov process, because even knowledge of the current state does
not improve the prediction of the next one. We now consider a
derived process on {0, 1} where we record a 1 at time t if
w(t)>w(t − 1) and a 0 else. This derived process is no longer
Markovian because the more 1s we have already observed in a row,
the less likely the next result is a 1 again. In fact, we cannot have
more than five 1s in a row. Thus, thememory of many steps back in
the past improves our abilities to predict the next result. Actually, in
this example, the length of memory that can be utilized for an
improvement of the prediction of the next value can be arbitrarily
large. Consider two sequences of length n, 121,212... and 565,656....
They both give rise to the derived sequence 101,010... but when we
have seen several consecutive 1s before that sequence, then the first
one is excluded, while the second is still possible.

It seems thatmemory is fundamental for consciousness, as it can be
utilized to improve predictions of future states on the basis of
memorized past ones. And the length of the memory span that
can be relevant can be arbitrarily large. We can still make inferences
and for instance avoid dangers on the basis of events that we have
experienced in our childhood. Therefore, complexitymeasures such as
Eq. 21,Eq. 22may indeed be relevant for a quantification, although of
course in practice we do not possess a stream of EEG recordings since
our childhood. And a more important feature of consciousness than
long-term memory might be the temporal integration of the recent
past and the immediate future, as will be argued in more detail below.
But the principle of quantifying that via complexity measures such as
those that we have derived remains valid and applicable.

4 INTEGRATION

From the preceding, we conclude that a decision process that has
to handle ambiguity should integrate many diverse types of data

and background information, that is, involve the coordination of
large parts of the brain, as in the theory of Baars [27–29]. It need
not involve, however, those regions of the brain that carry out
routine motor behavior, that is, in particular, the cerebellum. It
should rather activate sensory areas in the cortex, and perhaps the
areas in the thalamus that are incorporated in feedback loops with
those cortical areas, and in particular, the premotor and the
motor cortex, and perhaps also the hippocampus, where various
types of memory are located. It should also crucially include
recent memories and therefore integrate a certain stretch of time,
what is felt as present in our consciousness, perhaps of a duration
of a second or two, as in the time-on theory of Libet [30]. That
duration is, however, necessarily limited, as otherwise reaction
times would get too long.

The underlying brain activity should exhibit evidence of the
integration of information. It should also, however, be able to
differentiate between different types of input and different
consequential actions. Tononi [21] has developed a
corresponding measure for the brain activity, to test
consciousness in patients who for whatever reason are not
able to communicate directly. This measure is based on the
complexity measure of Tononi, Sporns, and Edelman [20].
This measure has been generalized and interpreted in [18] as
measuring the amount of higher order correlations between the
elements of a dynamical system that cannot be reduced to lower
order ones.

Thus, even though the theories of Libet [30], of Baars [29], and
of Tononi [21] and Koch [6] do not agree on many aspects of
consciousness, they nevertheless share the emphasis on the
integrative role of consciousness.

5 REFLEXIVITY

We can never be sure that we know something, but we can be sure
that we believe something. This may sound paradoxical, as
knowledge is usually associated with certainty and belief with
uncertainty. It is even common to define knowledge as justified
belief. But a categorical distinction might be important here. We
are not certain about what we believe, but only about the fact that
we believe something. When the latter fact corresponds to some
brain state, we are sure about our internal state, but may still
question to what that state refers. When we feel pain, we are sure
that we have pain, but we may err about where the pain is coming
from, as most clearly demonstrated by phantom pain in
amputated limbs.

In a different context, that of semiotics, a sign relates a signifier
and a signified, to be distinguished from a referent, but we may
have the signifier without its referent. A conscious, that is,
reflexive brain state can then be sure about itself,
independently of what it refers to.

And the integrative nature of consciousness then allows the
brain to access a wide range of memories, via something like
neural association mechanisms. When our arm is pinched, we
associate that with other similar sensations, and the qualitative
feeling of pain develops. Similarly, when we see something red,
our consciousness associates this with other sensations of red that
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we have experienced in the past. As this is, however, not explicit,
but only implicit, it leads to the qualium of red. Something like
that has been taken as a definition in [31]. The point I want to
make here is that of course, our brain does not have the capacity
to explicitly recollect all prior instances of red that we have seen,
and our consciousness therefore needs to compress them into
something implicit, a qualium, as reflexively experienced.

The reflexivemoment is most evidently seen in selfconsciousness.
Abstractly, we have a finite system trying to represent itself in itself.
Since the system is finite, it cannot contain a perfect copy of itself in
itself, because it would then also have to contain the copy, and so on,
leading to an infinite regress. Mathematically, only infinite sets can
contain isomorphic copies of themselves as subsets. This implies
(unless one wants to invokemechanisms of quantum processes) that
selfconsciousness must have some blind spot, that is, it cannot have
full access to itself. Leibniz was perhaps the first philosopher aware of
this problem in some sense, and he therefore postulated the existence
of subconscious processes (see [32] for an approach to Leibniz from
the perspective of contemporary science), but this problem seems to
plague the theories of many later philosophers, such as Fichte, one of
the key representants of idealistic philosophy.While it seems evident
from the perspective of modern psychology, and in particular from
that of psychoanalysis, that our self-knowledge is very incomplete,
there are still some theoretical loopholes that do not make this state
of affairs completely inevitable.

First, it may be that a system admits a complete description in a
condensed or compressed form. To illustrate this with a computer
science example, it is possible in principle that from a zip file, the
original data can be reconstructed without any loss. But this requires
that the data possess regularities that allow for a compressed
description (we may think here of the notion of Kolmogorov
complexity [15]). This example is, however, not yet complete for
our purposes, because we would also have to require that the
compressed file is part of the original data, to make this
completely reflexive. This indicates the difficulty we are facing here.

Second, we may externalize some of our memory. We may think
here of such mundane devices as writing things on a sheet of paper or
putting them into a computer file, as some form of external memory
thatwe can accesswheneverwe need.More generally, and conceptually
more interestingly, this brings us to the topic of embodied cognition. It
had been underestimated for a long time to what extent our cognition
depends on locating sensory information in our environments, instead
of memorizing it internally, and in how sophisticated a manner we are
capable of integrating our environments into our cognitive processes,
see for instance [33]. This may apply in particular to consciousness,
where we observe not only the material world, but also other humans
that we interact with. As an extreme example, we might go to a
psychiatrist to bring our subconscious desires to our conscious
attention.

6 SELF

There is evidence that some higher animals have a notion of self,
but since they do not possess language and cannot communicate
that notion and thereby relate it to the notions of self of others, their
self-identity may be ultimately very different from ours. In

particular, it may have evolutionarily developed in directions
not accessible to us.

Humans, however, seem to develop such a notion of self only
indirectly, through their interactions with others. A human self
distinguishes himself or herself from other selfs, and a child learns to
say “I” because it hears others saying “I.” That is, when others act,
behave, and speak as integrated selfs, the child may conclude that it
also is a self itself.

This cannot be quite so simple, however. To develop a notion of
self-identity, also resonances are needed. That means that the child
has to learn that it can anticipate and control the sensory
consequences of its own actions (such a principle is formalized
in a different context in [34]). That is, it develops the ability to act in
such a manner that it can produce particular consequences. When
it pinches its arm, it feels pain at the pinched spot. When it pinches
somebody else’s arm or an inanimate object or whatever, no such
reaction will occur. In that manner, it learns what belongs to itself.
But as argued before, the integrated notion of self-identity may
require the interaction with others. Here, we should also note the
systematic psychological theory of Prinz [35] of the social
construction of the notion of self.

7 SUMMARY AND CONCLUSION

As Libet’s experiments [11] show, neuronal activity needs to build up
before a decision or a process orwhatever can become conscious.When
one assumes, as I do here, that consciousness emerges from some
neurophysiological substratum, that is, there are neuronal, and therefore
ultimately biophysical, processes underlying conscious experience, then
this is what one should expect. But it would be rash to conclude from
this that consciousness is simply an illusion that, with some temporal
delay, accompanies a deterministic physical process.

It rather seems that the function of consciousness is to integrate on
one hand synchronous and probabilistic information from various
sources, both external and internal, into a coherent percept and a
concrete action that is no longer probabilistic. And, on the other hand,
it temporally integrates the recent past and the immediate future with
the present into some extended present of a duration of perhaps a
second or so. There are neuronal mechanisms for both the integration
of the past and of the present. Short-term memory may be based on
neuronal reverberations that are repeated in short periodic cycles, and
it may be integrated with long-termmemory that is perhaps stored in
synaptic weights between neurons. Moreover, synaptic learning rules
of STDP type can be interpreted as facilitating the anticipation of
consequences of stimuli before those consequences actually occur, as
analyzed in [36]. That is, we understand the neuronal basis of an
anticipation of an immediate future. Such temporal integration seems
to underlie the extended present characteristic of consciousness and
the stream of consciousness. The richness of consciousness and the
selection of a specific action become enhanced froman integration of a
wide range of inputs.

Selfconsciousness, that is, the feeling of one’s identity as
distinct from others, emerges from resonances between
perceptions and actions, and from mirroring oneself in
others in social settings. Finally, the fact that a wealth of
prior experiences is condensed into qualia is some
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compression mechanism. And we cannot be conscious of our
full brain activity because a system cannot represent itself
isomorphically in itself.

These are our main conclusions.

Thesis 1. Consciousness integrates information that is
distributed in the brain and in the immediate environment
and that includes the recent past and anticipates the near
future, on a timescale that is adapted to the requirements for
reactions to external stimuli, in order to select a single action
on the basis of a probability distribution of possible stimulus
interpretations.
Thesis 2. The preceding is quantifiable by complexity
measures.
Thesis 3. The development of consciousness depends on
resonances between sensory inputs and actions, and

selfconsciousness therefore can only emerge in the context
of interactions with other conscious individuals.
Thesis 4. The feeling of qualia is the result of an efficient
compression of information about prior experiences.
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