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We analyze the influence of an external sound source in a network of FitzHugh–Nagumo
oscillators with empirical structural connectivity measured in healthy human subjects. We
report synchronization patterns, induced by the frequency of the sound source. We show
that the level of synchrony can be enhanced by choosing the frequency of the sound
source and its amplitude as control parameters for synchronization patterns. We discuss a
minimum model elucidating the modalities of the influence of music on the human brain.
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1 INTRODUCTION

Synchronization phenomena are well-known regarding dynamical activities of the brain. A high
degree of synchronization is related to (slow-wave) sleep [1, 2] or transitions from wakefulness to
sleep [3, 4]. Recently, partial synchronization has become a clue to explain the first-night effect [5]
and unihemispheric sleep [1, 6–8]. Moreover, synchronized dynamics play an important role in the
dynamics of epileptic seizures [9], where the synchronization of a part of the brain causes dangerous
consequences for the persons concerned. In contrast, synchronization is also used to explain brain
processes which subserve for development of syntax and its perception [10–12]. In general,
synchronization theory is highly important to analyze and understand musical acoustics and
music psychology [13–17]. While the neurophysiological processes when listening to music
remain ongoing research, it is presumed that a certain degree of synchrony can be observed
while listening to music and building up expectations. Event-related potentials (ERPs), measured by
electroencephalography (EEG) of participants while listening tomusic, show synchronized dynamics
between different brain regions [18, 19]. These studies indicate that the increase of synchronization
represents musical large-scale form perception. Moreover, it has been observed that areas of the
whole brain are involved regarding neuronal dynamics during perception [10]. Therefore, we
propose to investigate the general influence of sound on empirical brain networks. We model the
spiking dynamics of the neurons by the paradigmatic FitzHugh–Nagumo model, and investigate
possible partial synchronization patterns induced by an external sound source, which is connected to
the auditory cortex of the human brain. Furthermore, It is a well-known fact that an important
feature of musical sound perception is tonal fusion [20]. Although sound has in general a rich
overtone spectrum, subjects perceive only one musical pitch which is a fusion of all partials of the
spectrum. Against this background, we concentrate our general study on an external sound source
with an amplitude and a single frequency, neglecting the complexity of music and its distinct effects
in different frequency bands within the brain oscillations. Within the scope of this work, we have
restricted ourselves to a minimal model with no node-specific behavior to reveal the impact of a
periodic perturbation.

An intriguing synchronization phenomenon in networks is relay (or remote) synchronization
between layers which are not directly connected, and interact via an intermediate (relay) layer
[21]. The simplest realization of such a system is a triplex network where a relay layer in the
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middle acts as a transmitter between the two outer layers.
Remote synchronization, a regime where pairs of nodes
synchronize despite their large distances on the network
graph, has been shown to depend on the network
symmetries [22–26]. Recently the notion of relay
synchronization has been extended from completely
synchronized states to partial synchronization patterns in
the individual layers of a three-layer multiplex network. It
has been shown that the three-layer structure of the network
allows for (partial) synchronization of chimera states in the
outer layers via the relay layer [27–31]. Going towards more
realistic models, time-delay plays an important role in the
modeling of the dynamics of complex networks. In brain
networks, the communication speed will be affected by the
distance between regions and therefore a stimulation applied
to one region needs time to reach a different region. In such
delayed system, it is possible to predict if the effects of
stimulation remain focal or spread globally [32]. More
generally, time delays due to propagation over the white-
matter tracts have been shown to organize the brain
network synchronization dynamics for different types of
oscillatory nodes [33]. Within the scope of this paper, we
focus on the requirements for a simple model to exhibit partial
synchronization patterns, which have been experimentally
observed [18, 19]. Therefore, we defer the consideration of
time delays for now.

2 MODEL

We consider an empirical structural brain network shown in
Figure 1 where every region of interest is modeled by a single
FitzHugh–Nagumo (FHN) oscillator.

The weighted adjacency matrix A � {Akj} of size 90 × 90,
with node indices k ∈ N � {1, 2, . . . , 90} was obtained from
averaged diffusion-weighted magnetic resonance imaging
data measured in 20 healthy human subjects. For details of
the measurement procedure including acquisition parameters,
see [34], for previous utilization of the structural networks to
analyze chimera states see [7, 9, 35]. The data were analyzed
using probabilistic tractography as implemented in the FMRIB
Software Library, where FMRIB stands for Functional
Magnetic Resonance Imaging of the Brain (www.fmrib.ox.
ac.uk/fsl/). The anatomic network of the cortex and
subcortex is measured using Diffusion Tensor Imaging
(DTI) and subsequently divided into 90 predefined regions
according to the Automated Anatomical Labeling (AAL) atlas
[36]. Each node of the network corresponds to a brain region.
Note that in contrast to the original AAL indexing, where
sequential indices correspond to homologous brain regions,
the indices in Figure 1 are rearranged such that k ∈ NL �
{1, 2, . . . , 45} corresponds to left and k ∈ NR � {46, . . . , 90} to
the right hemisphere. Thereby the hemispheric structure of the
brain, i.e., stronger intra-hemispheric coupling compared to
inter-hemispheric coupling, is highlighted (Figure 1).

The structural connectivity matrices serve as a realistic
input for modeling, rather than as exact information
concerning the existence and strength of each connection in
the human brain. The pipeline for constructing such
connectivity information using diffusion tractography is
known to face a range of challenges [37]. While some
estimates of the strength and direction of structural
connections from measurements of brain activity can in
principle be attempted, the relation of these can vary
dramatically with (experimentally unknown) parameters of
the local dynamics and coupling function [38].

The auditory cortex is the part of the temporal lobe that
processes auditory information in humans. It is a part of the
auditory system, performing basic and higher functions in
hearing and is located bilaterally, roughly at the upper sides of
the temporal lobes, i.e., corresponding to the AAL indexing k �
41, 86 (temporal sup L/R). The auditory cortex takes part in the
spectrotemporal analysis of the inputs passed on from the ear.

Each node corresponding to a brain region is modeled by the
FitzHugh–Nagumo (FHN) model with external stimulus, a
paradigmatic model for neuronal spiking [39–41]. Note that
while the FitzHugh-Nagumo model is a simplified model of a
single neuron, it is also often used as a generic model for excitable
media on a coarse-grained level [42, 43]. Thus the dynamics of the
network reads:

FIGURE 1 | (color online) Model for the hemispheric brain structure:
Weighted adjacency matrix Akj of the averaged empirical structural brain
network derived from twenty healthy human subjects by averaging over the
coupling between two brain regions k and j. The brain regions k, j are
taken from the Automated Anatomic Labeling atlas [36], but re-labeled such
that k � 1, . . . ,45 and k � 46, . . . , 90 correspond to the left and right
hemisphere, respectively. After [9].
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ε _uk � uk − u3
k

3
− vk

+ σ∑N
j�1

Akj[Buu(uj − uk) + Buv(vj − vk)]
+ Ckc cosωt

(1a)

_vk � uk + a

+ σ∑N
j�1

Akj[Bvu(uj − uk) + Bvv(vj − vk)], (1b)

where ε � 0.05 describes the timescale separation between the fast
activator variable (neuron membrane potential) u and the slow
inhibitor (recovery variable) v [40]. Depending on the threshold
parameter a, the FHN model may exhibit excitable behavior
(|a|> 1) or self-sustained oscillations (|a|< 1). We use the FHN
model in the oscillatory regime and thus fix the threshold
parameter at a � 0.5 sufficiently far from the Hopf bifurcation
point. The external stimulus is modeled by a trigonometric
function with frequency ω and amplitude γ and is applied to
the brain areas k � 41, 86 associated with the auditory cortex, i.e.
Ck � 1 if k � 41 or 86 and zero otherwise. The coupling between
the single regions is given by the coupling strength σ. As we are
looking for partial synchronization patterns we fix σ � 0.6 similar
to numerical studies of synchronization phenomena during
unihemispheric sleep [7] and epileptic seizures [9] where
partial synchronization patterns have been observed. The
interaction scheme between nodes is characterized by a
rotational coupling matrix:

B � (Buu Buv

Bvu Bvv
) � ( cos ϕ sinϕ

−sinϕ cos ϕ
), (2)

with coupling phase ϕ � π
2 − 0.1, causing primarily an activator-

inhibitor cross-coupling. This particular scheme was shown to be
crucial for the occurrence of partial synchronization patterns in
ring topologies [44] as it reduces the stability of the completely
synchronized state. Also in the modeling of epileptic-seizure-
related synchronization phenomena [9], where a part of the brain
synchronizes, it turned out that such a cross-coupling is
important. The subtle interplay of excitatory and inhibitory
interaction is typical of the critical state at the edge of
different dynamical regimes in which the brain operates [45],
and gives rise to partial synchronization patterns which are not
found otherwise.

3 METHODS

We explore the dynamical behavior by calculating the mean
phase velocity ωk � 2πMk/ΔT for each node k, where ΔT
denotes the time interval during which M complete rotations
are realized. Throughout the paper we use ΔT � 10, 000. For all
simulations we use initial conditions randomly distributed on the
circle u2k + v2k � 4. In case of an uncoupled system (σ � 0), the
mean phase velocity (or natural frequency) of each node is
ωk � ωFHN ≈ 2.6. Furthermore we introduce hemispheric
measures that characterize the degree of synchronization of

the sub-networks and give complementary information. First,
the spatially averaged mean phase velocity is:

ω � 1
90

∑N
k�1

ωk, (3)

Thus ω corresponds to the mean phase velocity averaged over
the left and right hemisphere. Second, the Kuramoto order
parameter:

R(t) � 1
90

∣∣∣∣∣∣∣∣∣∑
N

k�1
exp[iθk(t)]

∣∣∣∣∣∣∣∣∣, (4)

is calculated by means of an abstract dynamical phase θk that can
be obtained from the standard geometric phase ~ϕk(t) �
arctan(vk/uk) by a transformation which yields constant phase
velocity _θk. For an uncoupled FHN oscillator the function t(~ϕk) is
calculated numerically, assigning a value of time 0< t(~ϕk)<T for
every value of the geometric phase, where T is the oscillation
period. The dynamical phase is then defined as θk � 2πt(~ϕk)/T ,
which yields _θk � const. Thereby identical, uncoupled oscillators
have a constant phase relation with respect to the dynamical
phase. Fluctuations of the order parameter R caused by the FHN
model’s slow-fast time scales are suppressed and a change in R
indeed reflects a change in the degree of synchronization. The
Kuramoto order parameter may vary between 0 and 1, where R �
1 corresponds to complete phase synchronization, and small
values characterize spatially desynchronized states.
Additionally, we calculate the temporal mean of the Kuramoto
order parameter

〈R(t)〉 � 1
ΔT ∫ΔT

0
R(t)dt (5)

to estimate the general dynamical behavior of the system over
time. Similarly, the temporal mean 〈Ω(t)〉 of the collective
frequency Ω of the mean field [46], defined by

Ω(t) ≡ _ψ(t), R(t)eiψ(t) � 1
90

∑N
k�1

exp[iθk(t)] (6)

can be considered, and compared with the spatially averaged
mean phase velocity.

4 SYNCHRONIZATION REGIONS

We investigate synchronization scenarios emerging from an
external periodic stimulus in the auditory cortices of both
hemispheres (k � 41, 86). Figure 2 shows synchronization
scenarios of an empirical structural brain network in
dependence of the frequency ω and amplitude γ of the external
stimulus. The light colored regions in Figure 2A indicates
synchronized dynamics, whereas the darker colors indicate
desynchronized dynamics. There is a light colored stripe for ω
� 2.6 which indicates a Kuramoto order parameter 〈R〉 ≈ 0.8 and a
light colored tongue starting at ω � 2.4, c � 0.04. The hatched
region in Figure 2A stands for a low standard deviation < 0.1 of the
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temporal mean of the Kuramoto order parameter 〈R〉. It indicates
the absence of strong fluctuations of R(t) and therefore a constant
high level of synchrony in time. Figure 2B shows the drop of the
spatially averaged mean phase velocity ω in case of coherent
dynamics in the synchronization regions of Figure 2A. In the
upper region, ω takes over the value of the frequency ω of the
external stimulus, whereas in the synchronization tongue ω keeps
its value of ω � 2.4.

It turns out that by taking the frequency ω of the external
stimulus as a control parameter, one can change the level of
synchrony of the system. Figure 3 depicts the details of the
transition to synchronization for increasing values of the

frequency ω of the external stimulus. Fixing the amplitude
c � 0.06, we take a closer look on the temporal evolution of R
and the mean phase velocities in the system for different regions in
Figure 2: In Figure 3A the temporal evolution of the Kuramoto
order parameter is similar to the system behavior without external
stimulus, i.e., it exhibits large temporal fluctuations. In the right
column the phase velocities of all nodes are plotted, the horizontal
grey dotted line indicates the temporal average of the collective
mean-field frequency Ω. Only the phase velocity of the auditory
cortex follows the frequency of the external driving stimulus ω �
2.3 and therefore is lower than the frequency of the other nodes
ωk ≈ 2.8. Increasing the external frequency to ω � 2.4 yields an

FIGURE 2 | (color online) Synchronization tongues in brain network with external stimulus: (A) The temporal mean of the Kuramoto order parameter 〈R〉 for
simulation time ΔT � 10,000 and (B) the spatially averaged mean phase velocity ω in the parameter plane of the frequency ω of the external stimulus and its amplitude γ.
The light color in panel (A) stands for synchronization and the darker color for desynchronization. In the hatched region the standard deviation of 〈R〉 is less than 0.1,
which indicates the absence of strong fluctuations of R in time. The dynamics of the four marked dots in each panel are shown in Figures 3A–D, 4A–D. Other
parameters are given by σ � 0.6, ϵ � 0.05, a � 0.5, and ϕ � π

2 − 0.1.

FIGURE 3 | (color online) Dynamical scenarios: dynamics inside and outside the synchronization regions (marked as black dots in Figure 2) by the Kuramoto order
parameter R (left column) and the mean phase velocities ωk (right column) for increasing values of the frequency ω of the external stimulus ω � 2.30 (A), ω � 2.44 (B), ω �
2.50 (C), and ω � 2.60 (D) for fixed amplitude c � 0.06. The vertical dashed line in the right column separates the left and right hemisphere; the horizontal grey dotted line
indicates the temporal average of the mean-field frequency ω. The red dots mark the nodes of the auditory cortical regions (k � 41, 86). Other parameters are as in
Figure 2.
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abrupt transition to a synchronized state. In Figure 3B the
Kuramoto order parameter R ≈ 0.95 and the mean phase
velocities indicate a synchronous dynamical behavior, which
agrees with the collective frequency Ω of the mean-field (grey
dotted horizontal line). With a further increment to ω � 2.5, the
system loses synchrony (see Figure 3C) and enters the region
between the two synchronization regions in Figure 2A. For ω � 2.6
in Figure 3D, which corresponds to the natural frequency of the
uncoupled oscillators, the system regains synchronization, though
the Kuramoto order parameter with R ≈ 0.8 is lower than in the
synchronization tongue. Remarkable is the fact of a dynamical
asymmetry shown by themean phase velocities.While the nodes of
the right hemisphere exhibit an equal mean phase velocity, a part of
the left hemisphere exhibits a faster dynamic similar to dynamics of
unihemispheric sleep studied in [7]. In such states one hemisphere
is synchronized, whereas the other hemisphere is partly
desynchronized.

For a better insight, Figure 4 shows the space-time plot of the
variable uk for the corresponding parameter values in Figure 3. In
Figures 4B,D, the dynamics inside the two synchronization
regions is depicted. The perturbation in the mean phase
velocity profile in the right panel of Figure 3D, can be
detected also in the corresponding perturbations in Figure 4D.
Comparing Figures 4A,C, we can see an increase of synchronized
time segments. This increase will be analyzed quantitatively in
more detail in the inset of Figure 5.

5 TRANSITION TO SYNCHRONIZATION

There are two frequencies which play an important role for the
dynamics of the system. On the one hand, in Figure 2A a broad
synchronization region is located at a frequency ω ≈ 2.6, which is

the frequency of the uncoupled FHN oscillator ωFHN. Although
the external stimulus effects only the two auditory nodes (k �
41,86), we can observe a transition to synchronization of the
whole system approaching ω ≈ 2.6 already for small values of the
amplitude c> 0.004. On the other hand, we can detect a
synchronization tongue with a lower boundary at ω ≈ 2.4 and
an upper boundary increasing linearly with the amplitude γ. In
contrast to the first, smooth transition, we can find here a sharp
transition to synchronized dynamics, similar to a first order
transition, depicted by the high contrast of the boarder of the
synchronization tongue in Figure 2A. In this synchronization
tongue, the nodes oscillate with an equal mean phase velocity (see
Figure 3B), but there are phase differences between them, as
indicated by 0.95<R(t)< 1 and shown in the phase-time plot in
Figure 4B. Using the fact that uj/vj and uk/vk are on the same
limit cycle in the phase space and have the same mean phase
velocity, the phase differences in the coupling term of Eq. 1 can be
effectively summed up in following way:

∑
j

AkjB( uj − uk

vj − vk
) ≈ Δteff B( _uk

_vk
), (7)

where Δteff ≪ 1 denotes the effective sum of the time intervals of
all phase differences. Neglecting cosϕ≪ 1 and setting sinϕ ≈ 1,
Eq. 1 reads for k≠ 41, 86:

ε _uk � uk − u3
k

3
− vk − σΔteff _vk

_vk � uk + a + σΔteff _uk

(8)

FIGURE 4 | (color online) Synchronized and desynchronized dynamics:
Shown are the space-time plot of the variable uk inside and outside the
synchronization regions (marked as black dots in Figure 2) for increasing
values of the frequency ω of the external stimulus ω � 2.30 (A), ω �
2.44 (B), ω � 2.50 (C), and ω � 2.60 (D) for fixed amplitude c � 0.06. The
panels correspond to the panels in Figure 3. Other parameters are as in
Figure 2.

FIGURE 5 | (color online) Transition scenarios: (A) temporal mean of the
Kuramoto order parameter 〈R〉 (dark blue) and the spatially averaged mean
phase velocities ω (light orange) in dependence on the frequency ω of the
external stimulus for a fixed amplitude c � 0.052. The vertical bars
indicate the standard deviation of the temporal mean of the Kuramoto order
parameter and the spatially averaged mean phase velocities, respectively. As
input nodes, the auditory cortices k � 41, 86 are chosen. In case of a different
input (k � 1, 45) the corresponding light grey curves are shown in panel (A).
The inset in panel (A) depicts ρs � Ns

ΔTL, the number Ns of synchronized time
intervals (R(t)> 0.8∀t) divided by a simulation time of ΔTL � 30, 000 for values
of the frequency ω between the two synchronization regions. The vertical bars
denote the standard deviation of the length of these synchronized time
intervals. (B) 〈R〉 for a larger range of driving frequencies ω, showing higher
resonance tonges. Other parameters are as in Figure 2.
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The local dynamics of Eq. 1 is governed by a slow-fast system
(FitzHugh-Nagumo oscillator), where the slow part essentially
determines the period of the oscillations. Hence, considering the
slow motion on the falling branches of the u-nullcline ( _uk � 0) by
inserting the second equation into the first one

vk � uk − u3
k

3
− σΔteff (uk + a), (9)

the time derivative of the falling branches yields with _vk from
Eq. 8

vk � uk − u3
k

3
− σΔteff (uk + a), (10)

The separation of the variables gives

dt � 1 − u2k − 2σΔteff
uk + a

duk, (11)

where dt can be integrated over one oscillation period T. As
shown in [47], this leads in case of synchronization to a linear
dependence of the oscillation period Tsync � ∫T

0
dt on the effective

sum of the phase differences proportional to Δteff . For incoherent
distribution of the phases of each node k (see Figure 4D), the
phase differences between the single nodes are also strongly
distributed and thus Δteff ≈ 0. In this case, the natural
frequency of the uncoupled system plays an important role,
provided that the mean phase velocity of all oscillators is still
almost equal as in case of Figure 2D.

This could explain on one side the fact that we observe a
synchronization tongue at ω ≈ 2.4 (which is smaller than the
frequency of an uncoupled oscillator ωFHN ≈ 2.6), and on the
other side, the linear boundaries of the synchronization tongue
for increasing amplitude γ. The increase of γ yields an increase of
the sum of the phase differences in the coupling term of Eq.1 and
therefore an increase of the effective sum of the time intervals
Δteff .

In Figure 5A, both transitions are depicted in dependence on
the frequency ω for a fixed amplitude c � 0.052. We can see an
abrupt increase and decrease of the temporal mean of the
Kuramoto order parameter 〈R〉 before and after ω ≈ 2.4,
respectively. In contrast, in approaching the upper
synchronization region starting from ω ≈ 2.6, 〈R〉 increases
more slowly than at the transition to the synchronization
tongue (ω ≈ 2.4). In case of synchronization the standard
deviation of 〈R〉, displayed by the vertical bars, is smaller than
in case of desynchronized dynamics. That holds also for the
spatially averaged mean phase velocities ω, which in case of
synchronization takes over the lower value of the frequency ω
of the external stimulus. Also for ω> 2.6, ω is equal to ω, whereas
the standard deviation of ω increases linearly with ω. In contrast,
there is no effect on the system for ω< 2.4. Neither 〈R〉 nor ω
show a different behavior for such values of ω. The high value of
the standard deviation of 〈R〉 stands for dynamics as shown in
Figure 3A, where the Kuramoto order parameter R(t) is
fluctuating over its whole bandwidth R ∈ [0, 1]. Simulations
show that for ω > 3.0 the dynamical behavior of the system
becomes similar to that with ω � 2.3. For both parameter intervals
of ω, there is no effect on the system. Simulations show also that a
similar transition to synchronization at ω � 2.6 can be found for
higher harmonics, i.e., multiple values ofω � 2.6. In Figure 5B, we
can identify synchronization regions for ω � 5.2, 7.8, and 10.4
becoming less pronounced for increasing ω, i.e., having a smaller
extension in the plane of ω and γ. In contrast, we could not detect
repeated synchronization tongues of ω for multiple values of ω �
2.4. This indicates the existence of two different synchronization
mechanisms.

The existence of two synchronization regions depends on the
choice to which nodes the external stimulus is supplied. In case of
a different input, for instance k � 1,45 in contrast to k � 41,86, the
light grey curves in Figure 5A depict the corresponding
dependence of the Kuramoto order parameter 〈R〉 and the

FIGURE 6 | (color online) Transition scenarios: The increase of the regularity and duration of synchronized time intervals shown by the temporal evolution of the
Kuramoto order parameter R (left column) and themean phase velocities ωk (right column) for increasing values of the frequency ω of the external stimulus ω � 2.47 (A), ω
� 2.49 (B), ω � 2.51 (C), and ω � 2.53 (D) for fixed amplitude c � 0.06. The vertical dashed line in the right column separates the left and right hemisphere, and
the horizontal grey dotted line indicates the temporal average of the mean-field frequencyΩ. The red colored dots indicate the nodes of the auditory cortical regions
(k � 41,86). Other parameters as in Figure 2.
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spatially averaged mean phase velocities ω upon the frequency ω
of the external stimulus. The synchronization region at ω ≈ 2.4 is
missing here and only one synchronization region
remains (ω> 2.5).

In the following, we analyze the region between the two
synchronization areas in more detail. Figure 6 depicts the
dynamical behavior when we approach the synchronization
region by increasing the frequency ω of the external stimulus
in the neighborhood of the synchronization region at ω � 2.6.
For ω � 2.47 in Figure 6A, the time series of the Kuramoto
order parameter shows familiar temporal fluctuations with only
short episodes of synchronization (R(t)> 0.8). In [9] the
authors define the threshold R � 0.8 as the onset of an
epileptic seizure. By increasing the frequency ω, one can
increase the quantity of these episodes, as well as their
duration. Figure 6D with ω � 2.51 features much longer
duration of synchronized episodes, moreover the duration of
the single episodes are comparable in length. This transition in
Figures 6A–D can be also seen in Figure 5A. The inset of
Figure 5A confirms the increasing regularity between the two
synchronization regions by depicting ρs � Ns

ΔTL
vs. ω, where Ns is

the number of synchronized time intervals (R(t)> 0.8∀ t) and
ΔTL � 30, 000 is the simulation time. The vertical bars
denote the standard deviation of the length of these
synchronized time intervals. With increasing ω not only the
number of synchronized time intervals is increasing, but
the standard deviation of their duration is decreasing. For
ω � 2.6 we enter the synchronization region, where the
value of ρs drops due to the nearly consistently synchronized
dynamics.

Finally, the mean phase velocities in the right column of
Figure 6 display the transition to frequency synchronization.
While the frequency of the two driven nodes (k � 41, 86)
converges to the frequency of an uncoupled FHN oscillator
ωFHN ≈ 2.6, also the frequencies of all the other nodes are
adjusted, especially those with a much higher frequency (k �
18, 63).

6 CONCLUSION

We have investigated the influence of an external sound source
on the dynamics of a network with empirical structural
connectivity. It has been found that depending on the
frequency and amplitude of the sound source,
synchronization can be induced in the dynamics of the
system. We have shown that two frequencies play an
important role for synchronization, particularly the natural
frequency of the uncoupled oscillator and the frequency of
the coupled system. Moreover, the degree of synchronization
is gradually increased when the frequency of the uncoupled
oscillator or multiple values of it are approached. Furthermore,
we have analyzed the linear dependence of the synchronization
borders upon the amplitude of the external sound, which can
also be characterized as the volume of the sound. This has

resulted in the observation that the synchronization region can
be enlarged by increasing volume. We have demonstrated the
dynamical behavior of the system in the transition to
synchronization. By tuning the frequency of the external
sound appropriately, we have shown that the level of
synchrony can be increased.

These results are in accordance with experiments of Bader’s
group [18, 19] that music induces a certain degree of synchrony in
the human brain. This group has shown that listening to music
can have remarkable influence on the brain dynamics, in
particular, a periodic alternation between synchronization and
desynchronization. Moreover, such an alternation reflects the
variability of the system; this can be seen as a critical state between
a fully synchronized and a desynchronized state. It is known that
the brain is operating in a critical state at the edge of different
dynamical regimes [45], exhibiting hysteresis and avalanche
phenomena as seen in critical phenomena and phase
transitions [48–50]. By choosing appropriate parameters, we
have reported an intriguing dynamical behavior regarding the
transition to synchronization, and have observed the induced
alternation between high and low degrees of synchronization. To
sum up, an external sound source connected to the brain allows
for synchronization dynamics, which may be used to model the
effect of music on the human brain.
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