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Cooperative transport of large food loads by Paratrechina longicornis ants demands
repeated decision-making. Inspired by the Evidence Accumulation (EA) model classically
used to describe decision-making in the brain, we conducted a binary choice experiment
where carrying ants rely on social information to choose between two paths. We found that
the carried load performs a biased random walk that continuously alternates between the
two options. We show that this motion constitutes a physical realization of the abstract EA
model and exhibits an emergent version of the psychophysical Weber’s law. In contrast to
the EAmodel, we found that the load’s random step size is not fixed but, rather, varies with
both evidence and circumstances. Using theoretical modeling we show that variable step
size expands the scope of the EA model from isolated to sequential decisions. We
hypothesize that this phenomenon may also be relevant in neuronal circuits that perform
sequential decisions.

Keywords: collective decision making, evidence accumulation model, social insects, dynamical systems, decision
theory, collective cognition, drift diffusion model

1 INTRODUCTION

The capacity to decide between multiple options is key to the survival of any organism. Typically,
decision-making was studied in an isolated, “single-shot” context where the process ends once a first
choice has been taken [1]. Under natural conditions, however, animals often diverge from this static
description and exhibit dynamic behaviors where decisions change from time to time according to
external conditions and internal states [2–7]. Sequential decision-making is particularly relevant to
foraging behavior: Foragers in a patchy environment engage in an ongoing process wherein they
continuously update their decision of whether to continue exploiting a dwindling patch or, rather,
move on in search for more profitable locations [8–10]. Such decisions are often reflected in sharp
transitions between local motions during exploitation and long-range displacements during
exploration [11]. The strong links between foraging and decision-making suggest that models
originally developed to describe isolated decisions may be extended to capture dynamic decisions in
natural foraging contexts [4, 11, 12].

The “evidence accumulation” (EA) model [13] constitutes a central neuroscientific paradigm and
is supported by empirical evidence on both the mechanistic and the behavioral levels [1, 14]. The
model describes a single binary decision which relies on incoming evidence and priors. It aims to
capture electrophysiological measurements that indicate that themoment of decision is proceeded by
a rise in neuronal firing rates up to some fixed threshold. In the model, these firing rates are
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represented by an abstract “decision variable”, which integrates
over the gathered evidence. As the evidence is typically noisy, the
dynamics of this variable are approximated by a random walk.
Asymmetric evidence which favors one decision over the other is
modeled as a bias in this random walk and effectively makes the
EA a drift-diffusion model. A decision is reached once the
decision variable surpasses a given threshold [15, 16].

The EA model was originally developed to describe isolated,
single-shot decisions. However, there is no apparent reason that
the networks and firing patterns discovered in these studies do
not play a part in more dynamic scenarios. Indeed, rising firing
rates and decision thresholds that are compatible with this model
show up in recordings from monkey brains confronted with
dynamic, foraging-inspired tasks [4, 12]. Moreover, the EAmodel
has been shown to provide a good approximation to C. elegans
sequential decisions as it forages within a patchy environment
[11]. The EA model is therefore found to be relevant in a broader
set of scenarios than those it was originally aimed to describe.
This motivates further empirical and theoretical work, aimed at
the expansion and refinement of this basic conceptual model [17].

The capacity to make decisions is not unique to individual
animals but, rather, carries over to group-living animals, which
exhibit consensus choices that preserve group cohesion [18, 19].
Even more, by integrating over collectively available information,
groups can reach decisions that are improved over those of its
individual members [20–23]. Interestingly, there are many
analogies between the decision-making mechanisms in animal
groups and in the neuronal ensembles within the relevant
decision-making areas in a single brain [24–27]. Among these
analogies, the EA model has been shown to apply to consensus
single-shot decisions taken by ants [28]. Here, we follow the
decisions that ants take during a collective foraging task as an
empirical means of revisiting the basic assumptions of the EA
model in dynamic sequential scenarios and testing different
modifications to this model [17].

We studied the decisions [29] taken by a group of ants engaged
in cooperative transport of food to the nest [30, 31]. To do this, we
confronted the ants with a binary choice within an environment
that constitutes a physical realization of the abstract EA model.
This was achieved by placing the load within a one-dimensional
track with two decoy exits, one at each end. The decoy exits’
dimensions assure that while they serve as exits for individual
ants they are too narrow to allow passage of the carried loads.
Hence, in contrast to classical binary decision making protocols
where a correct decision leads to immediate reward, in our case
the decoy exits imply the withholding of reward. This induces a
dynamic decision making process in which the cargo
continuously alternates between the two possible choices. In
the language of foraging theory, lingering near a decoy exit
corresponds to exploitation while traveling the long distance
between the two exits corresponds to an exploratory phase.

The ant behavior within the one-dimensional setup displays
similarities to decision making processes by an individual animal.
First, we demonstrate the emergence of a psychophysical Weber-
like law [32] in this collective system. Second, we show that the
motion of the carried cargo within the one-dimensional setup is
highly reminiscent of dynamics of the EA model’s decision

variable. Importantly, we identify a critical deviation between
the ants’ behavior and classical EA dynamics that extends the
scope of the evidence accumulation from isolated to sequential
decisions. Namely, we find that incoming evidence controls not
only the bias of the random motion but also its step size or
persistence length. We further show how this correction emerges
from an established microscopic model of the decisions taken by
individual ants while engaged in cooperative transport [33] and
hypothesize that similar corrections may be apparent in neuronal
circuits involved in sequential decision making. Finally, we show
how the ants’ behavior can occupy different regimes of decision-
making space and theoretically argue that these correspond to
differences in risk management.

2 RESULTS

A Experimental Setup
We tracked Paratrechina longicornis ants as they collectively
transport a large load toward their nest. Experiments included
four load sizes with radii ranging from 0.2 cm and carried by a few
individuals to 1.1 cm, carried by a few tens of ants
(Supplementary Figure S1). To pare down the binary
decision-making facet of this motion we confined the load to a
long, rectangular cross section, channel (Supplementary Section
S1) that has either one small exit at one of its ends or two identical
exits, one at each end (Figure 1). The exits were designed to be
narrow enough to deny passage of anything larger than an ant.

We placed the channel near the entrance to the ants’ nest such
that its long dimension was orientated perpendicular to the direction
to the ants’ nest. In the two exit case, the channel was placed such
that its two entrances were roughly at equal distances from the nest
entrance. Experiments were initiated after a short recruitment stage
in which wemade sure that ants reach the load through all (i.e. either
one or two) available exits. The ants’ immediate goal at this stage is to
cooperatively transport the load and deliver it through one of the
exits to the nest [33]. Since neither of the two exits allows the load to
pass, the ants are, in practice, denied of achieving this goal.

We video taped the transport process for about 1 h at a rate of
25 frames per second. The resulting movies (see sample clip in
Supplementary Video S1) were then analyzed to extract load
location as a function of time (Figure 1), the occupation of the
cargo by carrying ants (Supplementary Figures S2, S9, S11) and
the net inward fluxes of ants through each of the two exits
(Supplementary Figures S2, S3). For more details see
Supplementary Section S2.

B General Motion Characteristics
We find that when only one entrance was open, the load spent
most of the time in its near vicinity (Figures 1A1,B1). When the
load did venture away from the entrance it traveled a random
distance away, but once it changed its direction back toward the
exit, it would usually travel all the way back (Figures 1A2,B2).
This behavior is evident in the spatial distribution of the load
location which is an exponential that decays with the distance
from the exit (see histograms in Figures 1A2,B2). We find that
the decay constant of this distribution grows with load size
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(Figure 2A), but is largely independent of the flux of ants through
the single exit (see Supplementary Figure S6).

In the experiments where both entrances were open to ants, when
the load ventured away fromone exit it would traverse longer distances,

which often spanned the entire channel, to reach the opposite side
(Figures 1C,D). Loadmotion, in these experiments, wasmore irregular
for smaller loads which exhibited more frequent direction changes
when compared to the larger loads (compare Figures 1C2,D2).

FIGURE 1 | Experimental arena and sample trajectories. (A1–D1). Sample snapshots of the left half of a one exit experimental setup (A1,B1) and the two exit
experimental setup (C1,D1), with loads of radii 1.1 [cm] (B1,D1) and 0.1 [cm] (A1,C1). Full lines indicate recent load trajectories. The direction to the nest is for all panels is
indicated by the yellow arrow). (A2–D2). Sample time lines of loads position along the main channel axis. Numbering as above. A histogram of loads position is plotted to
the left of each time line. Exponential fits (orange) are provided for the single-exit experiments.

FIGURE 2 | Global properties of collective motions. (A). Mean distance traveled toward closed side in one exit experiments as a function of load size. Presented
values correspond to the length-scale of the exponential decay in the spatial distribution of the load away from the exit (Figures 1A1,B1). Error-bars represent standard
error of the mean over, from largest object to the smallest one, N � 21, 20,12 and six 15 min time windows. (B). In two exit experiments, the relative time,
Trel � (TH − TL)/(TH + TL), i.e. the normalized difference between the time spent at the exit with the higher ant influx and that with lower influx, rises with the relative
flux advantage of the majority entrance, frel � (fH − fL)/(fH + fL). Curves are calculated theoretically for a run-and-tumble model (Supplementary Equations S56–S59),
and rely on the exponential fits for the dependence of the turning probabilities (λ) on f rel (Figure 3A). Each experimental data point represents a 15 min window slice,
where the filled circles represent two side experiments and the + symbols represent one side experiments. Color code as in panel (A).
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The influx of ants through the available exits (fH from the side
with higher influx and fL from the side with lower influx) can be
viewed as a proxy for the “evidence” in favor of approaching
either one of the available exit routes. It is therefore interesting to
check how the characteristics of the ants’ collective motion
depend on these influxes. To do this we used the natural
fluctuations that occur in the influx of ants within an
experiment and in between experiments (Supplementary
Figure S3). While these fluctuations average out over long
time-scales, fluxes remain relatively stable over periods of

∼ 15 min (Supplementary Figure S3, Supplementary Section
S3). Therefore, throughout this work, we quantify the effect of ant
flux on the characteristics of the collective motion by analyzing
consecutive, non-overlapping 15 min time windows.

We found that, for all load sizes, the load tended to spend
longer times near the exit with the higher ant influx (Figure 2B).
We defined TH to be the fraction of time that the load spent near
(i.e. within 10 cm) the exit through which there is higher ant
influx, and TL the fraction of time near the exit with lower influx.
The curves in Figure 2B are not fits to the measured data points,

FIGURE 3 | Collective load motion as a random walk. (A). Turning probability per cm, λ, as a function of the signed relative flux, f
rel
. Full lines are exponential fits

(Supplementary Equation S58) and display larger slopes for larger loads. Data points at the two extremes (+ symbols in panels a–c) represent data from one exit
experiments. (B). Bias of the randommotion as a function of f rel . The Bias is calculated using the turning probabilities found in panel (A), andEq. 1. The bias, b, decreases
when the fluxes from both sides become similar. The full lines are the theoretical curves calculated with the use of the λ dependencies as found in (A) and assuming
a run-and-tumble model (see Supplementary Equation S61). (C). Mean step size, s, as a function of f rel . Step size is calculated using the turning probabilities found in
panel (A), and Eq. 1. The step size increases when the fluxes through both exits are similar. The brown horizontal line denotes the size of the system. Full lines are the
theoretical curves calculated by using of the λ dependencies found in panel a. and assuming a run-and-tumblemodel (see Supplementary Equation S60). (D). Relative
time advantage in favor of the dominant exit (color coded) as a function of both bias and step size. These were calculated by simulating a 1D biased random walk, with a
exponentially distributed step size (whosemean value is denoted on the x-axis) and constant bias (y-axis), that is bound within a 55 cm domain. Overlaid on the graph are
lines which indicate the relation between bias and step size for the different load sizes (as deduced from panels b and c). Color code in all panels as specified in panel (A).
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but are calculated theoretically using a run-and-tumble model
(Supplementary Equations S56–S59), and rely on the
exponential fits to the turning probabilities (λ) as function of
f rel (Figure 3A).

We find that the relative time (Trel � TH−TL
TH+TL

monotonously

increases with the relative flux of ants, f rel � fH−fL
fH+fL, (Figure 2B).

While this increase was near-linear for the load of radius 0.62
[cm], we observe a sub-linear increase for the larger load (1.1
[cm]) and super-linear increase for the smaller load one of radius
0.28 [cm] (Figure 2B).

Figure 2B does not include the experimental data for the smallest
object (r � 0.2cm). This is since objects of this size were observed to
spend extended time periods moving up and down the closed end of
the channel. Such motion along a barrier with an opening was
observed in previous studies [33, 34], and emphasizes that near the
ends of the channel the motion of the smallest object was distinctly
non-one-dimensional (with respect to the channel’s long axis). The
time spent by this object near the ends was therefore much longer,
and incomparable to the time spent at the ends by the larger objects
(which moved in a quasi-one-dimensional manner along the
channel length, and near the ends) nor to the our one-
dimensional models as presented below.

C Collective Motion as a Decision Process
We interpret the cargo’s motion as a binary choice between the
two alternative exit routes. This interpretation allows us to
approach the collective motion through the prism of well-
established neuronal decision-making models. In this section
we present the relations between the assumptions of the EA
model and the properties of our experimental system. We then
point to similarities and differences between EA model
predictions and the ants’ empirical motion.

A first assumption of the EA model is that information is
integrated by accumulating fragments of evidence, each of which
supports one or the other decision. These evidence fragments are
analogous to the small quanta of information that individual ant
attachments provide the carrying group [33]. Further, since most
newly attached ants are “informed” [33], and tend to guide (pull)
the group toward the direction from which they approached [29],
differences in ant fluxes through the two exits translate to
asymmetric evidence in the EA model.

A second EA model assumption is that the evidence is additively
accumulated by an abstract one-dimensional decision variable that
performs a random walk, which is biased in the presence of
asymmetric evidence. A main advantage of the ant system is that,
unlike brains, the analog of the abstract decision variable is readily
and directly measurable as the location of the load. The dynamics of
this decision variable are manifested as the load’s motion.

The last major assumption of the EA model is that a
decision occurs once the decision variable reaches a
threshold value. Viewing the load motion as a decision-
making process we define a decision as the presence of the
load in the vicinity of one of the two exits. We note that since in
our experimental system both decisions lead to impassable
routes, no reward is ever provided and decisions are ongoing
rather than restricted to a single shot.

Since dynamic sequential decisions need not be qualitatively
different from single-shot, isolated decisions, it is not a far-
fetched assumption that they share the same underlying
principles [6]. It is therefore of interest to explore the
possibility of extending the EA model to include ongoing,
sequential decisions.

Our experimental system therefore complies with many of the
model’s assumptions. While this fact may not be surprising per se,
it does allow for a comparison between the ants’ collective
transport dynamics to the EA model’s predictions. An extreme
scenario is one where only one of the exits is open. In this case, ant
fluxes arrive only from the available direction such that the
evidence for this side is overwhelming. Therefore, the EA model
would predict a strongly biased random walk. This prediction is
indeed compatible with the exponential distribution of the load
location in the single alternative case (Figures 1A–B).

The ant collective motion deviates from the predictions of the
EA model when both exits are open. In this case, some evidence
supports motion toward the right exit while, other, toward the
left. Consider, for example, the case where the ant flux through
one exit is much larger than the flux through the other. Since this
is a small deviation from the single exit case, the EA model would
predict a small change to the bias. We would therefore expect that
the spatial distributions, while slightly wider, should still be
localized near the dominant exit. Another way of looking at
this is the following: for the three smaller loads the step size, as
measured in the single sided experiments, is under 3 cm
(Figure 2A) which is very small in comparison to the length
of the entire system. In these cases, if there is a bias toward one of
the openings then traversing the corridor would require a large
number of steps against the bias and this is highly improbable.
Nevertheless, our empirical observations are not compatible with
these descriptions. Indeed, even when ant fluxes are highly
imbalanced the load often crosses the entire channel to reach
the minority exit. This is even more pronounced for large objects
where the sub-linear increase in relative time with respect to the
relative flux, f rel (Figure 2B), implies that the minority option
attracts the load for a disproportionately large fraction of the
time. This constitutes a clear deviation between the predictions of
the basic EA model and the ants’ collective motion. In the
following sections, we discuss the reasons for this deviation as
well as the central role that it plays in facilitating sequential
decision making in natural contexts.

D Relative-Flux Affects Both Bias and Step
Size
Next, we generalize the simple biased-random-walk version of the
EA model, as to make it compatible with our empirical
observations. To do this we take a more detailed view on the
actual dynamics of the load’s random motion.

The randommotion of the load can be described by a run-and-
tumble process (see Supplementary Section S4 and
Supplementary Equation S54), in which the load either
continues (runs) in its current direction or, with probability
λR,L per unit length, tumbles and switches direction (turns to
the right/left). The inverse of the tumbling probabilities is the
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persistence length (the average step-size between consecutive
tumbles) in each direction.

The run-and-tumble model provides a good description of the
one-side experiments. In this case, the probability to turn away
from the exit is essentially zero, so only one value of λ is finite.
Hence, the decay constant of the exponential distributions in
Figures 1A1,B1 is simply the persistence length for the motion
away from the exit, or λ−1 (Figure 2A).

When both exits are open, we find that the turning
probabilities λR,L vary not only with object size but also with
the signed relative flux of ants, f

rel
, (Figure 3A). The signed

relative flux is defined as f
rel � fT−fA

fT+fA where fT is the ant influx
through the exit toward which the load is heading and fA is the
influx through the exit it is heading away from. The relative flux,
as defined above, is simply the absolute value of the signed
relative flux. The clear dependence of turning probabilities on
f
rel

is consistent with the fact that the ants’ decision making
depends on this variable. Indeed, turning rate data shows that
turning rates are more informatively described by relative flux
(Figure 2B) than by flux differences (Supplementary Figures
S7A,B), and that this holds for all load sizes. This finding
implies that, similar to previous observations [35, 36], here
too the ants as a group follow a form of Weber-like
psychophysical rule and are sensitive to the relative
differences in the relevant stimuli.

Notably, the probability to turn away from the exit with the
larger signed relative flux (positive f

rel
) is significantly

(exponentially) smaller than the probability to turn toward it
(negative f

rel
). We quantified the dependence of the measured

turning rates on f
rel

using exponential fits (Figure 3A,
Supplementary Equation S58). We then used these fits to
assess the effect of these probabilities on the global decision-
making parameters. We find that the relative time spent near
each side as a function of f rel , as calculated using the run-and-
tumble model (Supplementary Equations S57, S59), stands in
agreement with the experimental data for any load size
(Figure 2B).

To connect these findings to the language of biased random
walks, typically employed in EA models, we derive the following
mapping (Supplementary Section S4):

s � 1
λR + λL

; b � 1
2
λR − λL
λR + λL

. (1)

We find that the bias b (Figure 3B), and the average step size
s (Figure 3C), depend on f rel and on load size. Note that for the
largest object (blue data points in Figure 3B) we have not
observed any instances where the direction of motion switches
against the bias in the influx of ants (Correspondingly, there
are also no data points with positive f

rel
in Figure 3A). This

means that one of the lambda’s that we extract from this data is
zero, and when substituted in Eq. 1 gives a bias of 0.5
(Figure 3B). The lines in Figure 3B show the bias as
calculated from the exponential fits to the experimental data
in Figure 3A, they are not fitted to the data in Figure 3B. For
the largest objects the step-size is larger than the length of the
channel (Figure 3C), which makes it difficult to obtain the

intrinsic run-and-tumble parameters of the motion from the
experimental data.

The variations in the step size allow the ants to tune their
behavior and, depending on the bias, either repeatably visit both
sides of the channel or remain confined to an area near the exit
with the higher flux (Figure 3D). By comparison, a simulated
random walker which has control over bias alone is limited: if its
step size is small compared to the tube length (say 10 cm,
compared to the tube of length 55 cm, which applies to all
load sizes in the case of a single open exit (Figure 2A)), then
the object fully commits to the majority exit even if the bias is
merely ∼ 0.2. In other words, a modest bias prevents the ants
from exploring the other exit (white area on the top-left side of
Figure 3D). On the other extreme, if the step size is large (say
50 cm), the ants continue to explore both exits when the bias is
intermediate (black area on the right side of Figure 3D), which
may be useful if both exits are open but wasteful, if one exit is
completely closed.

Compared to this hypothetical random walker, the ants
exhibit a more flexible behavior that depends on the cargo size
(see colored lines in Figure 3D). For small cargoes (black curve
in Figure 3D), the small step size means that a modest bias
commits the ants to the majority exit. This may be useful, as for
a small cargo its less crucial to find the correct (optimal) path,
since it is highly likely that due to its size it can eventually pass
through both routes. However, for larger cargoes (see, for
example, red curve in Figure 3D) the ants use a large step-
size even for intermediate biases and this allows them to
thoroughly explore both exits. In this way, the large cargo,
which is difficult to transport, fully explores the available paths
to find a traversable route. Only when the bias is very large, the
ants reduce the step-size of the large cargo and this allows them
to commit to the probable exit and avoid wasting time at the
closed side. In subsection F (below) we present an abstract
quantitative model to study the optimal balance between the
time invested at each exit under different circumstances.

Hence, decision making and time balancing are direct
consequences of the effect of the relative flux on step size.
Specifically, a larger step size when the fluxes from both exits
are similar allow the ants to collectively explore both options
(Figure 3C). The condition that gives rise to a monotonous
increase in step size, s, as f rel decreases from a value of 1 (the
single side case) to 0 (the two-option cases) is that λ is a convex
function in f rel . In other words, the condition that ds/df rel < 0,
translates into (using Eq. 1):λ′(f rel)> λ′(−f rel), which indeed
holds for the measured exponential dependencies shown in
Figure 3A.

In the next section we present a microscopic, mechanical
model of individual ant forces and decisions [33] and tune it
to fit the experimental results. We then use this model to explain
two central aspects of the ant decision making process: the
emergence of Weber’s law and the exponential dependence of
the turning rate on f rel .

E Microscopic Theory
We turn to investigate the emergent collective behavior observed
in the experiments described above, using an established
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microscopic model [33]. In accordance with the quasi-one-
dimensional nature of our experimental setup we employed a
one-dimensional version of the two-dimensional model as used
in previous studies [33, 34, 37]. The one dimensional model
employs a simplified object with just a front and a back which
moves on a line. The adjustments made to reduce the two
dimensional system into a 1D model are explained in detail in
SI section S5.

The model is based on the experimental observation that ants
attached to the object either pull or lift it. In calculating the net
force we ignore the lifters’ contribution whose effect is a reduction
in friction that is usually saturated, and assume that each puller
applies a force whosemagnitude is constant - f0. The total number
of binding sites on each side of the one-dimensional objects is
denoted byN, which is proportional to the object size. We further
assume that ants can only pull toward the side to which they are
attached [37]. The net force is then simply F � f0(nR − nL) with
nR/L being the number of pullers on the right/left. The speed of the
object, v, is proportional to the net force exerted on it, F [33].

In the model, carrying ants can change their role between
puller and lifter. The rate at which an individual ant switches her

role depends on the size and direction of the total force, as exerted
by all other ants, with respect to the body axis of the ant [33]:

rRp→ l � k
1

1 + e
F

Find

� k
1

1 + eβΔn
; rRl→ p � k

1

1 + e−
F

Find

� k
1

1 + e−βΔn

rLp→ l � k
1

1 + e−
F

Find

� k
1

1 + e−βΔn
; rLl→ p � k

1

1 + e
F

Find

� k
1

1 + eβΔn
;

(2)

where rRp→ l , for example, is the rate at which a puller on the right
becomes a lifter, and k is a constant with dimensions of [1/time].
The parameter Find acts as a temperature analogue, and
determines the degree to which an ant tends to align with the
total force exerted by the rest of the group. We further use the
notations β � f0/Find and Δn � nR − nL. With this choice of rates
ants are more likely to align themselves in a way that maximizes
the total force, F, as they spontaneously form an ordered state
below a critical value of Find , or above a critical total number of
ants [33].

The role-changing rates specified in Eq. 2 apply only to ants
which are attached to the object. However, ants come and go, and

FIGURE 4 |Microscopic model captures empirical properties of motion. (A–B). Simulated sample trajectories for one exit (A) and two exit (B) trajectories and two
load sizes (4 and 15 ants). These are qualitatively comparable to the experimental trajectories shown in Figures 1A2–D2. (C). Mean distance traveled toward closed side
in one side experiments. Data points were calculated assuming mean ant occupancy values that coincide with those measured in the one-side experiments
(Supplementary Figure S11). Error-bars represent standard error of the mean over, from largest object to the smallest one, N � 11, 5, 7 and eight independent
runs of the simulation (each on the order of hundreds of hours). These results can be compared to the experimental results shown in Figures 2A (D). Simulated relative
time (see Supplementary Equation S56), with d � 10[cm] and L � 55[cm]) spent near the two exits function of the relative flux, f rel . Full lines are the theoretical curves
calculated with the use of the exponential fits of the probabilities of turning (λ) as a function of f

rel
(Figure 4E, Supplementary Equation S58), assuming a run-and-

tumble model (seeSupplementary Equation S59). Compare to the experimental results shown in Figures 2B (E). Simulated turning probability per cm, λ, as a function
of the signed relative flux f

rel
. Full lines represent an exponential fit to the data (linear when plotted on a logarithmic scale, Supplementary Equation S58), with a larger

slope for larger loads. The points at the ends (f
rel � ± 1) represent averaged turning probabilities from one side experiments.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2021 | Volume 7 | Article 6727737

Ayalon et al. Sequential Decision-Making in Ants

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


those who have only just latched onto the object have a
predetermined preferred direction in which to take the object.
These ants, which arrive from the scent trail, are called
“informed”, and upon attachment choose their role such that
they only pull in the direction from which they had arrived (or lift
if they happen to attach on the opposite side of the object).
Informed ants become regular carrying ants, at a constant rate
kforget (corresponding to an average time of ∼ 10 − 15sec [33]),
and are then governed by Eq. 2.

We simulated the 1D model and calibrated its parameters by
comparing the results to one-side-open experimental data. The
model reasonably reproduces the trajectories (compare
Figure 4A to Figures 1A2,B2), velocity and spatial
distributions (Supplementary Figures S12, S13), albeit less
successfully for smaller objects where a 1D approximation is,
indeed, expected to be less accurate. The model further captures
the length-scale of the spatial distribution of the cargo away from
the single exit, and qualitatively reproduces the empirical
dependence on cargo size (compare Figure 4C, to Figure 2A).

Having fixed the model parameters we then turned to simulate
the more complex scenario where the exits at both sides are open
and informed ants arrive from both ends. In our model the fluxes
of the ants entering from each exit, appear as the rates of informed
ants that attempt to attach onto the cargo, from either side. We
assume that these attachment rates are proportional to the ant
fluxes that enter the tube, as measured in the experiments (see
Supplementary Section S5). Typical trajectories from the
simulations are shown in Figure 4B, where we find that both
small and large cargoes traverse the entire length of the set-up
(compare to experimental trajectories in Figures 1C2,D2). The
simulated trajectories were used to calculate the durations in
which the object stayed near each exit. Similar to the experiments,
we find a transition from super-linear to sub-linear dependence of
the relative time difference on the relative flux, f rel , as the cargo
size increases (compare Figure 4D with Figure 2B).

A key ingredient of the motion is the dependence of turning
rates on the ant fluxes from both sides. Similar to the
experimental measurements (Figures 2B, 3A–C), the
simulated data show that, when calculating turning rates
(Supplementary Figure S14), signed relative flux is a more
informative variable than flux difference (see Supplementary
Figure S7C,D). This result provides us with further evidence
regarding the applicability of Weber’s law to this decision making
system. Furthermore, the simulations reproduce the approximate
exponential dependence of the turning rate on the f rel compare
Figure 4E to Figure 3A, and on cargo size. Next, we show how the
exponential dependence and the emergence of Weber’s law arise
from the microscopic model.

In Supplementary Section S6, we present a simplified version
of our model which is analytically solvable. In this simplified
version the cargo is fully occupied by the ants, with fixed
occupation, and the informed ants are treated as an external
force [34, 37]. We use this simplified model to calculate the
turning rates, by analyzing an escape process in velocity-space
[38] described by Kramers theory [39]. This approximation
should be valid at low temperatures, in the phase where the
ants are coordinated. We obtain the following approximate

analytic expression for the turning rate when the ant fluxes
from both sides are equal, f rel � 0 (Supplementary
Equation S88)

rKramer(f rel � 0) ∼ k
π
e−2N

βN
2
e−

βN
2 (3)

This equation describes the dependence of the turning rates on
the size of the object (number of ants N) and the inverse
temperature (ß) and stands in reasonable agreement with the
simulated turning rates (Supplementary Figure S15).

Next, we calculated the effect of non-zero values of f rel on the
turning rate, where the fluxes from each exit determine the
average occupation by both uninformed and informed ants on
each side. When the flux through a particular exit is large, both of
these effects bias the motion in the same direction. The difference
in uninformed ants induces a shift in the total number of ants on
one side when compared to the other:N andN − δN , respectively.
The effect of a difference in the number of informed ants induces
a net external force that is proportional to: δ � nR − nL. From our
analytic approximation of the turning rate (Eq. 3) we find that
each of these effects modifies the turning rate in a simple
exponential manner (see details in the Supplementary
Section S6)

rKramer(δ, δN) � rKramer(f rel � 0)e−(δ+δN )(β
2+2) (4)

where the sign in the exponential changes if the turning is toward
or against the bias. Using the full one-dimensional simulation
model, we calculated the average occupation of informed and
uninformed ants as a function of the fluxes of ants that enter from
the two exits (Supplementary Section S7, Supplementary
Equation S110), and use it to write δ and δN as functions of
the incoming fluxes (Supplementary Equations S117, S118).
These turn out to be (in the limit of an object saturated by
attached ants, as in the experiments)

δ, δN ∝
fR − fL
fR + fL

� f rel (5)

where fR/L are the fluxes of ants [antsec] coming from the right/left

opening. Substituting Eq. 5 inEq. 4 brings us to the conclusion that
the turning rates depend on ant fluxes through f rel (Eqs 4, 5). This
suggests an explanation for Weber’s law found in the simulations
(Figures 4D,E) and, specifically, for the fact that the turning rates
exhibit an exponential dependence on the f rel (Figure 4E).

An intuitive explanation for the result given in Eq. 5 relates the
extent of the bias in the cargo motion to the signed relative flux.
The bias in the motion depends on an imbalance of pulling ants
on each end of the object (see Supplementary Section S7). The
number of pulling ants on each side is naturally proportional to
the flux of informed ants arriving from the exit that faces this side.
However, any resulting bias is diminished by uninformed ants
attaching evenly on both sides, and informed ants “leaking” from
the opposite side (which act as pullers). These latter processes
increase with the total flux from both sides, and diminish the bias
of pulling ants toward the exit with the larger flux. The average
number of pullers on each side is therefore given by the flux
entering from that side, divided by an additive combination of

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org June 2021 | Volume 7 | Article 6727738

Ayalon et al. Sequential Decision-Making in Ants

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


both fluxes (Supplementary Equation S110). The difference
between the average number of pullers on both sides, in the
limit of an object that is saturated with ants, is therefore found to
be proportional to f rel (Eq. 5), and directly enters the turning
rates due to Kramers theorem (Eq. 4).

Note that the dependence of the response on the signed
relative flux f

rel
is another form of Fold-Change Detection

(FCD), which is observed in biology on different scales, from
bacteria to humans [40]. This property provides a beneficial
increase in the dynamic range over which the system is
sensitive to changes in the environment. It requires different
mechanisms for its realization in different biological contexts, and
is never exact. In our system, it emerges only in the limit in which
the load is saturated by ants (Supplementary Equations S117,
S118).

The microscopic model used here was originally developed to
describe the free transport of cargo along a single scent trail [33].
The fact that this model also captures the collective motion of the
ants in the presence of two opposing scent trails is therefore a
non-trivial result. Rather, this supports the idea that individual
ants are not aware of the conflict nor of the fact that they are part
of a collective decision making process. The ants follow simple
behavioral rules as if they were transporting the food item along a
single, well-defined path toward the nest. The collective decision
making dynamics evident on the scale of the entire group is an
emergent phenomenon.

F Algorithmic Considerations in Sequential
Decisions
We now explore optimal strategies for an agent faced with a
dilemma that is similar to that of the ants. We will do this by
considering an abstract dilemma, and compare the optimal
strategies to the observed behavior of the ants. This will allow
us to assess the efficiency of the ants’ behavior.

The basic EA model assumes exclusive investment in the
exit with more evidence [15]. This is clearly the optimal course
of action for a single-shot decision. In our experimental set-up
the ants act differently: they repeatedly sample both sides of
the arena, where the relative fraction of time invested in each
side depends both on evidence (fluxes) and on load size
(Figure 2B). In general, back-and-forth motion of the kind
exhibited by the ants is common in dynamic scenarios in
which every decision is followed by an immediate reward or
feedback. One example includes foraging on a replenishing
food source where the animal revisits depleted food patches
after they have replenished [10]. In other cases, animals may
repeatedly visit food sources to gather information regarding
the probability of reward [41, 42], and update their visitations
accordingly. Such feedback-based strategies are thoroughly
studied theoretically under the framework of multi-armed
bandit problems [43]. The ant behavior studied here is
different as it includes no rewards. In fact, the only
feedback that the ants get upon trying an exit is a negative
one, indicated by the fact that they do not manage to cross the
obstacle. In this sense, the ant scenario is similar to cases

where animals search for sparse targets [44] and no positive
feedback is available before finding the target.

To study dynamic decisions without reward we start by
considering a toy model (Supplementary Section S8). This
model is not meant to capture actual ant behavior; Rather, it
aims to demonstrate how an optimal dynamic decision strategies
may naturally lead to some of the key features evident in the ants’
behavior. Namely, we will use the toy model to show that in the
lack of reward, optimal strategies are expected to employ back-
and-forth sampling. We will further show that the relative weight
attributed to the minority evidence in the optimal sampling
strategy varies with circumstances. Specifically, we wish to
explain why in some cases we expect that the time spent near
the minority opinion would be larger than its share of the
evidence, while in other cases it would be smaller (as in
Figure 2B).

We first consider a simple scenario which would correspond to
an extreme case of the model. Consider a person that has lost her
key somewhere in an apartment. Reminiscing her past actions she
reaches the conclusion that with probability qK � q the key is in
the kitchen and with probability qL � 1 − q it is in the living room.
During every minute of search in the “correct room”, i.e., the
room where the key is, she has some small constant chance, p, of
recovering the lost key. The question is how should this person
divide the time between the two rooms in order to find the key as
quickly as possible.

Simplifying the setting, we assume that traveling between the
kitchen and the living room incurs no time cost. We further
restrict attention to “memoryless strategies” where in each
minute, the kitchen is searched with probability α and the
living room with probability 1 − α, for some 0≤ α≤ 1 that
completely specifies the strategy. The expected time, T(α),
until the key is found is then:

T(α) � E(Time
∣∣∣∣key is in kitchen) · qK + E(Time

∣∣∣∣key is in living room) · qL
� qK
α · p +

qL
(1 − α) · p

� 1
p
(q
α
+ 1 − q
1 − α

).
where E(Time|X) is the expected search time given the key is in
room X. It is easy to see that, in contrast to the case of a single
isolated decision, investing all the time exclusively in one of the
rooms is far from optimal and actually leads to infinitely long
expected search times, T(0) � T(1) � ∞. Therefore minimizing
search time requires that the search effort be partitioned between
the two rooms. The value of α that minimizes the expected search
time is independent of p, the probability to find the key per unit
time, and is given by:

α � 1���
1−q
q

√
+ 1

. (6)

To facilitate comparisons to the ant behavior we perform the
following parameter transformation. We view qK and qL as the
evidence for the key being in each of the rooms assuming, without
loss of generality, that qK � q> 0.5. The relative evidence
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(analogous to the f rel as defined above) is therefore:
(qK − qL)/(qK + qL) � 2q − 1. Similarly, the relative time
difference in favor of the majority option is: Trel � TK−TL

TK+TL
�

α−(1−α)
α+(1−α) � 2α − 1.

The relation between these two relative variables is depicted by
the blue curve in Figure 5B. A first conclusion is that the relative
time spent near the majority option is a monotone increasing
function of the relative evidence. This property of repeated
decision-making deviates from the results of the classic EA
model which provides exclusive investment at the option
suggested by the majority of evidence. More interestingly, Eq.
6 shows that the time invested searching a room is sub-linear in
the probability that the key is there. In other words, the optimal
strategy dictates that if there is a small probability of finding the
key in a certain room, one should invest a dis-proportionally
larger time searching there (blue curve in Figure 5B). For
example, if the probability that the key is in the living room is
0.05 (f rel � 0.9) then the fraction of time spent searching the
living room is 0.19 (Trel � 0.62).

Next, we generalize the aforementioned key-search scenario
into a model which is more comparable with obstacle
circumvention. The model describes an obstacle which can
be bypassed via two routes (Figure 5A, left column). We
assume a simplified environment wherein each of these
routes can be either “easy” or “difficult”. An “easy”
(respectively, “difficult”) route means that it can be passed
with probability peasy (respectively, pdiff ) on each attempt,
where peasy > pdiff . The values of peasy and pdiff depend on the
context, but are assumed to be fixed and known. We define the
parameter c � pdiff /peasy to describe the relative success rates.
Note that the “lost key” example presented above is equivalent
to choosing pdiff � 0 (or, equivalently, c � 0). In this simplified
problem there are exactly four options for an obstacle which
include the possible permutations of easy and difficult routes
(Figure 5A, central column). In cases where both passages are of

equal difficulty, circumvention efficiency is independent of how
time is partitioned between the two options and are thus not
interesting. We therefore focus on the two asymmetric cases
(Figure 5A, central column, two central options) where one
route is easy and the other is difficult.

What are the search strategies that minimize the
circumvention time around asymmetric obstacles? If it is
known which of the two asymmetric options one currently
faces, the optimal decision would become trivial—simply
invest all the time at the easy route. Similarly to the “lost key”
example, when information is not perfect, the optimal strategy
could benefit from external evidence which we model by the
parameter q. This parameter signifies the probability that the
route on the right hand side is the easy one (Figure 5A, right
column). Based on the parameters γ and q we seek the optimal
way to partition time between the two routes. As in the
aforementioned “lost key” example, we consider memoryless
strategies where the right-hand route is approached with
probability α, and the left-hand route is approached with
probability 1 − α.

We find (see Figure 5B and Supplementary Section S8) that
the relative time invested in an option (say, the left route) rises
with the evidence q pointing at this option. More interesting, we
find that depending on the value of γ, the optimal relative time
invested in this route can be either sub-linear or super-linear in
the relative evidence (see Figure 5B). For instance, when c � 0,
which is simply the “lost key” example, it is sub-linear, whereas
for e.g., c � 1/3 it is super-linear.

These results are qualitatively reminiscent of the empirical
results presented in Figure 2B. Indeed, note first that in our
experimental setting, when evidence arrives at a load from some
direction, then necessarily this implies that at least individual ants
can pass through the corresponding route. Since the small load is
not much larger than a single ant the probability that it passes
through almost any passage with supporting evidence is large.

FIGURE 5 | Abstract obstacle circumventionmodel. (A). Themodel describes an obstacle which can be circumvented using two separate routes (black squares on
left hand column) each of which can offer either easy (blue) or difficult (red) traversal. There are therefore exactly four distinct obstacle combinations (central column).
Circumvention time for symmetric obstacles is independent of strategy. However, for asymmetric obstacles (right hand column) an optimal circumvention strategy
depends on external information encoded by the parameter q which specifies the probability that the easily traversable path is on the right. (B). Optimal time
balancing strategies. The relative difference in the time invested in one of the routes as a function of the relative evidence indicating it to be the easy route. Different colors
signify different values of the parameter c � pdiff/peasy, the ratio between the traversal efficiency for the two routes. c � 0 corresponds to the case where only one route is
traversable (equivalent to the key search example, see text) and displays sub-linear behavior: even very small evidence toward one route dictates large search times in
that direction. Increasing the value of γ leads to super-linear behavior where low evidence towards a route dictates little to no search time invested there.
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This suggests that for small loads we expect that pdiff is not far
from 1, which implies that c ≈ 1. In this case the model predicts
super-linear behavior which is in line with the observation that
ants that carry small loads tend to spend most of their time near
the passage with the larger flux. Conversely, large loads are more
similar in their dynamics to the model predictions when γ is
small. This is consistent with the fact that the chances that a large
load traverses a ragged route can be very small, i.e. pdiff is near
zero. Accordingly, and similarly to the predictions of the abstract
model for the case of small γ, large loads tend to spend relatively
long times near the minority opinion.

More intuitively, information about which of the two escape
routes is favorable can often be uncertain. For small loads, the
optimal course of action in this case is to spend long times at the
direction with higher evidence. Even if the evidence is misleading
the price to pay in terms of escape time is not large. In the case of
large loads, attempting to escape through the inferior route may be
highly costly in terms of time. In this case, it is algorithmically
favorable to put less emphasis on the differences in information,
and to alternate between the two options. It is notable that the ants
emergent behavior at the level of the collective is in qualitative
agreement with these optimal strategy considerations, although
individual ants can not comprehend such considerations.

3 DISCUSSION

In this paper, we study ant collective decisions between binary
choices with evidence pointing at either option. The study of
collective decision-making in the context of ant groups confers
several advantages. First, the compact arena size and the large
number of individuals allow for the collection of large amounts of
comprehensive and quantitative experimental data. Second, the
existence of a reliable, quantitative model [33] for ant interactions
during cooperative transport allows us to raise hypotheses and
strengthen assumptions regarding the collective decision-making
process. Finally, cooperative transport also imposes strong
interactions between the carrying ants which, in turn, all move
together as a single cohesive body. This stands in contrast to the
more studied case where collective decisions are taken bymigrating
animal groups, which are less cohesive (more spatially distributed)
and display sparser interaction networks [22, 23, 28]. The ant
system may therefore constitute a stronger analogy to the “super-
organism” concept, whereby an animal collective displays
behavioral characteristics which are shared with a single-brain [36].

In this vein, our setupmay be viewed as a physical analogue of the
abstract evidence accumulation (EA) model developed to study
decision-making by single animals. However, in contrast to the
isolated decisions to which this model is typically applied, here we
tracked the ants for extended time periods which allow for a more
dynamic behavior in which decisions are continuously updated.
Rather than exclusively converging on the majority choice, we find
that the ants continuously explore both alternatives in a manner that
depends both on group size and on the relative flux of incoming
information [45]. It is particularly interesting that the weight given to
the majority opinion may drastically change according to
circumstances. For example, ants that carry a large load tend to

extensively explore both options, even when significantly more
evidence point at one of the exits. Conversely, ants that carry a
small load tend to spend longer times at the option with more
evidence, even if the extent of this majority is rather weak.

To understand the ants’ behavior, we investigated three
complementary models, describing the abstract, macro, and
the micro scales, respectively:

On the abstract level, to qualitatively explain the range of observed
behaviors, we developed an idealized theoretical model that describes
general considerations in dynamic decision-making. This model is
aimed at identifying the optimal fraction of time invested in the two
options of a binary choice setting. Note that in single shot decisions,
the answer to this question is trivial, and the optimal action is to follow
themajority opinion. In contrast, for the dynamic setting studied here,
we found that depending on the parameters of the problem, optimal
strategies weigh the majority opinion in either a super-linear or a sub-
linear manner. Because of its non-trivial predictions, it would be
interesting to study applications of this simple decision-makingmodel
in other biological systems, including human behavior.

The abstract model suggests that the time allocated to each of
the choices depends on the environmental statistics as well as the
currently available information. One way in which the ants can
achieve the desired flexibility is by applying a random walk in
which both the bias and the step size are variable and depend on the
evidence. This deviates from the basic formulation of the EAmodel
where asymmetries in evidence are reflected in changes to the bias
only. In accordance with this prediction, we found that, on this
macro scale, ant behavior in different experimental regimes can
indeed be described by a biased random walk where the bias and
step-size both covary. In particular, we found that when the fluxes
of incoming ants from both directions are nearly equal, such that
the identity of the best route is uncertain, the step-size is maximal.
This allows the group to explore both options more often, andmay
be beneficial in allowing for efficient solutions.

Finally, we showed how a randomwalk with varying bias and step
size arises from an established microscopic model of cooperative
transport. Thismodel correctly predicts how the characteristics of the
randomwalk vary with group size and with the relative evidence.We
used this model to demonstrate that while the relative evidence for
both sides, is not available to any individual, it is still perceived by the
group as a whole, which processes this global information toward a
collective decision [34]. This strengthens the case for a truly emergent
decision-making process in this distributed ant system [46].

Our experimental observations and microscopic model further
demonstrate the emergence of a psychophysical law, Weber’s law
[35]. Specifically, the group’s collective motion is controlled by the
relative flux of ants arriving from the two alternative paths. While
Weber’s law has previously been demonstrated in other group
contexts, it is often difficult to infer whether it is not a simple
consequence of relative perception on the scale of individual sensory
systems [47–49]. In the ant collective choice system, Weber’s law is
a truly emergent property, as an individual ant most probably
cannot assess the fluxes nor their relative difference [50, 51].

Finally, we wish to reflect on possible implications of the current
work on the EA model. The EA model was originally proposed to
describe isolated, single-shot, decisions, whereas the ants’ in our
study engage in a dynamic scenario, in which consecutive decisions
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must be taken. However, it is reasonable to assume that in practice,
the decision-making process in a single-shot scenario would not be
fundamentally different than the one used in more dynamic cases.
Since tuning of the step size and the bias is useful in dynamic
scenarios, we hypothesize that other systems functioning in
dynamic conditions also employ such decision-making
processes. In particular, we hypothesize that relative evidence
can affect the dynamics of the abstract decision-making variable,
as encoded in neuronal firing rates, by altering not only the bias of
its random dynamics but also, concurrently, its step size. We
further wish to stress, that in the context of neuroscience,
varying step size may equivalently be achieved by modifying
decision thresholds which have previously been suggested to be
a tuning parameter important for speed/accuracy trade-offs [52].
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