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The dynamics of many models of physical systems depend on the choices of key
parameters. This paper describes the results of some observing system simulation
experiments using a first-principles model of the Earth’s ionosphere, the
Thermosphere Ionosphere Electrodynamics Global Circulation Model (TIEGCM), which
is driven by parameters that describe solar activity, geomagnetic conditions, and the state
of the thermosphere. Of particular interest is the response of the ionosphere (and
predictions of space weather generally) during geomagnetic storms. Errors in the
overall specification of driving parameters for the TIEGCM (and similar dynamical
models) may be especially large during geomagnetic storms, because they represent
significant perturbations away from more typical interactions of the earth-sun system.
Such errors can induce systematic biases inmodel predictions of the ionospheric state and
pose difficulties for data assimilation methods, which attempt to infer the model state
vector from a collection of sparse and/or noisy measurements. Typical data assimilation
schemes assume that the model produces an unbiased estimate of the truth. This paper
tests one potential approach to handle the case where there is some systematic bias in the
model outputs. Our focus is on the TIEGCM when it is driven with solar and
magnetospheric inputs that are systematically misspecified. We report results from
observing system experiments in which synthetic electron density vertical profiles are
generated at locations representative of the operational FormoSat-3/COSMIC satellite
observing platforms during a moderate (G2, Kp � 6) geomagnetic storm event on
September 26–27, 2011. The synthetic data are assimilated into the TIEGCM using
the Local Ensemble Transform Kalman Filter with a state-augmentation approach to
estimate a small set of bias-correction factors. Two representative processes for the time
evolution of the bias in the TIEGCM are tested: one in which the bias is constant and
another in which the bias has an exponential growth and decay phase in response to
strong geomagnetic forcing. We show that even simple approximations of the TIEGCM
bias can reduce root-mean-square errors in 1-h forecasts of total electron content (a key
ionospheric variable) by 20–45%, compared to no bias correction. These results suggest
that our approach is computationally efficient and can be further refined to improve short-
term predictions (∼1-h) of ionospheric dynamics during geomagnetic storms.
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1 INTRODUCTION

The ionosphere is a portion of the Earth’s mesosphere,
thermosphere, and exosphere, corresponding to altitudes from
approximately 60–1,000 km, in which interactions with solar
radiation create a plasma consisting of neutral and ionized
gases with free electrons. The plasma tends to be concentrated
in layers whose composition and thickness vary diurnally. At
night, the so-called E and F layers extend, respectively, from
altitudes from about 90 to 150 km and from 150 to 500 km.
During the daytime, the D layer appears (from about 60 to 90 km)
and the F layer bifurcates into two thinner layers, F1 and F2. The
various layers can reflect, refract, and absorb radio waves at
particular frequencies, and for this reason, the ionosphere
interferes with satellite communications. During solar storms,
the Earth may be bombarded with streams of energetic particles
that interact with the ionosphere and Earth’s magnetic field to
induce electromotive forces that can extend all the way to the
ground, disrupting high-voltage electric transmission grids [1].
The term “space weather” refers broadly to all of these dynamics.
For a comprehensive overview of these issues, see the book by
Kelley [2].

The development of a space-weather forecasting capability,
comparable to that of operational tropospheric models, is a long-
term research goal [1]. No systematic overview of ionospheric
models or the associated open problems is attempted here;
interested readers are referred to [3, 4] and references therein.
Present-day models include both empirical descriptions (e.g., the
International Reference Ionosphere, or IRI) and physics-based
dynamical models (e.g., the Thermosphere Ionosphere
Electrodynamics Global Circulation Model, or TIEGCM). The
IRI has been under development since the late 1960’s to provide,
among other things, monthly means of electron density profiles
and plasma temperatures during quiet-time conditions [5], i.e., in
the absence of geomagnetic storms that arise from shock waves in
the solar wind and/or coronal mass ejections. The TIEGEM,
developed by the High-Altitude Observatory at the National
Center for Atmospheric Research [6], attempts to provide self-
consistent solutions for the magnetohydrodynamics of the upper
atmosphere. Dynamical models will be important for space-
weather forecasting efforts during storm- as well as quiet-time
conditions.

Our paper builds upon recent achievements in the
understanding of transport and mixing using theoretical
analysis, large-scale numerical simulations, and data analysis,
and focuses on multi-scale ionospheric dynamics [1, 2, 7]. The
ionosphere is a dynamic mixture of ions, electrons and neutral
gases surrounding the earth. Understanding and modeling multi-
scale ionospheric dynamics is a daunting but important challenge
because of its critical role in space sciences and space weather.
Significant progress has been made in developing computational
models over the past several decades. However, current modeling
capabilities need further development, especially with regard to
neutral-plasma interactions driven by neutral fluid dynamics and
electrodynamics physical processes over the large range of
temporal and spatial scales that characterize the ionosphere.
Advances are needed in physics-based predictive modeling and

data assimilation to make accurate high-resolution forecasts. In
particular, novel computational and data assimilation capabilities
are required for operational communication, navigation, remote
sensing, imaging and space weather applications.

Non-equilibrium processes, transport, and mixing are
exceedingly challenging to study. Their dynamics often involve
sharp changes of vector and scalar fields and may also include
radiation transport and chemical reactions, and diffusion of
species and electric charges, among other effects. Non-
equilibrium dynamics of transport and mixing are
inhomogeneous, anisotropic, non-local, and statistically
unsteady. At macroscopic scales, non-equilibrium transport
may lead to self-organization and order, thus offering new
opportunities for diagnostics and control. Capturing properties
of emerging coherent structures, interfaces and mixing, enabling
their accurate description can aid better understanding of the
Eulerian and Lagrangian dynamics, and developing new methods
of control of non-equilibrium transport in nature and technology.
Significant success was recently achieved in understanding of
transport and mixing on the sides of theoretical analysis, large-
scale numerical simulations, and data analysis. This success opens
new opportunities for studies of fundamentals of non-
equilibrium dynamics across the scales including Rayleigh-
Taylor (RT) instabilities and turbulence [8–10], hydrodynamic
RT turbulence mixing [11, 12], and plasma dynamics in the
ionosphere [13–18].

Turbulent mixing induced by RT instabilities occurs in
settings as varied as exploding stars (supernovae), inertial
confinement fusion, and macroscopic flows in fluid dynamics
such as ionospheric plasmas [19]. Since the discovery of the
plasma instability phenomenon that occurs in the nighttime
equatorial F-region ionosphere, and which is revealed by rising
plumes identified as large-scale depletions or bubbles,
considerable efforts have been made in the development of
computer models that simulate the generation and evolution
of the convective equatorial ionospheric storms or Equatorial
Spread F (ESF) Dynamics [2, 3, 6, 11, 12, 14, 20–32]. Analyses and
simulations of primary and secondary RT instabilities in the ESF
triggered by the response of plasma density to neutral turbulent
dynamics and wave breaking in the lower region of ionosphere
were investigated for coupled systems (ions, electrons, neutral
winds), thus enabling studies of mesoscale/microscale dynamics
for a range of altitudes encompassing ionospheric D, E and F
layers. At smaller scales, turbulent mixing induced by
hydrodynamic instabilities plays an important role and
considerable efforts has focused on discovering universal
properties of turbulence in various settings. Neutral-plasma
interactions and physical processes at ionospheric meso/
microscales is currently a grand challenge for data-driven
computational studies of ionospheric dynamics [2].

To provide useful forecasts, dynamical models require an
accurate and computationally efficient data assimilation
capability. Traditional approaches assume that the associated
model produces unbiased forecasts. Several approaches have
been suggested to handle model bias in data assimilation
systems. Dee and da Silva [33, 34] suggested a two-stage
approach that estimates separate gain matrices for the forecast
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state vector and for the bias correction. Biases in observations,
such as satellite radiances, can be handled through Kalman
filtering (e.g., [35]). Eyre [20] shows that forecast and analysis
biases are functions of the relative weights given to bias-corrected
and non-bias-corrected observations and the rate at which the
forecast model relaxes to its climatology. Canter et al. [36] have
explored the possibility of applying stochastic forcing to a forecast
model, with an augmented state vector to estimate the model bias,
with an application to a global ocean circulation model. Machine-
learning approaches also have been tried to observation bias
correction [26]. The approach applied in this paper is based on
one suggested by Baek et al. [37], which attempts to compensate
for the model bias in the handling of the observations, as
described below.

Our principal focus is on the TIEGCM. We consider a period
corresponding to a moderately strong (G2) geomagnetic storm,
which can induce significant perturbations of the ionosphere
from quiet-time conditions and affect the operation of satellite
communication and power distribution networks. In particular,
we are interested in the case where various model driving
parameters are misspecified, as may occur during periods of
particularly high solar activity [38], resulting in systematic
errors in model predictions of electron density and related
variables. Our approach extends prior work by Baek et al.
[37], who described some approaches to handle model bias in
a data assimilation system.

The Constellation Observing System for Meteorology,
Ionosphere, and Climate (COSMIC), and its successor,
COSMIC-2 are designed, built, and operated by the
United States. National Oceanographic and Atmospheric
Administration and other agencies in collaboration with the
Taiwan National Space Organization (to whom the satellite
systems are known as FormoSat-3 and -7, respectively, and
abbreviated as F3/C and F7/C2). The COSMIC networks
measure total electron content in the ionosphere using a
method called radio occultation [29].

Variations in solar activity determine the rates of
ionization and heating within the ionosphere and
thermosphere. In cases of high solar activity, the
ionosphere and its drivers undergo significant changes:
ionization and heating rates rise sharply, geomagnetic
activity undergoes significant disturbances (geomagnetic
storms), and the thermosphere expands, creating
enhanced pressure fields and wind circulations that
modify the composition of neutral and ionized gases. (See
[39] for an overview of the effects of solar flares on the
ionosphere and [40] for an overview of ionospheric storms.)

The modeling of extreme ionospheric events is of practical
interest due to potential adverse effects associated with space
weather disturbances, which range from satellite communication
interruptions [41] and Earth imaging [21] to geomagnetically
induced currents, which affect power transmission systems [42].
Although the benefits of modeling the ionosphere and
thermosphere and their associated electrodynamical processes
with a single general circulation model have been observed [31],
other ionospheric drivers are specified with auxiliary empirical
models.

The ionosphere is strongly coupled to the magnetosphere in
high-latitude regions. The TIEGCM does not include a model for
magnetospheric dynamics; the coupling is represented by
empirical models [43]. At high altitudes, the TIEGCM uses
ionospheric electric fields as provided by the Heelis [23] and
Weimer [43] models. The parameterization of these latter models
therefore has an important effect on TIEGCM outputs. Inputs to
solar and geomagnetic parameterizations usually are measured
directly and are physically meaningful, but nowcasting and short-
term forecasting of parameters like the Kp remain a topic of
continuing research [44, 45]. Challenges include limited station
observability coverage and limited representation of associated
physical mechanisms [46].

We describe two sets of observing system simulation
experiments in which synthetic observations of electron
density are assimilated into the TIEGCM using various choices
of driving parameters (such as for the electric fields), to assess
their effect on 1-h forecasts. The dynamics of the ionosphere
respond rapidly to changes in solar activity. Even if the initial
state vector of an ionospheric model is accurate, its predicted
evolution may not be if external, time-evolving drivers of solar
activity, geomagnetic conditions [47], and the state of the
dynamically coupled thermosphere are incorrectly specified
[48]. We find that simple models of the time evolution of the
forecast bias can provide significant improvements to 1-h
predictions of electron density and related quantities.

Ensemble Kalman Filter (EnKF) approaches have been shown
to be effective in estimating the state of the coupled ionosphere-
thermosphere system [24, 31] and ionospheric forcing
parameters [32]. Improved estimates of electron density may
also help improve estimation of other systems that are strongly
coupled to the ionosphere, such as the magnetosphere [19]. An
overview of parameter estimation strategies in data assimilation is
presented in [49], and additional parameter estimation strategies
with Ensemble Kalman filters for non-global parameters are
discussed in [50]. Geomagnetic storms often have significant
and persistent storm-time effects that modify the state of the
ionosphere relative to quiet-time conditions [51], such as by
changing electron densities in ways that are difficult to predict
[52]. Such effects may be another source of systematic model
biases that can be difficult to remedy by adjustments to input
parameters alone.

In this paper, we propose a strategy to compute spatially
varying corrections to compensate for model bias introduced
from suboptimal parameterized inputs. Our approach is based on
methodology originally proposed in [37]. We assume that a solar
and magnetospheric parameter configuration, which is specified
through some parameter estimation approach, is already in place.
Our strategy treats the global distribution of model bias as a
collection of bias correction parameters, which we estimate using
an ensemble Kalman filter. The bias corrections are not used to
adjust the model state vector directly. Instead, spatially varying
bias corrections are applied in the evaluation of the observation
operator, with the intent of reducing model bias in its electron
density predictions prior to the assimilation of observations.

The application of spatially varying bias corrections extends
the degrees of freedom in the predictions made with a given
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parameterized configuration and may be beneficial in capturing
storm-time effects. The corrections are computed independently
of parameterized inputs, so this strategy may be applied together
with other direct parameter estimation approaches. Furthermore,
this strategy helps provide a more gentle state estimation update
due to the adjusted forecast predictions, which may help to avoid
the introduction of spurious dynamical artifacts from drastic
adjustments to the system state that may occur due to strong
model bias presence during an extreme event. To our knowledge,
this bias correction strategy has not been applied previously to an
ionospheric model with operational capabilities.

The proposed bias estimation strategy, which is designed for
high-dimensional ionospheric systems that are sparsely observed,
is applied in observing system experiments focused on the
September 2011 geomagnetic storm to compensate for model
bias resulting from suboptimal parameterized solar and
magnetospheric inputs. We use the Local Ensemble Transform
Kalman Filter (LETKF) [25] to assimilate synthetic electron
density vertical profiles into the Thermosphere Ionosphere
Electrodynamics Global Circulation Model (TIEGCM). The
synthetic observation profile locations are the representative of
the COSMIC/FORMOSAT-3 satellite constellation [53] during
September 26–27, 2011. The LETKF is a type of ensemble square-
root filter that computes its analysis using a low-rank estimate of
the forecast covariance matrix. The analysis is computed
independently grid point by grid point, by assimilating nearby
observations simultaneously. The LETKF has been applied in the
ionosphere with an idealized regional model [54] and for space-
weather specification during an extreme event with the TIEGCM
by [7]. The LETKF has also been used with the Global
Ionosphere-Thermosphere Model to estimate solar parameters
during periods of low and high solar activity [22, 27].

2 DATA ASSIMILATION SCHEME

The data assimilation algorithm used in this paper is the Local
Ensemble Transform Kalman Filter (LETKF). We provide a brief
overview of the algorithm below and refer to [25] for a full
description. Its application to the TIEGCM is also
presented in [7].

The LETKF begins with an ensemble of k global forecast
(“background”) vectors at a particular model update (“analysis”)
time tn, which we denote by {ub(j)}kj�1. (Since all calculations here are
performed at tn, we omit the explicit dependence on time to simplify
the notation.) The LETKF adjusts the ensemble of background state
vectors, grid point by grid point, based on the available observations
within a suitable neighborhood of each grid point (the radius of
which is problem-, data-, andmodel specific). The individual analyses
are aggregated to produce an ensemble of global analysis state vectors,
which we denote as {ua(j)}kj�1. The analysis update is computed
independently at each grid point as we now describe.

Consider a model grid point indexed, say, as L. We associate a
“local window” to L, consisting of the space within a prescribed
horizontal and vertical distance from L. The subscript L is used to
emphasize that the following quantities are associated with a
specific grid point and its associated local window. Let d denote

the number of components of the model state vector to be
analyzed (Often, atmospheric models include passive scalars as
well as dynamical variables, so d may be less than the dimension
of the actual state vector. In the case of the TIEGCM, the variables
that are analyzed include electron and ion density and
temperature.) Let L be a multi-index to identify each model
grid point. We denote the background global model state vector
for the jh ensemble as ub(j) and let xb(j)L denote the components to
be analyzed at grid point L. The local background ensemble mean
is given by xbL � k−1∑k

j�1x
b(j)
L . Let Xb

L be the d × k matrix of local
background ensemble perturbations from the mean whose jth
column is given by

X
b(j)
L � x

b(j)
L − xbL. (1)

The LETKF performs the Kalman filtering step in the column
space S of Xb

L and finds a linear combination of the ensemble
perturbations that minimizes the weighted least-squares sum
given in Eq. 4.

Denote the ℓ-vector of observations within the local window as
yoL and its associated ℓ × ℓ covariance matrix as RL. The
background observation predictions for the jth local forecast
are denoted by the ℓ-vector

y
b(j)
L � HL[ub(j)], (2)

where HL is the local forward operator that relates model state
quantities to the local observations. The operator defined by HL

may be a linear interpolation, or it may be a non-linear function
whose linearization is assumed to provide a good approximation
of HL locally within the local window. The linearization is
constructed by computing the ℓ × 1 ensemble mean of the
predicted observations, ybL � k−1∑k

i�1y
b(i)
L , and the ℓ × k

observation perturbation matrix, Yb
L, whose jth column is

given by Yb(j)
L � yb(j)L − ybL.

The ensemble mean of the analyzed local state at the grid point
L is an adjustment of the background ensemble mean, consisting
of a linear combination of local forecast perturbations given by

xaL � xbL + Xb
Lw

a
L, (3)

where wa
L minimizes the objective function

J(w) � (k − 1)wTw + [yoL − yb − Yb
Lw]TR−1[yoL − yb − Yb

Lw].
(4)

If w is a Gaussian random vector in S with mean and
covariance (k − 1)− 1I, then the right-hand side of Eq. 3 has
mean xb and the sample covariance Pb � (k − 1)− 1Xb(Xb)T,
which is just the ensemble estimate of the covariance matrix
of the forecast model at L. The minimizer of J is given by wa

L �
~P
a
L(Yb

L)TR−1
L (yoL − ybL), where ~Pa

L is the analysis covariance matrix
in S,

~P
a

L � [α−1L (k − 1)I + (Yb
L)TR−1

L Yb
L]− 1

.

To compensate for model nonlinearity, multiplicative
covariance inflation is incorporated in the above formulation
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through the factor αL, calculated as described in [55]. The factor
αL varies by grid point and is applied to all components of each
local state vector. The associated covariance matrix in model
space is given by

Pa
L � Xb

L
~P
a

L(Xb
L)T. (5)

The ensemble of local analysis perturbations is constructed
from the local background perturbations as

Xa
L � Xb

LW
a
L, (6)

where Wa
L � [(k − 1)~Pa

L]
1/2

is the symmetric square root of Pa
L.

This choice of Wa
L yields an ensemble whose sample covariance,

(k − 1)− 1Xa
L(Xa

L)T, matches Eq. 5. The columns ofXa
L also sum to

zero, so that the ensemble has the correct sample mean after xaL is
added to each of its columns to form each local analyzed state

vector, xa(j)L . The choice of symmetric square root forWa
L ensures

that the analysis perturbations sum to zero (for correct sample

statistics) and that Wa
L depends continuously on ~P

a
L, so that the

analysis ensembles resulting from slightly different analysis
covariances matrices do not differ significantly from one
another (as could be the case with a Cholesky decomposition,
for example) [25]. The analysis procedure described above is
performed independently for each grid point. Collectively, the

local analyses at each of the grid points, xa(j)L , form the global

analysis vector, {ua(j)}kj�1.

3 BIAS ESTIMATION METHODOLOGY

We consider the data assimilation problem in the context of a
forecast model for which there is some systematic difference
between its predicted state umn+1 of the ionosphere at time tn+1 and
the “true” state. More precisely, the vector umn+1 contains all the
dynamical variables associated with the model’s depiction of
ionospheric processes, such as electron density, thermospheric
composition, etc., over the global model grid. We may regard the
ionospheric model as a collection of maps Mn, n � 1, 2, . . . ,N ,
that yield global model state vectors of the form

um
n+1 � Mn(um

n ) (7)

for discrete times t1, t2, . . . , tN over some interval of interest. The
ionospheric model approximates a corresponding “true” set of
state vectors utn at each time and grid point. That is, we may
regard the sequence

ut
n+1 � Fn(ut

n) (8)

as a finite-dimensional projection of the ionosphere’s evolution to
the grid points of the ionospheric forecast model at each time tn.
A perfect model would produce a sequence umn that is identical to
utn for each n, provided that the initial state of the ionosphere and
its drivers is the same. In practice, however, the initial
ionosphere-thermosphere state is not known precisely.
Additionally, the specification of solar and magnetospheric
drivers that produces each umn differs from evolution operator

that produces the “true” ionospheric state utn. Thus the vectors u
m
n

and utn differ.
Our approach is based on one suggested by Baek et al. [37],

which they called “bias model II,” that assumes the dynamics of
the ionospheric model evolve on a different attractor from the
“true” dynamics of the ionosphere. In such a case, substituting utn
(or a vector close to it) into the model Mn may excite spurious
dynamics because the dynamical drivers represented by the
model differ from those of the truth. To avoid this situation,
we regard the evolution of the state vector on the model attractor
as a time-dependent translation of corresponding points on the
true attractor. We compensate for the discrepancy between the
truth and forecast state vectors within the data assimilation
system, whose objective now is to find the model state vector
that yields the best forecast. For this purpose, we define the model
bias at each analysis time tn as

cn+1 � Fn(ut
n) −Mn(um

n ) (9)

where

um
n � ut

n − cn. (10)

Generally, the correction cn+1 depends on cn as well as on Fn
and Mn. To make our scheme practicable within a data
assimilation system, we adopt the approach of [37] and
suppose that the corrections cn evolve according to another
dynamical system to produce the following augmented model:

ub
n+1 � Mn(ua

n) (11)

cbn+1 � Gn(ua
n, c

a
n). (12)

Here the subscript b refers to the “background” state vector
(i.e., the forecast) and a to the “analyzed” state vector (i.e., the
output of the data assimilation system).

The data assimilation procedure described in Section 2
proceeds as before, but it begins with an ensemble of

augmented state vectors of the form [(ub(j)n )T(cb(j)n )T]
T
, where

j indexes each ensemble member. In lieu of Equation 2, the
observation operator at time tn becomes

y
b(j)
L � HL(ub(j)

n + c
b(j)
n ). (13)

In other words, we compensate for the model error by adding a
correction term to the model state vector whenever a comparison
to observations is made. The data assimilation procedure
produces an augmented analysis ensemble of the form

[(ua(j)n )T(ca(j)n )T]
T
, which is used as the initial condition in the

subsequent forecasting step. We apply Eqs 11, 12 to produce the

augmented state vector [(ub(j)n+1)
T(cb(j)n+1)

T]
T

for the next
analysis step.

The procedure described above yields a spatially varying state
estimate of the model bias. The remaining component of our
proposed algorithm is the propagation of the model bias
estimates for which one needs a suitable model, Gn, to
describe their temporal evolution. The choice of Gn depends
upon the problem, and a complete description of the time
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evolution of the model bias may not be available. Nevertheless,
the main point of this paper is that even simple choices of Gn can
yield a stable filter that significantly improves 1 h forecasts of
electron density, compared to a non-bias-corrected LETKF
scheme, despite systematic errors in the solar and
magnetospheric parameterizations of the forecast model.

In principle, the bias correction procedure doubles the number
of state variables that must be estimated from the same set of
observations, which increases the variance in the analyzed fields.
On the other hand, not all model biases contribute equally to the
forecast error, and it may suffice to apply the bias correction
procedure only to some of the components of the model state
vector; that is, the components of cbn are taken to be zero except
for those corresponding to fields of greatest forecast interest. In
the numerical experiments described in this paper, we apply the
bias estimation procedure only to the electron density component
of the TIEGCM. Section 5 describes the results when the bias
model Gn is persistence, i.e., cn+1 � cn. Section 6 describes the
results when Gn implements an exponential growth and
relaxation in the model bias.

4 OBSERVING SYSTEM EXPERIMENT
SETUP

This section describes the common aspects of the observing
system experiments described in the next sections. Our setup
is a “perfect model” experiment, in which the results of the data
assimilation system are obtained with synthetic observations
generated from the TIEGCM model with known driving
parameters. In this way, the sources of model bias are
controlled, the performance of the data assimilation system
may be compared to a known truth, and improvements due to
the proposed bias correction scheme may readily be quantified.
The conclusion section suggests some issues that may be
considered prior to any potential operational application.

The numerical experiments simulate a scenario in which an
ionospheric forecast is driven with suboptimal specification of
magnetospheric and solar inputs during a period of geomagnetic
disturbance. Storm-time effects can be difficult to model and
predict [44, 45]. For example, the study by [51] discusses the
significant enhancement in F-layer electron density peak and
altitude during the geomagnetic storm of December 15, 2006. The
focus of the observing system experiments in this paper is on the
September 26–27, 2011 geomagnetic storm event.

4.1 Ionosphere Model Description
The TIEGCM is a three-dimensional nonlinear model of the
coupled ionosphere-thermosphere system. It solves the
momentum and energy equations for neutral and plasma
species and the electrodynamical coupling between the
ionosphere and thermosphere. We use version 1.94 in this
paper at a geographic resolution of 5+ × 5+ in latitude and
longitude. The vertical coordinate is on a log-pressure scale,
with each pressure level defined as ln(p0/p), where p is
pressure and p0 � 5 × 10− 7 hPa is a reference pressure that
corresponds to about 200 km altitude, depending on solar

conditions (One scale height corresponds to the change in
altitude by which the pressure changes by a factor of e.) The
pressure levels extend from −7 to 7 with half-scale height
resolution and range from about 97 to 600 km, depending on
solar conditions.

The main source of ionization in the ionosphere, and thus one
of its primary dynamical drivers, is the absorption of solar
radiation in the thermosphere, primarily by O1 and neutral
gases (O2 and N2). The TIEGCM represents effects of solar
irradiance and its variability through auxiliary empirical
models. The default solar input model, which we use in our
TIEGCM configuration, is the EUVAC irradiance model [56].
The EUVAC model specifies important ionospheric processes
related to solar activity, such as ionization and dissociation rates,

FIGURE 1 | (A) Time series of F10.7 indices in solar flux units
(10− 22W/(m2Hz)), (B) cross-tail potential (Cp) in kV, and (C) hemispheric
power (Hp) in GW. The horizontal axis is in hours, starting at 00:30 UTC on 26
September and ending at 23:30 UTC on September 27, 2011. The
parameters used to drive the truth are shown in green, the parameters used to
drive the ensemble of forecasts are shown in pink and their respective
ensemble means are shown in red. The deviation of each parameter from
those used in the control simulation is shown in gray, and the ensemble mean
of the deviations is shown in black.
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and heating of neutral gases, ions, and electrons. The empirical
representation of solar irradiance is parameterized with the F10.7
index, which is a daily measurement radio flux at 10.7 cm
wavelength, and its 81-day average. Solar proxy models
parameterized with the F10.7 index have been widely used in
other recent ionospheric data assimilation studies, such as
[28, 31].

Another key driver of ionospheric dynamics is geomagnetic
activity. The ionosphere is strongly coupled to the magnetosphere
in high-latitude regions and is typically approximated with auxiliary
empirical models due its complexity. The magnetospheric input used
in our simulations with the TIEGCM is the Heelis model [23], which
specifies important high-latitude processes in the ionosphere, such as
electric field patterns and auroral energy inputs, for different levels of
geomagnetic disturbance.

The Kp index, a widely used index derived from the horizontal
component of geomagnetic field disturbances, is an input to the
Heelis model. It is to calculate Hp (Hemispheric Power), which is
used in the parameterization of auroral precipitation, and the
cross-tail potential (Cp), which specifies ion convection patterns
in the polar regions. Kp indices are provided every 3 h and range
in value from 0 to 9, to describe geomagnetic conditions ranging
from quiet to extremely disturbed. Historical records of F10.7 and
Kp indices are provided by the National Oceanic and
Atmospheric Administration (NOAA).

4.2 Ensemble Generation
We generate an ensemble of 40 forecasts with normally
distributed values of F10.7 and Kp, which in turn produce
estimates of Hp and Cp. Each parameter is centered around
the respective index values published for September 26–27, 2011.
The standard deviation for the F10.7 distribution is its 21-day
standard deviation during the spin-up period, which we take to be
from 5 to 25 September 2011, and the standard deviation for Kp is
±1.0. The respective standard deviations for F10.7, Cp and Hp are
13 × 10− 22 W/m2Hz, 8.4 kV and 7.2GW, respectively. Figures
1A–C summarize the temporal evolution of the ensemble of
forecast parameters (pink) and the ensemble mean (red) for each
respective parameter. The horizontal axis for each figure is time in
hours, starting from 00:30 UTC on September 26, 2011 to 23:30
UTC on September 27, 2011. The choice of 40 ensemble members
represents a compromise between computational expense and
accuracy of background forecast uncertainty. Forty ensemble
members provided satisfactory results in observing system
experiments with the Global Forecast System operational
atmospheric model [57] and in the authors’ previous study
using the TIEGCM [7]. We retain this ensemble size to
facilitate comparisons with previous work.

The control simulation is driven with forcing parameters that
have the same temporal evolution as the published indices but are
shifted as shown by the green curves in Figures 1A–C. This shift
is introduced to simulate the scenario where the solar and
magnetospheric inputs used to drive the forecast are a
misspecification relative to the “true” state of the ionosphere-
thermosphere system. The imposed bias on F10.7, shown in
Figure 1A for the ensemble (gray) and the ensemble mean
(black), is 10 × 10− 22 W/m2Hz and is kept constant

throughout the simulation. The bias in the magnetospheric
inputs is introduced by adding a shift of 1.0 units in the Kp
index. The corresponding bias on Cp and Hp values is shown in
Figures 1B,C. Although the bias in the Kp index is fixed, the
resulting bias in the Cp andHp indices varies temporally. Prior to
the onset of the geomagnetic storm, which is about 12:30 UTC on
26 September, the bias in the magnetospheric inputs is relatively
small and constant but increases considerably over the next 6 h.
The strongest bias occurs during the main phase of the
geomagnetic storm, which takes place at about 16:30–19:30
UTC on 26 September. As geomagnetic conditions relax over
the next 12 h, the bias in the magnetospheric inputs also decreases
accordingly.

In reality, of course, the errors between the published and
“optimal” model forcing parameters are more complex, but, to
our knowledge, have not been fully characterized. Insofar as the
model’s response varies nonlinearly with the forcing parameters,
and the magnitude of the bias in the magnetospheric inputs
resembles the typical uncertainty during geomagnetically
disturbed periods, we believe that our choice of ensemble of
forcing parameters is as good as any for this illustration of bias
correction. Nevertheless, future work should address this
question in more detail.

4.3 The TIEGCM-LETKF Data Assimilation
System
Our TIEGCM-LETKF data assimilation system runs as a discrete
forecast/analysis sequence, in which the LETKF is used to
assimilate observations available in the time interval [tn −
0.5 h, tn + 0.5 h] into the output of TIEGCM at the analysis
time tn. The assimilation of observations produces an analyzed
state estimate at time tn that is used as the initial condition for the
subsequent 1-h forecast to estimate the ionosphere-thermosphere
system state at time tn+1 � tn + 1 h, where observations in the
time interval [tn+1 − 0.5 h, tn+1 + 0.5 h] are assimilated. This
forecast/analysis sequence is repeated throughout the duration
of the simulation, starting at 00:30 UTC on September 26, 2011.

During each analysis calculation, only a subset of the TIEGCM
state variables is included in the LETKF state vector and analyzed
with the assimilated observations. State variables included in the
LETKF state vector are electron density (Ne), neutral temperature
(Tn), zonal (Un), and meridional (Vn) components of neutral
winds, as well as atomic (O1) and molecular (O2) mass mixing
ratios. The same forecast/analysis sequence and choice of
analyzed state vector is used in [7]. Similar approaches are
also used in other ionospheric data assimilation studies [28, 32].

The covariance inflation scheme used in this paper is the one
proposed by [55], which also was used with the LETKF and
TIEGCM in the observing system experiments presented in [7].
Other LETKF parameters, such as the ensemble size and
localization radii, are also taken to be the same as in [7] to
simplify comparisons with the results.

4.4 Observing Network
During each analysis step, observations are generated
synthetically from the electron density component of the
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control simulation (“truth”), ut , with the observation locations
and times given by the COSMIC network during September
26–27, 2011. Vertical profiles from the COSMIC network extend
from about 80 to 800 km altitudes at a vertical resolution of about
10 km. There are about 85 globally distributed vertical profiles per
1-h interval. The COSMIC observation set is available at the
COSMIC Data Analysis and Archive Center (CDAAC) at UCAR
(http://cdaac-www.cosmic.ucar.edu). Synthetic observations are
generated with additive Gaussian noise to represent observation
processing noise: yo � Hut + ϵ, whereH interpolates the electron
density component of ut to the respective observation locations
and times during the given analysis step and ϵ is a Gaussian
random vector with zero mean and covariance matrix R.
Observation errors are assumed to be independent, so R is
diagonal.

Observations obtained through retrievals, such as COSMIC
electron density profiles, have also been shown to have significant
uncertainties associated with the inversion process, particularly at
low altitudes [30, 58]. We include an approximation of the
inversion error associated with these observations, as done in
[7, 24]. In addition to standard observing errors, retrieval errors
are correlated in possibly complicated ways, depending on the
nature of the satellite observing platform, but here we treat them

as independent. To compensate, the standard deviation of ϵ is
assumed to scale as 10% of the of the electron density component
of ut at the observation locations. Although we have not studied
the sensitivity of the forecast accuracy of the TIEGCM to the
magnitude of observational errors, previous experiments [54]
have demonstrated the stability and robustness of the LETKF to
observation noise when using an idealized regional
ionospheric model.

5 NUMERICAL EXPERIMENT 1:
PERSISTENT BIAS EVOLUTION

In this section, we study how well the proposed bias estimation
strategy can estimate the spatiotemporal evolution of model bias
in the electron density field when the bias evolution operator is
persistence, that is, Gn � I and cn+1 � cn for all analysis times tn.
The bias in the predicted electron density field is introduced with
the misspecification of the solar and magnetospheric model
inputs as shown in Figure 1. As noted in Section 3, we apply
the bias correction methodology only to the electron density
component of the TIEGCMmodel, as it is our primary interest in
the simulations.

FIGURE 2 | (A)Global maps of electron density bias in units of el/m3, at a fixed 375 km altitude at the indicated times on September 26, 2011. The electron density
bias is computed as deviation from the truth of the ensemble mean of the forecast (eb − et). The black curves denote the boundaries of the geographical regions, labeled
in white, that partition the domain horizontally. The locations of the COSMIC vertical profiles at each time are shown with the magenta markings. (B) Vertical structure of
electron density bias at a fixed 77.5° N latitude at 11:30, 15:30, 19:30 and 23:30 UTC on September 26, 2011. The vertical partitioning of the domain is denoted
with the black curves, which correspond to pressure levels −2.5, 0, 2.5, and 5. (C) Analogous plots of the electron density bias vertical structure at a fixed 77.5° S latitude.
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At the analysis time tn, we denote the electron density

component of the background state vectors, {ub(j)n }kj�1, as

{eb(j)n }kj�1 and its ensemble mean as eb(j)n . Similarly, we denote

the “true” electron density component from the control
simulation as etn. We define the electron density bias to be
given by the deviation of the forecast mean from the truth: bn �
ebn − etn.

Figure 2A shows the global distribution of electron density
bias, in units of el/cm3, at a fixed altitude of 375 km, which is
about the altitude of the F-layer over the equatorial daytime
ionosphere during this time period. The selected times show the
distribution of electron density bias on September 26, 2011 before
the major onset of geomagnetic disturbances (12:30 UTC), during
the main phase of the geomagnetic storm (15:30 UTC, 18:30
UTC), and as geomagnetic disturbances begin to relax (21:30
UTC). The locations of the observed electron density profiles
available for assimilation at each respective time are shown with
the magenta markings.

Also shown in Figure 2A are four geographical regions over
which we examine the model bias. The boundaries for the
Northern and Southern high-latitude regions (R1 and R2) are
located at the 30+ magnetic co-latitudes. Processes associated
with magnetospheric inputs are calculated explicitly by the
TIEGCM below this co-latitude and imposed directly with the
Heelis model above the 20+ magnetic co-latitudes. Between these
co-latitude bands, a linear combination of the imposed
parametric and model solutions is used. (The TIEGCM model
description provides more information; see www.hao.ucar.edu/
modeling/tgcm.) We also separate low-to-mid altitude regions in
the daytime (R3) from the nighttime (R4).

A positive (negative) sign indicates that the background
electron density overestimates (underestimates) the true
electron density. Prior to the main phase of the geomagnetic
storm, the most notable bias structure is in the daytime mid-
latitude regions (R3), where there is a negative bias. As
geomagnetic conditions become increasingly disturbed, the
misspecification in the magnetospheric input grows, resulting
in the formation of a significant negative bias structure over the
Southern Polar region (R1). The negative bias structure continues
to grow over regions R1 and R3 over the next few hours
throughout the rest of the main storm phase. There is also a
formation of negative bias in the Northern polar region (R2) and a
positive bias forming over the night-time low-to-mid latitude
region (R4). After the main phase (21:30 UTC), the negative bias
in the polar regions is largely diminished but the bias over the
daytime mid-latitudes remains relatively constant. This suggests
that the misspecification of F10.7, which is held constant
throughout the simulation has its largest effect over the low-
to-mid latitude regions. Over this time period, the temporal
evolution of electron density bias has a pronounced westward
drift of approximately 15+/h, so the persistent dynamics of the
bias evolution operator,G, provide a reasonable representation of
the model error.

Figure 2B shows the vertical structure of the electron density
bias at the 77.5+ N geographical latitude at the same times. The

black horizontal curves denote model pressure levels −2.5, 0, 2.5,
and 5, which correspond to altitudes of about 145, 215, 325, and
460 km, respectively. Throughout the main phase of the
geomagnetic storm, the most notable bias is negative,
occurring above 250 and 280 km altitudes in the day- and
nighttime regions, respectively, which is about the altitude of
the lower portion of the F-layer. Figure 2C shows the vertical
structure of the electron density bias at the 77.5+S geographical
latitude. Similarly, the most notable bias is observed above the
280 km altitude. However, there is pronounced positive bias at
about a 250 km altitude, which is located slightly below the
F-layer peak density.

5.1 Region-Averaged Bias Estimates
Following the procedure described in Section 3, the ensemble of

global bias correction vectors at a given time tn, {cb(j)n }kj�1, is
updated to form an ensemble of analyzed global bias correction

vectors, {ca(j)n }kj�1. Generally, each cb(j)n is an md × 1 vector, where

m is the number of grid points and d is the number of state
variables being analyzed. As discussed at the end of Section 3, we
consider bias corrections only for the electron density field. For

simplicity in notation, we now regard each cb(j)n to be an m × 1
vector corresponding to the electron density field
corrections only.

The forecast/analysis cycle is initialized at time t0 with electron
density bias corrections at each grid point given by

c
b(j)
0 � 1

4
(eb(j)0 − eb0), (14)

which has ensemble mean and reflects the initial spatial
correlations of the electron density field. The factor of 1/4 in
Eq. 14 is incorporated to reduce the variance in the electron
density bias estimate, which is generally expected to be smaller
than that of the electron density field. The procedure described in
Section 3 is then carried out for subsequent analysis steps to
produce spatially and time varying bias estimates throughout the
domain that are evolved according to Gn, which in this section is
taken to be the identity (persistence). For each grid point L,
variance inflation is applied to the bias correction component so
that its ensemble variance is at least 20% of the electron density
component at L.

The model state vector is analyzed without the bias corrections
for the first few analysis cycles after the forecast spinup so that
errors associated with the unadjusted thermospheric state are
reduced and the electron density bias is primarily dependent on
the misspecification of the solar and magnetospheric inputs. We
compute eight analysis cycles, from 16:30 to 23:30 UTC on
September 25, 2011, before applying the bias correction
strategy for the first time at 00:30 UTC on September 26, 2011.

To evaluate the skill of our bias estimation strategy, we
examine the model bias estimates, averaged over the four
geographical regions shown in Figure 2A. Consider one of the
fixed bias regions R � R1, . . . ,R4 as defined above. Denote the
electron density component of the jth forecast, eb(j)L , averaged
over all grid points L ∈ R, as Db(j)

R � N−1
R ∑L ∈ Re

b(j)
L , where NR is
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the number of grid points in R. Similarly, form the region-
averaged electron density of the control simulation, Dt

R �
N−1
R ∑L ∈ Re

t
L. The region-averaged deviation from the truth for

the jth forecast is given by

B
b(j)
R � D

b(j)
R − Dt

R, j � 1, . . . , k (15)

which yields an ensemble of regionally averaged model bias
estimates, whose ensemble mean, B

b
R � k−1∑k

j�0B
b(j)
R , is the

most likely state of the regionally averaged model bias.
Figure 3A summarizes the temporal evolution of the

region-averaged electron density bias in the Southern polar
region (R1) averaged between 1.0 and 5.5 pressure levels,
which correspond to altitudes of about 260–485 km. The
horizontal axis is time in hours, starting at 00:30 UTC on
September 26 2011 and ending at 23:30 UTC on September 27,
2011, and the vertical axis is electron density in units of
el/cm3. The ensemble of spatially averaged background

electron densities, {Db(j)
R }kj�1 and their ensemble mean, D

b
R,

are denoted with the thin pink and thick curves,
respectively. The analogous region-averaged electron
density for the control simulation, Dt

R, is given by the green

curve. The ensemble of bias correction parameters, {Cb(j)
R }kj�1

and their ensemble mean, C
b
R, are shown with the cyan and

thick blue curves, respectively. For direct comparison, the

negative of the region-averaged forecast deviations, {Bb(j)
R }kj�1,

is also shown with the thin gray curves and their respective

ensemble mean, B
b
R, is given by the thick black curve.

The region-averaged electron density for the control
simulation varies considerably within region R1, particularly
during the period of main geomagnetic disturbance, where the
electron density increases sharply between 12:30 UTC and 16:30
UTC on 26 September. After the main storm phase, electron
density content drops considerably and remains relatively
constant throughout the rest of the simulation. The region-
averaged electron density trajectories for the forecast evolve
similarly. Prior to the onset of geomagnetic disturbances, the
electron density bias is relatively small, but rises sharply during
the main phase, peaking at around 16:30 UTC. The electron
density bias is maintained until about 19:30 UTC, where it begins
to drop considerably and remains relatively constant after 23:30
UTC on 26 September, until there is a small resurgence toward
the end of the simulation.

FIGURE 3 | (A) Time series of the true electron density (green), in units of el/cm3, averaged over region R1 (as defined in Figure 2A), at the indicated altitudes. The
electron density, averaged over the same region, for the background ensemble (pink) and its ensemble mean (red) are also shown. The deviation of the background
ensemble and its ensemble mean from the truth are given by the thin gray and thick black curves, respectively. The time series of the ensemble of bias parameters and
their ensemble mean are shown by the thin cyan and the thick blue curves, respectively. The horizontal axis is time in hours, starting at 00:30 UTC on September 26,
2011 and ending at 23:30 UTC on September 27, 2011. (B–D) Analogous time series of electron density, averaged over region R2 (Northern polar region), region R3

(daytime mid-latitudes), and region R4 (night-time mid-latitudes), respectively.
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Prior to the onset of geomagnetic disturbances (12:30 UTC),
the bias strategy correctly detects the near-zero positive bias and
continually adjusts its estimates as the model bias starts to
increase during the transition into the main phase of the
geomagnetic storm around 12:30 UTC. Although the temporal
variations in the bias estimates evolve in a similar manner as the
model bias, the temporal variations are not captured during this
transitionary period in which the model bias increases and
decreases sharply during the initial and relaxation phases,
respectively. Most notably, the bias corrections adjust too
slowly and underestimate the model bias peak during the
initial storm phase. After the main phase, the model bias
decreases sharply and although the bias corrections adjust,
they do so too slowly and overestimate the model considerably
after 20:30 UTC for the next 8 h.

The region-averaged bias over the daytime low-to-mid-
latitude region (R3), shown in Figure 3C, exhibits a relatively
larger bias compared to the high-latitude regions but remains
relatively constant throughout the simulation, since the
misspecification of F10.7, which is held constant throughout
the simulation, is the primary driver of bias over this region.
The bias correction parameters approach themodel bias relatively
quickly and follow its temporal variations well, particularly
during the relaxation phase where the model bias decreases
gradually. The bias in the night-time region (R4), shown in
Figure 3D, is considerably smaller than the bias in its

surrounding regions. Its temporal evolution is relatively
constant throughout the simulation and is well represented
with the bias corrections.

5.2 Validation of Bias Correction
To validate the bias correction strategy, we compare 1-h
predictions of electron density before and after the bias
corrections are applied. Since the bias corrections are applied
only during the evaluation of the forward operator, we evaluate
the benefit of the bias corrections at the observed locations. In
particular, we compare the prediction RMS error averaged over
all vertical profiles within each of the geographical regions:

RMSE � ⎛⎝∑i∈R(ybi − yti)2
ℓR

⎞⎠1/2

, (16)

where yti and y
b
i are the true and predicted electron densities at the

ith observation location. The RMSE in Eq. 16 is averaged over the
set of ℓR observations located in the given region R.

Figure 4A shows the RMSE time series of 1 h predictions over
region R1, where the blue and red curves are computed with Eq
16, by taking ybi to be the forecast predictions before and after the
bias corrections are applied, respectively. Prior to the main phase
of the geomagnetic storm (12:30 UTC), there is little benefit in
applying the bias corrections due to the relatively small bias
present during this time period. Considerable benefits in using

FIGURE 4 | (A) Time series of the root mean squared error (RMSE) of 1 h forecasted electron density predictions, in el/cm3, averaged over all the observed
locations in region R1 (as defined in Figure 2). The RMSE values are shown for predictions before (blue) and after (red) the bias correction is applied. (B–D) Analogous
time series of region-averaged RMSE values and ratios for regions R2, R3 and R4. In all figures, missing values indicate that there are no observations in that region during
that time. All time series begin at 00:30 UTC on September 26, 2011 and end at 00:30 UTC on September 28, 2011, with 1 h intervals.
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the bias correction are observed between 15:30 UTC and 19:30
UTC, where the RMSE of uncorrected predictions reaches its
peak. Due to the misrepresentation of the model bias over region
R1 during the relaxation phase, as seen in Figure 3A, the bias
corrections do not yield benefits in 1-h predictions and actually
increase the forecast RMSE considerably throughout the
relaxation storm phase. In Section 6, we show that using a
growth-relaxation model for the bias evolution significantly
improves the temporal variations of the model bias during this
time period.

Figure 4B shows the analogous RMSE time series for region
R2, which is similar to that of region R1 insofar as there is a peak in
RMSE during the main phase of the geomagnetic storm, although
it is smaller in magnitude. The improvements prior to the onset of
geomagnetic disturbances are relatively small, but there is
significant improvement of about 30% during the main phase.
During the relaxation phase, the RMSE is about the same with
and without the bias correction, so the bias corrections do not
yield much benefit during this time period.

Figure 4C shows the analogous RMSE time series for the low-
to-mid-latitude daytime region (R3). The RMSE time series for
this region has a less pronounced peak during the main phase and
the improvement due to the applied bias corrections is consistent
throughout the simulation, although there are a few time periods
where the bias corrections offer little to no improvement near the
end of the simulation. The RMSE time series for the night-time
region (R4) is shown in Figure 4D. In this region, the bias is also
relatively constant and the benefits of applying the bias
corrections are consistent.

The numerical experiments presented in this section show that
the bias correction strategy usually improves 1-h forecasts
throughout the domain, particularly during the main phase of
the geomagnetic storm. However, some limitations of the strategy
are observed during transitionary periods of the geomagnetic
storm, where model bias undergoes relatively fast temporal
variations. Most notably, the high-latitude bias corrections
underestimate the sharp increase in model bias during the
initial storm phase and overestimate the model bias as it
sharply decreases during the relaxation storm phase. The
misrepresentation of model bias during these time periods is
primarily due to the choice of bias evolution operator, Gn, which
assumes the model bias remains constant during each forecasting
step. Consequently, the predicted bias corrections partially
diverge from the true state and yield inadequate background
bias correction estimates over high-latitude regions. Due to the
sparsity of observations, the bias estimates computed during each
analysis step are not sufficiently adjusted to fully capture the
temporal variations of the model bias.

6 NUMERICAL EXPERIMENT 2: BIAS
ESTIMATION WITH A TIME-VARYING
EVOLUTION OPERATOR
Although a simple persistence model for the bias evolution
provides some improvement in 1-h forecasts of electron
density, the results show that there is considerable room for

improvement. The question of how to optimize the bias evolution
model is a topic for future investigation, but here we outline one
potential approach to the problem.

Figure 5A shows a time series (blue dots) of the RMSE
between the “true” values of the electron density and those of
the ensemble mean, in units of el/cm3, at pressure level 2.0
(∼ 375 km altitude). Given the systematic errors in the driving
parameters (Figure 1) and the initial conditions, the chaotic
dynamics of the model suggest that deviations from the truth
should, on average, tend to grow exponentially, particularly
during the intensification phase of the geomagnetic storm.
After the storm passes, the dynamics relax back to a more
typical state. From approximately 12 UTC to 15 UTC on 26
September, the RMSE of the electron density in the Southern
polar region (R1) grows exponentially, and from about 19 UTC to
23 UTC decays exponentially.

By their nature, model errors tend to be of a particular sign.
For example, the representative bias results in Figure 2 show
regions where the model consistently underestimates or
overestimates the electron density. Consequently, we propose a
growth-relaxation model for the bias evolution of the form

Gn(can) � eλncan (17)

to describe the temporal evolution of model bias estimates at each
analysis time tn, such that the bias estimate for the jth forecast is

FIGURE 5 | (A) RMSE time series of electron density bias in units of
el/cm3, at pressure level 3.5 (∼375 km), averaged over all grid points in region
R1. The horizontal axis is time in hours. The growth and decay factors used in
the bias evolution operator, λR1 , are shown by the red curves and are
applied only during the times that these curves cover. (B) Vertical structure of
each λR1 during the initial (left) and relaxation (right) phases of the
geomagnetic storm. The vertical axis is in pressure levels and the horizontal
axis is the value of λR1 .
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given by cb(j)n+1 � Gn(ca(j)n ). The parameter λn may vary with time
and location to describe an averaged rate of model bias growth or
decay, depending on the storm phase. With this choice of Gn, the
model bias estimate depends only upon its current state, ca(j)n .

6.1 Bias Propagation
Because the errors in the model driving parameters under
geomagnetic storm conditions are not well characterized,
suitable choices of the growth and decay rates for the
evolution of the model bias must be determined empirically.
The choices depend upon latitude, altitude, and time of year
(i.e., Earth’s axial tilt). Detailed reanalyses of prior geomagnetic
storms are needed, which we have not yet undertaken. For the
sake of illustration, however, we consider an idealized procedure
for finding time-dependent bias parameters and discuss the effect
on the resulting forecast errors. Section 6.3 describes some
potential future work on this topic.

We consider the RMSE of electron density, averaged over all
grid points in the Southern polar region (R1) at pressure level 2.0
as mentioned previously in Figure 5A (blue dots). Although the
electron density bias a strong spatiotemporal variability
(Figure 2), we perform a simple regression from 12 UTC to
15 UTC on 26 September of the RMSE (red curves in Figure 5) vs.
time to determine the spatiotemporally averaged rate of bias
increase, which we denote as λn(R1, 2.0), where n indexes the
analysis times from 12 UTC to 15 UTC. We proceed likewise to

compute λn(R1, z) at each pressure level z above 0.5, which
corresponds to the lower portion of the F-layer. Below this
pressure level, we set λn(R1, z) � 0, because the model bias
generally does not display a strong growth or decay at these
pressure levels during transitionary periods of the storm, and it is
also much weaker in magnitude relative to the topside
ionosphere. We fit a corresponding exponential decay curve
from 19:30 UTC to 23:30 UTC on 26 September at the same
pressure levels.

Figure 5B shows the vertical structure of λn(R1, z) values used
during the initial (left) and relaxation (right) storm periods for
region R1 above pressure levels 1.0 and 0.5, respectively. During
the initial storm phase, the largest rate of growth is at about
pressure level 3.0 (∼350 km altitude), which is about the top
portion of the F-layer. Similarly, the greatest rates of decay are
seen between pressure levels 3.0 and 4.0, which correspond to
about 350 and 400 km altitudes. Growth-relaxation rates are
computed similarly for regions R2 and R3 and are provided in
Appendix. The growth-relaxation bias evolution model is not
used in the night-time region (R4), because the bias is not
observed to have a pronounced growth or decay component
like the other geographical regions.

The method just described is but one of many possible
parameterizations of the bias evolution model. A more
sophisticated approach might further localize theλn’s in
space and time, based on reanalyses of additional

FIGURE 6 | (A,B) Time series of bias correction parameters averaged over regions R1 and R2, respectively. The bias correction values in this figure are calculated in
the same manner as Figures 3A,B, but in the case where the bias evolution operator described in Section 5 is used. (C,D) Time series of the root mean squared error
(RMSE) of 1 h forecasted electron density predictions, in el/cm3 in regions R1 and R2, respectively. The RMSE values in this figure are calculated in the same manner as
Figures 4A,B, but in the case where the bias evolution operator described in Section 6 is used.
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geomagnetic storm events. The next subsection discusses this
issue in more detail.

6.2 Results
The time series of region-averaged bias estimates, in the case
where the growth-relaxation model described in Section 6.1 is
used for Gn, are shown for regions R1 and R2 in Figures 6A,B.
The quantities in these figures are computed as described in
Section 5.1 and are analogous to Figures 3A,B. Regions R1 and
R2 are the high-latitude regions over which rapid temporal
variations occur during the transitionary periods of the
geomagnetic storm. Comparison with Figures 3A,B reveals
that the growth-relaxation model for Gn provides a
considerably improved representation in the initial and
relaxation phases of model bias throughout the main phase of
the geomagnetic storm. The bias estimates still slightly
underestimate the rapid growth of the model bias in region R1
during the beginning of the initial phase between 11:30 and 13:30
UTC, but the application of Gn allows the bias estimates to
quickly grow and adequately estimate the peak of the model bias
at 16:30 UTC and also follow the sharp decrease in model bias
following the main storm phase. The bias evolution in region R2 is
similarly well represented throughout the simulation with the
growth-relaxation model for Gn.

Figures 6C,D show the corresponding RMSE time series of 1-h
electron density predictions over regions R1 and R2 in the case
where the growth-relaxation model is used for G. These RMSE
time series are computed as described in Section 5.2 and are
analogous to those shown in Figures 4A,B. An overall
improvement is seen throughout the duration of the
geomagnetic storm over regions R1 and R2. The most notable
benefits of the bias corrections occur during the relaxation phase,
where there is improvement of about 40 and 20% in regions R1 and
R2, respectively, compared to the persistent bias evolution model.

Figure 7 summarizes the spatial distribution of the bias
corrections at same representative times of the geomagnetic
storm. For comparison, Figure 7A shows the same
background electron density bias from Figure 2A, computed as
eb − et . This quantity yields the model error in 1-h electron
density predictions at each of the indicated altitudes and
times. Figure 7B shows the global distribution of background
bias corrections, cb, at the same altitude and times as Figure 2A.
Locations where the bias corrections are red (blue) correspond to
regions where the bias corrections are positive (negative).
Comparison with Figure 7A demonstrates that the spatial
structure of bias corrections provides a reasonable estimate of
the electron density bias, particularly over the daytime mid-
latitude regions. Figure 7C shows the difference between

FIGURE 7 | (A) Same global maps of electron density bias as shown in Figure 2A. (B) Spatial structure of the bias correction estimates, cb
L , at the same times and

altitudes. (C) Analogous global maps of electron density bias after the field of correction estimates is added.
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Figure 7B and Figure 7A, which indicate what the remaining
model error would be after the bias corrections are added at each
grid point. Locations where the bias corrections overestimate
(underestimate) the model bias are shown in red (blue).

Although there is considerable improvement in the overall
bias distribution, there are a few locations where the bias
correction scheme does not accurately represent the model
bias, mainly in regions of sparse data coverage. Overall, the
background prediction of electron density is improved at the
observed locations, so that the data assimilation procedure may
produce a more gentle update during the assimilation of the
observations.

Figure 8A shows 1-h predictions of electron density averaged
over all vertical profiles in region R1 at 12:30, 15:30, 18:30 and 21:
30 UTC on September 26, 2011. The horizontal axis is electron
density in el/cm3 and the vertical axis is altitude in km. The
region-averaged observations are shown in green, and the
analogously averaged electron density is shown for the
background ensemble mean before (blue) and after (red) the
bias corrections are applied. The vertical structure of the applied
bias corrections is given by the black curves. The vertical structure
of the bias corrections varies similarly to that of the electron
density profiles, although the maximum corrections are applied

above the F-layer and there are negative corrections applied at
altitudes slightly below the F-layer at certain assimilation times.
The applied bias corrections improve state estimates of the
maximum electron density in the F2-layer (NmF2) and its
altitude (hmF2) considerably, particularly during the main
phase of the storm (15:30 UTC and 19:30 UTC). Analogous
plots of bias corrections applied to regions R2 and R3 are shown in
Figures 8B,C, respectively. Similar improvements in peak density
and altitude are observed over these regions. The bias corrections
for the most part correctly increase the electron density peak and
its altitudes, but there are times where the electron density peak is
correctly for improved agreement with the truth.

6.3 Discussion
The main point of this exercise is to show that it may be possible,
using relatively few parameters, to devise a characterization of
model error that can improve short-term forecasts. Further
refinement of the bias estimation procedure, particularly in the
time interval following the storm peak, should be possible.

The parameterization procedure described above uses the
RMSE between the predicted and “true” values of the electron
density (assuming a persistent-bias model) to determine the
growth and decay factors λn for the various polar regions and

FIGURE 8 | (A) Comparison of 1 h electron density vertical profile predictions at the indicated times on September 26, 2011. The green profile in each figure is the
average of all COSMIC electron density vertical profiles located in region R1 (as defined in Figure 2A). The forecasted electron density is also shown before (blue) and
after (red) the bias correction, shown by the black curve, is applied. (B,C) Analogous comparison of electron density predictions over regions R2 and R3 at the same
times. In all figures, the vertical axis is altitude in km and the horizontal axis is electron density in el/cm3.
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altitudes. The question of how to determine optimal values for the
bias factors λn beyond the data used for this particular
geomagnetic storm is nontrivial and is deferred to a future
study, but we outline some potential approaches here.

Various authors have sought to devise useful statistical
characterizations of geomagnetic storms. No comprehensive
review of these efforts is attempted here, but as an illustration,
we mention the “epoch analysis” of [59], who analyzed
disturbance time index (Dst) data from 305 geomagnetic
storms. They define 1) the start time of each storm (i.e., the
commencement of the main phase) as the time at which Dst first
crosses zero; 2) the peak of the storm as the time at which Dst
achieves a minimum value, D min; and 3) the ending time as when
Dst recovers to values above 1

10D min. (The Dst index is available
from the WDC for Geomagnetism, Kyoto at http://wdc.kugi.
kyoto-u.ac.jp/dstdir/.) They also define “intense” geomagnetic
storms as those for which D min < − 100 nT; “class 1” moderate
storms, −100 nT≤D min < − 50 nT; “class 2” moderate storms,
−50 nT≤D min < − 30 nT; and “weak” storms, D min ≥ − 30 nT.

The left half of the regression interval in Figure 5 corresponds
approximately from the time when the Dst index first increases
from its background value to when Dst first becomes negative
(i.e., the start of the main storm phase). The right half
corresponds approximately to the main phase of the storm,
ending at the peak, when Dst reaches its relative minimum.
One potential indicator of an impending geomagnetic storm is
when the 1-h forecast errors begin to increase substantially;
perhaps it will be possible to define a threshold value to
initiate bias correction. Our initial numerical results suggest
that once of the peak of the storm is reached, the forecast
ensemble tracks the electron density reasonably well during
the recovery phase without bias correction, although
improvements may be possible.

By the criteria of [59], the September 26–27, 2011 stormwould
be classified as intense, because D min � −118 nT. Proceeding in a
similar manner over prior geomagnetic storms, and using RMSE
values between predicted and previously analyzed ionospheric
quantities like total electron content (TEC), one might try to
determine averaged values of the bias correction parameters as a
function of storm intensity, latitude, altitude, season, etc., that are
suitable for use with an operational data assimilation system.

The Dst is but one possible index to consider for this purpose.
Other proposed ionospheric storm scales, such as one based on
TEC and f0F2 statistics [60], might be better choices. Future work,
using data from many prior geomagnetic storms, is needed to
develop improved model bias parameterizations.

7 CONCLUSION

A general strategy for model bias correction is presented within a
data assimilation system for complex and sparsely observed
dynamical systems. The proposed strategy is applied in
observing system experiments corresponding to extreme
conditions, in which the geomagnetic storm of September
26–27, 2011 with a global ionospheric circulation model, the
TIEGEM. Synthetic electron density vertical profiles, whose

locations are given by the operational COSMIC satellite
observing network during the time period of the storm, are
assimilated using the LETKF. Systematic model bias in
electron density predictions is simulated through the
misspecification of parameterized solar and magnetospheric
inputs to the TIEGCM, which specify key dynamics in the
ionosphere. The spatial distribution of electron density bias is
estimated through a state-augmentation approach. The bias
estimates are applied in the evaluation of the forward
operator, with the intent to reduce the effect of model errors
in the predicted electron densities prior to the assimilation of
observations. This methodology permits spatially varying
estimation of model bias, which may be useful during extreme
events, to account for storm-time effects that are not well
represented with the parameterized representation of the solar
and magnetospheric drivers alone.

The results of this study suggest that relatively simple models
for bias correction can provide significant improvements in 1-h
electron density forecasts when the model error arises from a
systematic misspecification of the ionospheric driving
parameters. Two such models are considered: one in which
the bias is assumed constant, and another in which an
exponential growth and relaxation process is assumed in the
electron density.

The constant-bias assumption underestimates the growth in
the model error during the initial storm phase and overestimates
it during the relaxation storm phase, particularly for the electron
density over high-latitude regions. This persistence model does
not adjust the bias estimates quickly enough to capture their
temporal variability. Additionally, the observing network is
relatively sparse over high-latitude regions during the time
period under study, which further slows the adjustment of the
bias estimates. Nevertheless, the bias corrections yield
considerable improvements in 1-h forecasts of electron density
in certain regions prior to onset of the geomagnetic storm and
during the initial and main phases; however, the 1-h forecasts are
worse with the bias correction during the relaxation phase.

The benefits of the second bias-correction approach, which
uses a growth-relaxation model for the electron density, are seen
in 1-h electron density predictions over high-latitude regions
during transitionary periods of the geomagnetic storm, when the
temporal variations in model bias are most prominent. Model
bias corrections over the Southern polar region (R1) yield on
average about 45 and 35% improvements in 1 h electron density
predictions during the main and relaxation phases of the storm,
respectively. The Northern polar region (R2) displays a similar
peak in model bias evolution, and bias corrections yield an
improvement of about 45 and 20% during the main and
relaxation phases, respectively. Over daytime low-latitude
regions, a steady improvement of about 25% is observed
throughout the simulation. One-hour predictions of the global
distribution of model bias are approximated reasonably well with
the bias correction strategy overall. The bias corrections also yield
adequate estimates of the vertical structure of the model bias and
considerably improves 1-h electron density predictions of the
observed vertical profiles, including the adjustment of the F-layer
peak and its altitude.
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The experiments presented in this paper provide a proof of
concept. The results are established with synthetically generated
observations, which allows us to quantify specifically the effect of
the bias correction on 1-h forecasts of electron density. The
choice of bias evolution operator is important when there are
significant temporal variations in the model’s dynamical variables
and when the observing network is sparse. Extensions to real
observations will be considered in future work.

The approach described in this paper may be an effective tool
for model bias estimation during geomagnetic storms, provided
that there are qualitative similarities in the temporal variations of
model bias during these time periods. For example, the bias
model employed in our numerical experiments may be applied
during other geomagnetic storms in which positive and negative
storm-time effects are expected during the initial and relaxation
phases, respectively. Further studies of previous geomagnetic
storms may help provide improved estimates of typical
temporal variations in the electron bias evolution, which may
depend on solar/geomagnetic activity, latitude, pressure level,
and/or season.

The extension of this approach to real observations presents
some open problems. One obvious question involves model
errors arising from subgrid parameterizations and
uncertainties in the solar and geomagnetic driving parameters.
Representativeness error in the observations must also be
considered. The results presented here suggest that relatively
simple dynamical characterizations of the model bias can yield
a stable filter and improve 1-h forecasts of electron density.
Nevertheless, better choices of the bias evolution operator Gn

surely can be found. Reanalyses of prior geomagnetic storm

events and efforts to quantify the effect of different choices of
solar and magnetospheric inputs may help to quantify the
dynamical interaction between biases in multiple model
variables. These questions will be the subject of future work.
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APPENDIX

Bias Estimation Algorithm Pseudocode
The following algorithm demonstrates the procedure used to
compute the analysis at an arbitrary grid point L, and how the
model bias corrections are applied and updated. We assume there
are d components in the local state vector, xbL, including the bias
correction parameter, and that the ensemble is of size k. The
quantities below are related to the grid point L and its associated
local region, where we assume there are ℓ observations. The
computations below may be performed independently (and in
parallel) at each grid point L.

Analysis Computation
A detailed description of the analysis calculation and the
associated computational complexity is provided in [25]. In
the following suppose the forecast and bias estimates have
been propagated to a time tn, so that the global state vector is

given by ub(j)n � Mn[ua(j)n−1] and the global bias correction vector is
given by cbn � Gn−1(can−1). Now consider the analysis update of a

local state vector, xb(j)L at a fixed grid point L.

a. Construct the d × k matrix Xb
L, corresponding to the

augmented local state vector [(xb(j)L )T(cb(j)L )T]
T
.

b. Construct the ℓ × k matrix, Yb
L � HL(ub(j) + cb(j)) as

described in Section 3.
c. Form the k × ℓ matrix GL � (YL)T(RL)− 1

d. Compute the k × k analysis covariance matrix,

~P
a

L � [(k − 1)I/αL + GLYL]− 1.

e. The analysis ensemble is constructed in terms
of the “weight matrix”, Wa

L, which is computed in
two steps.

1) Compute the k × k. symmetric square root of the analysis
covariance matrix,

Ŵ
a

L � [(k − 1)~Pa

L]1/2.
2)Define the k-vector wa � ~P

a
LGL(yo − yL) and add it to each

column Ŵ
a
L to form the k × k weight matrix Wa

L.
f. Compute the analysis perturbation matrix Xa

L �
Xb

LW
a
L.

g. The jth column of the analysis ensemble is formed
by adding the background ensemble mean, xbL, to
the jth column of Xa

L, j � 1, 2, . . . , k.

Propagate Ionospheric and Model Bias State
Estimates

a. Apply forecast model Mn (given by the TIEGCM).
b. Compute ub(j)n+1 � Mn+1(ua(j)n )
c. Apply bias evolution operator G to

compute cbn+1 � Gn+1(can)
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