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We analyse periodic solutions in a system of four delayed differential equations forced by
periodic inputs representing two competing neural populations connected with fast mutual
excitation and slow delayed inhibition. The combination of mechanisms generates a rich
dynamical structure that we are able to characterize using slow-fast dissection and a binary
classification of states. We previously proved the existence conditions of all possible states
1:1 locked to the inputs and applied this analysis to the tracking of the rhythms perceived
when listening to alternating sequences of low and high tones. Here we extend this analysis
using analytical and computational tools by proving the existence a set of n:1 periodically
locked states and their location in parameter space. Firstly we examine cycle skipping
states and find that they accumulate in an infinite cascade of period-incrementing
bifurcations with increasing periods for decreasing values of the local input strength.
Secondly we analyse periodic solutions that alternate between 1:1 locked states that
repeat after an integer multiple of the input period (swapping states). We show that such
states accumulate in similar bifurcation cascades with decreasing values of the lateral input
strength. We report a parameter-dependent scaling constant for the ratio of widths of
successive regions in the cascades, which generalises across cycle skipping and
swapping states. The periodic states reported here - emergent behaviours in the
model - can be linked to known phenomena in auditory perception that are beyond
the original scope of the model’s design.
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1 INTRODUCTION

Differentiating between sound sources that overlap or are interleaved in time is a fundamental part of
auditory perception (the so-called cocktail party problem) [1, 2]. The neural computations
underpinning this segregation of sound sources has been the subject of dynamical systems models
in various frameworks that focus on feature separation (e.g., differences in pitch) between interleaved,
periodic sequences of sounds [3–5]. However, these studies failed to address neural computations
where temporal mechanisms interact with inputs on the timescale of the input period. A recent study
by the authors [6] addressed these computations in a framework inspired by the structure of the
auditory processing pathway and by common features of neural computation in cortical brain areas
(excitatory-inhibitory interactions, time-scale separation, transmission delays). Whilst our previous
study focused on 1:1 locked states, here we report onmore exotic dynamics that organise in cascades of
bifurcations leading to solutions with increased period.

Edited by:
Víctor F. Breña-Medina,

Instituto Tecnológico Autónomo de
México, Mexico

Reviewed by:
Ludwig Reich,

University of Graz, Austria
Fabiano Baroni,

Autonomous University of Madrid,
Spain

*Correspondence:
Andrea Ferrario

A.A.Ferrario@exeter.ac.uk

Specialty section:
This article was submitted to

Dynamical Systems,
a section of the journal

Frontiers in Applied Mathematics and
Statistics

Received: 28 May 2021
Accepted: 31 August 2021

Published: 01 October 2021

Citation:
Ferrario A and Rankin J (2021)

Cascades of Periodic Solutions in a
Neural Circuit With Delays and Slow-

Fast Dynamics.
Front. Appl. Math. Stat. 7:716288.
doi: 10.3389/fams.2021.716288

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org October 2021 | Volume 7 | Article 7162881

ORIGINAL RESEARCH
published: 01 October 2021

doi: 10.3389/fams.2021.716288

http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2021.716288&domain=pdf&date_stamp=2021-10-01
https://www.frontiersin.org/articles/10.3389/fams.2021.716288/full
https://www.frontiersin.org/articles/10.3389/fams.2021.716288/full
https://www.frontiersin.org/articles/10.3389/fams.2021.716288/full
http://creativecommons.org/licenses/by/4.0/
mailto:A.A.Ferrario@exeter.ac.uk
https://doi.org/10.3389/fams.2021.716288
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2021.716288


The encoding of sensory information in cortex involves
subpopulations of tens of thousands to millions of neurons
that are suitably represented by coarse-grained variables
representing e.g., the mean firing rate of the population. The
Wilson-Cowan equations [7] for localised populations of neurons
describes the firing rates of neural populations, and they are
widely used in small networks with excitatory and inhibitory
coupling, intrinsic synaptic dynamics, neural adaptation and a
nonlinear gain function [8–10].

Timescale separation is a common feature of models at the
single neuron level [11, 12], and in populations of neurons [13].
Slow-fast analysis including singular perturbation theory has
been instrumental in revealing the dynamical mechanisms
behind spiking and bursting [12, 14] and in explaining
complex dynamics in population models of neural competition
[10, 15]. Extensions of these methods have been applied to
systems with delays [16], in non-smooth settings [17] and in
networks capable of instrinsically generating patterns of rhythmic
behaviours (so-called central pattern generators, CPGs), such as
locomotion, breathing, sleep [18].

Delayed inhibition modelled with slow variables in systems of
ODEs representing CPG circuits with spiking units is important
for the generation of patterns of activity reminiscent of those
considered in this paper [19, 20]. Delays in small neural circuits
modelled using DDE equations can lead to many interesting
phenomena including inhibition-induced Hopf oscillations,
oscillator death, multistability and switching between
oscillatory solutions [21–23]. Two other key features of our
study are that 1) units are not instrinsically oscillating and 2)
periodic forcing of the units drives oscillations. Periodically
forced systems with timescale separation have been explored
in models of perceptual competition [24, 25], but not in the
presence of delays. Periodic solutions in autonomous delay
differential equations with Heaviside and monotonic gain
functions have been studied analytically in a recent paper
from the authors [26].

Periodic orbits can undergo cascades of bifurcations under
parameter variation. This phenomena leads to an increase in
period and/or complexity of the emerging orbits. The mostly
widely studied of these is the period-doubling cascade, a typical
route to chaos that can be found in simple dynamical systems
such as the smooth, discrete logistic map [27], or the periodically-
forced, continuous-time duffing oscillator [28]. Continuous-time
dynamical systems with a separation of timescales can produce
mixed-mode oscillations with a sequence of bifurcations leading
to additional low-amplitude excursions via a canard-induced
mechanisms [29]. Analysis of so-called spike adding
bifurcations have been instrumental in understanding bursting
phenomena in excitable cells [30]: additional large-amplitude
excursions can appear in a smooth bifurcation sequence. Here we
show analytically that a cascade of periodic solutions with discrete
steps in period that exist in non-overlapping, contiguous
parameter regions. As the cascade progresses (here decreasing
a parameter) these regions become narrower and the period
increases in discrete jumps. These features are akin to a
period-incrementing bifurcation sequence as reported in non-
smooth maps [31]. We note that 1) overall these solutions exist in

large parameter regions that overlap with 1:1 locked states
previously reported, 2) in a non-smooth setting we cannot
specify the bifurcation occurring at boundaries between
regions and 3) nevertheless the solution branches persist when
we relax the non-smooth assumptions as confirmed numerically.

We consider a periodically-driven competition network of two
localised Wilson-Cowan units with lumped excitation and
inhibition, generalised to include dynamics via inhibitory
synaptic variables. The units A and B are driven by
stereotyped input signals representative of neural responses in
early auditory areas.Whilst mutual excitation between the units is
fast, inhibition activates slowly and transmission between the
units is delayed. The units’ activation function is taken as a
Heaviside function restricting the possible state of each unit to be
active (ON), inactive (OFF) or in a fast transition between these
two states. This combination of modelling assumptions (fixed
delays, slow-fast timescale separation, heaviside activation
function) allows for all possible model states to be
conveniently represented in a binary matricial form with
entries specifying the state of the system in time intervals
relating to the input timecourse, delay and activation
timescales. This approach allows for exact parameter-
dependent existence conditions to be derived, as for all 1:1
locked states in [6] and for more exotic states as reported here.

The paper is organised as follows. In Section 2 we propose a
discontinuous system of delay differential equations to encode
auditory perception. In Section 3we report some results from our
previous study of this system [6] that are used here to analyse new
network states of interest. Specifically, we classify the possible
dynamics of states in the intervals when tones are active and
propose a binary matrix representation for each state in the
system. In Section 4 we define cycle skipping states with
period a multiple of the input period. We also derive
analytically their existence conditions and show that they
accumulate in cascades of period-incrementing bifurcations
for decreasing values of the local input strength. A similar
analysis is carried out in Section 5 to study switching states: a
class of states in which the units’ dynamics alternate between TR-
periodic states (thus forming solutions with larger period).
Finally, in Section 6 we construct a smooth version of the
model consisting of ordinary differential equations and use
numerical simulations and continuation to show that our
findings are not contingent on the presence of non-smooth
components.

2 MODEL DESCRIPTION

We consider a periodically forced neural network of two Wilson-
Cowan populations coupled by fast direct excitation and slow delayed
inhibition (Figure 1A). Inhibition from both units act on a slower
time scale and its dynamics is described by synaptic variables. The
forcing termsmimic stereotyped synaptic inputs in the auditory cortex
[32] to alternating sequences of A and B tones and has been used to
study the auditory streaming paradigm (see [6] for more details). The
combination between the timescale separation, forcing and delays give
rise to a rich repertoire of dynamical states.
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The model is described by the following system of four DDEs
representing two periodically forced neural populations (A and B
populations) coupled by fast direct excitation and slow delayed
inhibition

τ _uA(t) � −uA(t) +H(auB(t) − bsB(t −D) + iA(t)),
τ _uB(t) � −uB(t) +H(auA(t) − bsA(t −D) + iB(t)),
_sA(t) � H(uA(t))(1 − sA(t))/τ − sA(t)/τi,
_sB(t) � H(uB(t))(1 − sB(t))/τ − sB(t)/τi.

(1)

The variables uA and uB represent the activity of the A and
B populations and have timescale τ, while sA and sB represent

the activity of the inhibitory synaptic variables, have
timescale τi and are delayed by fixed D. We will assume τi
to be large and τ to be small. This condition poses system (1)
in a slow-fast regime which will enable us to apply analytical
tools to study model states. We consider a Heaviside gain
function with threshold θ ∈ (0, 1): H(x) � 1 if x ≥θ and 0
otherwise, which is a common choice in Wilson Cowan
models [10, 33]. Parameters a ≥ 0 and b ≥ 0 respectively
represent the strengths of the excitatory and inhibitory
coupling.

The forcing, square-waved periodic inputs (shown in
Figure 1B) iA and iB, are defined by:

FIGURE 1 | (A) Sketch of the model circuit: two neural populations (A and B) are mutually connected by excitation and inhibition with strengths a and b. Inhibition is
delayed of the amount D. (B) Input to A and B populations are square-wave functions iA(t) and iB(t), respectively. These inputs mimic primary auditory cortical responses
to sequences of interleaved A and B tones with duration TD and presentation rate PR (the repetition time TR is the inverse of PR). Parameters c is the local input strength
from A (B) locations to unit A(B). Parameters d is the lateral input strength from B (A) locations to unit A(B). (C) Example dynamics for a solution of system (1) in a 2TR
interval I (black interval) shows the subdivision into different intervals where the units’ dynamics is constrained (colored intervals, see Theorem 1). (D). Classification of
states based on the dynamics during an active tone interval R ∈Φ. (E). Time histories for 2TR-periodic MAIN SHORT states. (F). Existence regions for 2TR-periodic MAIN
and CONNECT states at varying (c, η). Parameters in panels E and F are TD � 0.025, D � 0.03, PR � 17, a � 0.6, b � 2, θ � 0.5.
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iA(t) � c∑∞

j�0 χIjA
(t) + d∑∞

j�0 χIjB(t)
iB(t) � d∑∞

j�0 χIjA(t) + c∑∞

j�0 χIjB(t),
(2)

where c ≥ 0 and d ≥ 0 represent the local and lateral
input strengths, respectively; χI is the indicator function
χI(t) � 1 for t ∈ I and 0 otherwise. Throughout this work
we will assume that local inputs are stronger than lateral
ones, i.e., c ≥ d. We define the parameter TD representing
the duration of each tone’s presentation and TR representing
the time between tone onsets. The intervals when A and
B tones are on (active tone intervals) are given by IjA�[αAj , β

A
j ]

and IjB�[αBj , β
B
j ], respectively, and have boundaries given

by:

αjA�2(j−1)TR, βjA�2(j−1)TR+TD,

αj
B�(2(j−1)+1)TR, βjB�(2(j−1)+1)TR+TD,

for j � 1, . . ., ∞. Let us name the set of active tone intervals R as

Φ � {R ⊂ R: R � IAj or R � IBj , ∀j ∈ N}
In this work we assume that TD < D and TD + D < TR, which

are guaranteed for moderate delays (motivated in [6]). We further
assume that a − b < θ and c ≥ θ to avoid trivial saturating or
resting dynamics in the system (as discussed in [6]). Throughout
this paper system 1 was numerically integrated using Matlab’s
built-in delay differential equation solver dde23 with fixed time
step dt � 10–5.

Remark 2.1. The dynamics of the synaptic variable sA (sB) is
dictated by that unit A (B). Indeed sA (sB) turns ON the fast time
scale when A (B) is ON and slowly decays to zero when A (B)
is OFF.

Remark 2.2 (Model symmetry). Let us consider the map
swapping the A and B indexes in the variables of system (1)

κ : v � (uA, uB, sA, sB, iA, iB)1(uB, uA, sB, sA, iB, iA)
and the application of the time shift TR. Since iA (t + TR) �
iB(t) and iB (t + TR) � iA(t), the model is symmetrical under
the composition of these two maps (Z2 symmetry).
Thus, periodic solutions of the model are of two types:
symmetrical cycles (κ-invariant) and asymmetrical cycles.
Any asymmetrical cycle v(t) coexist with its κ-conjugate
cycle κ(v (t + TR)).

3 BACKGROUND

In our previous paper [6] we split system (1) into slow and fast
subsystems to characterise their quasi-equlibria. This analysis
enabled us to classify all the possible 2TR-periodic states and
determine their existence conditions in the parameter space.
We now provide a summary of the main ideas, which are
important for the new analysis presented here. The following
theorem summarises three key properties characterizing the
dynamics of each network state during any 2TR interval
(Figure 1C), reported from Theorem 1, Lemma 1 and
Lemma 2 in [6].

Theorem 1. Consider an arbitrary interval 2TR time interval I
containing intervals IjA�[αAj , β

A
j ] and IjB�[αBj , β

B
j ] and the

subdivision of I in the intervals shown in Figure 1C. Any state
of system (1) satisfy the following properties:

1. No unit can turn ON between successive active tone intervals
(blue intervals)

2. The delayed synaptic variables sA (t − D) and sB (t − D) are
monotonically decaying in the intervals [αAj , αAj +D] and
[αBj , αBj +D] (orange intervals)

3. Both units are OFF in the intervals [αBj−1+ TD+D, αAj ] and [αAj +
TD+D, αBj ] (grey intervals)

As shown below, this theorem enabled us to split the dynamics
of all network states in four different classes: the disjoint classes of
MAIN and CONNECT states and the disjoint classes of SHORT
and LONG states (Figure 1C).

Point 1. in Theorem 1 guarantees that the turning ON
times for the units can only occur during an active tone
interval. Since the A and B active tone intervals (green and
purple intervals in Figure 1C) are included in intervals where
the delayed synaptic variables are decaying the total inputs to
the units in these active tone intervals is monotonically
decaying, too. Thus if a unit turns ON at any time in an
active tone interval it must remain ON at least until the offset
of the interval. Given an active tone interval R ∈Φ we can
therefore classify the set of states where the units may turn ON
at onset of R (MAIN states) and the set of states where the
units turn ON with some non-infinitesimal delay after the
onset of R (CONNECT states). The following definition
extends this classification for an arbitrary number of active
tone intervals (see Figure 1D for examples of MAIN/
CONNECT states in R).

Definition 3.1 (MAIN and CONNECT states). A state
(solution) of system (1) is:

• MAIN if ∀R ∈Φ, if ∃t* ∈ R turning ON time for A or B, then
t* � min(R)

• CONNECT if ∃R ∈Φ and ∃t* ∈ R, t* > min(R) turning ON
time for A or B, with t*K 0 for τ → 0

Moreover, due to point 2. in Theorem 1 if both units are ON at
the offset of an active tone interval R they may continue to be ON
for some time after such offset time. However, due to point 3. in
the same theorem, there exists a subsequent interval where both
units turn OFF (i.e., before the onset of the next active tone
interval). This leads to two possible classes of states: SHORT
states for which both units are/turn OFF between the offset of R
and the onset of its successive active tone interval, and LONG
states for which the units remain ON for some time after the
offset of R. We now extend this classification for an arbitrary
number of active tone intervals (see Figure 1D for examples of
SHORT/LONG states in R).

Definition 3.2 (LONG and SHORT states). We define any
state of system (1):

• LONG if ∃t ∈ R − I when both units are ON

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org October 2021 | Volume 7 | Article 7162884

Ferrario and Rankin Periodic Cascades in Neural Competition

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


• SHORT if both units are OFF ∀t ∈ R − I

Moreover, in our earlier paper [6] we showed that the
dynamics a unit’s jump up points during an active tone
interval determine the subsequent dynamics in the same
interval, as stated in the following theorem, which corresponds
to Lemma 5 in [6].

Theorem 2. Given an active tone interval R � [α, β] ∈ Φ we
have:

1. A (B) turns ON at time t* ∈ R 5 A (B) is ON ∀t ∈ (t*, β]
2. A (B) is OFF at time t* 5 A (B) is OFF ∀t ∈ (α, t*]

We used this theorem to define the matrix form (a binary
matrix) of each state, which describes the units’ dynamics in
one active tone interval R. We extended this representation for
two active tone intervals I1A and I1B to describe the dynamics of
2TR-periodic states and use it to determine the existence
conditions for these states. Here we extend this tool to
periodic solutions with higher periods using an intuitive
definition of the matrix form. This tool helps us to
visualise the dynamics of the states of interest and to
determine their existence conditions.

3.1 Intuitive Construction of theMatrix Form
The matrix form for a given state in an active tone interval
R � [α, β] ∈Φ is the 2 by 3 binary matrix

V � xA yA zA
xB yB zB

[ ]. (3)

where the first (second) row follow the A (B) unit’s dynamics
in R. Due to Theorem 2 if a unit turns ON at some time t* ∈ R if
must be ON in (t*, β]. Therefore we have only four possible
cases to consider for the first row of V. If unit A turns ON at
time α then it is ON in all the interval R and we have xA � yA �
zA � 1. If unit A is OFF at time α but turns ON after a small
delay α + δ due to the excitation from unit B (δ is an
infinitesimal delay on the fast time scale, δ ∼ τ) then we
have xA � 0, yA � 1 and zA � 1. If unit A turns ON at some
intermediate time t* ∈ (α + δ, β) then we have xA � 0, yA � 0 and
zA � 1. Otherwise, if unit A is OFF in R all entries in the first
row are zero. Analogous arguments lead to the construction of
the second row via the dynamics of unit B.

Since the units’ dynamics dictate the dynamics of the synaptic
variables (Remark 2.1) the matrix form uniquely describes the

complete four dimensional dynamics of system (1) in all active
tone intervals. However, the matrix form does not provide
information about the dynamics between each pair of
successive active tone intervals (thus establishing if the state is
LONG or SHORT, see Remark 3.1 below).

The matrix form extension to 2TR-periodic states during two
active tone intervals I1 � [0, TD] and I2 � [TR, TR + TD] is the 2 ×
6 binary matrices of the form

W � V1 V2[ ] � x1
Ay

1
Az

1
A x2

Ay
2
Az

2
A

x1
By

1
Bz

1
B x2

By
2
Bz

2
B

[ ], (4)

where V1 and V2 are the matrix forms in the intervals I1 and I2,
respectively in Eq. (3). The matrix form of these states is shown in
Table 1. One can easily check that the matrix form of each state
provides a visualization of the associated dynamics in the active
tone intervals I1 and I2 shown in Figure 1E. In our previous work
[6] we defined the matrix form Eq. (4) rigorously using analytical
tools. Here we used an intuitive approach to facilitate the reading.
The matrix form definition enabled us to derive the existence
conditions for all viable 2TR-periodic states (and to rule out
which states are impossible) and to visualise their existence
regions in the space of parameters.

A similar technique was used to find all CONNECT states and
to define their existence conditions. Table 2 shows the matrix
form of these states. We omit time histories because these can be
visualised from the matrix forms of each state. Figure 1F shows
the regions of existence of 2TR-periodic SHORT MAIN and
CONNECT states in the (c, η) parameter plane, where η is a newly
introduced parameter for scaling the lateral input as d � ηc and all
other parameters are fixed.

Remark 3.1. The matrix forms shown in Tables 1, 2 do not
provide information on the units’ dynamics outside the active
tone intervals. Therefore, to establish if a state is SHORT or
LONG we need to impose additional conditions at the offset
times of the active tone intervals. As shown in [6] if both units
are ON at the end of an active tone interval, they may continue
to be ON after the offset of the active tone interval and turn OFF
before the onset of the next active tone interval (LONG
condition). The 2T R-periodic states in which at least one
unit is OFF at the end of both intervals I1 and I2 are those
states with matrix form given by S, AP, INT and ZcAP in
Table 1 and Table 2 (these states cannot therefore be LONG).
The remaining states can be LONG. The analysis of all the
combinations of SHORT/LONG and MAIN/CONNECT states
is given in [6].

TABLE 1 |Matrix form of all 2T R-periodic MAIN states (* asymmetrical states with coexisting conjugate). States were named following their proposed link with percepts in the
auditory streaming paradigm ([6]). Specifically, names starting with S, I and AS represent segregation, integration and bistability, respectively. The ending letter B
indicates states in which both units turn ON at the onset of the same active tone interval. The ending letterD indicates states in which a unit turns ON an infinitesimal delay after
the other unit for at least one active tone interval.

S* SB* SD* AP AS* ASD* I* ID IB

111 000
000 000

111 000
111 000

111 000
011 000

111 000
000 111

111 111
000 111

111 011
000 111

111 111
000 000

111 011
011 111

111 111
111 111
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4 CYCLE SKIPPING STATES

In this section we define and study the conditions for the
existence of cycle skipping states with 2TR-multiple period
and show that they accumulate in cascades for decreasing
values of the local input strength. For cycle skipping states we
start from 2TR-periodic MAIN states with active tone intervals
I1�I1A and I2�I1B and add a period of 2TR-multiple of silence
after I1 and/or I2 (silence refers to active tone intervals that do not
generate a response). Let us define the sets of 2TR-periodic
segregated states S and integrated states I as

S � {SB, SD}, I � {IB, ID},
where SB, SD, IB and ID are the states having matrix form given
by their corresponding name (Table 1). As we shall soon prove,
cycle skipping solutions of all other states do not exist.

The existence conditions for cycle skipping states of order k
depend on the following quantities:

L−
k �e−(kTR−TD−D)/τi , L+

k � e−(kTR−D)/τi , R−
k �e−(kTR−2D)/τi ,

R+
k � e−(kTR+TD−2D)/τi .

(5)

We note that for these quantities L+j ≤L
−
j for any j, and that

L+/−j ≤ L+/−m for each pair of indexes j, m such that j ≥ m.
We now proceed by defining kth-order cycle skipping

segregated and integrated states and their matrix form. For
simplicity in the notation of the next sections we introduce
the vector 0 �(0, 0, 0).

Definition 4.1. A cycle skipping segregated state sk of order k ∈ N

is a periodic solution of system (1) obtained from a segregated state s ∈
S by adding 2kTR periods of silence after interval I1.

Figure 2 shows one period of the segregated cycle skippingMAIN
state SD1.We notice that Definition 4.1 for k� 1 introduces two active
tone intervals of silence (I2A and I2B, compared with SD in Figure 1E).

The matrix form of each cycle skipping segregated state sk
consists of 2 rows and n � 2k + 2 three dimensional row vector
elements per column that describe the dynamics of the two units
during the active tone intervals IjA and IiB, for j � 1, . . ., k + 1. By
definition, this matrix is obtained from the matrix formW � [V1,
V2] of state s defined in Eq. (4) by adding 2kmatrices with 2 rows
and 3 columns composed of vectors 0 between the matrices V1

and V2. Therefore the corresponding cycle skipping state have
period T � (2k + 2)TR. For example:

TABLE 2 |Matrix form of 2TR-periodic CONNECT states (* asymmetrical states). The existence regions of each state are located between the existence regions of specific
MAIN states (Figure 1F). CONNECT states were named to indicate the branches of such MAIN states interspersed by the letter c. For example, the existence region of
stateAPcAS is located between statesAP and AS. Names containing the letter Z indicate that they connect branches of zero solutions (which cannot appear in the system for
our parameter constraints).

ZcS* ZcAP ZcAS* ZcI ScAS* SDcAS* ScSD* APcAS* APcI

001 000
001 000

001 000
000 001

001 001
000 001

001 001
001 001

001 111
000 001

001 111
000 011

111 000
001 000

111 001
000 111

111 001
001 111

FIGURE 2 | Time histories for states SD1 and ID1. Model parameters in both figures are a � 0.6, b � 2, d � 0.8, θ � 0.5, PR � 17, TD � 0.025,D � 0.03, τ � 0.001 and
τ i � 0.2. In addition, c � 1.4 for the left panel and c � 1.7 for the right panel.
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where the A and B active tone intervals are indicated using
the matrix form. We note that for k � 0 the cycle skipping

states correspond to the original segregated state
(i.e., SD0 � SD).

Theorem 3. There are no cycle skipping segregated states of the
2T R-periodic states IB, ID, AP, AS or ASD.

Proof. We assume that these states are SHORT (the proof for
LONG states is analogous). All of these states have a general
matrix form given by.

V � 111 wpq
xyz 111

,

for some binary values x, y, z,w, p and q. Application of Definition
4.1 would give the following matrix form for the corresponding
kth-order cycle skipping state:

I1A I1B . . . Ik+1A Ik+1B

111 0 . . . 0 xyz
xyz 0 . . . 0 111

(6)

Where 0 . . . 0 is a sequence of 2k repetition of the vector 0 . We
highlighted in colors some key entries of the matrix form. Since the
green entry is 1 the B unit is ON and instantaneously turns OFF at
time βBk+1. Therefore the delayed synaptic variable sB (t − D) starts to
decaymonotonically from time βBk+1+D. Due to the periodicity of the
solution and the red entry being 1 the total input to the A unit turns
ON at time 0 and its total input is jA(0)�−bL−1+c≥θ. Moreover theA
unit turns OFF at time TD. Therefore the first 0 in the blue entry
shown in this matrix gives the condition −bL+1 +c<θ, which is absurd
since L+1≤L

−
1 . This proves that Def 1 cannot be applied to states AP,

AS, ASD, ID and IB, which conludes the PROOF.
We now introduce a new class of cycle skipping states obtained

from integrated states.
Definition 4.2. A cycle skipping integrated state ik of order k ∈ N

is the periodic solution of system (1) obtained from a integrated state
i ∈ I by adding 2kTR periods of silence after intervals I1 and I2.

Figure 2 shows an example dynamics of the integrated cycle
skipping MAIN state ID1. In this case the Definition 4.2 for k � 1
introduces four active tone intervals of silence (I1B, I

2
A, I

3
A and I3B).

Definition 4.2 can be applied to segregated states s ∈ S (not just
to integrated states). The resulting cycle skipping state sk is equal
to the segregated cycle skipping state S2k defined by 4.1.
Therefore, Definition 4.1 include segregated cycle skipping
states and we can omit an equivalent of Definition 4.2 for
segregated states.

Thematrix formof any cycle skipping integrated state ik has 2 rows
and n � 4k + 2 three dimensional vector elements per column that
describe the dynamics of the two units during the active tone intervals
IiA and IiB, for i � 1, . . ., 2k + 1. Similar to cycle skipping segregated

states, this matrix is obtained from V � [V1, V2] by adding kmatrices
formed by 2 row vectors 0 after matrices V1 and V2. For example:

where the A and B active tone intervals are indicated using the
matrix form. Therefore corresponding cycle skipping states have
period T � (4k + 2)TR. We note that for k � 0 the cycle skipping
states correspond to the original integrated state (i.e., ID0 � ID).

Theorem 4. There are no cycle skipping solutions of states AP,
AS, ASD, S and INT.

Proof. In Theorem 3 we showed that cycle skipping
segregated states AP, AS and ASD cannot be defined by
Definition 4.1. Thus, by contradiction suppose that there
exist cycle skipping integrated states of AP, AS and ASD
defined by Definition 4.2. The matrix forms of each of
these cycles skipping states extends the matrix form of AP,
AS and ASD shown in Table 1 and can written in the general
form:

I1A I1B . . . Ik+1A Ik+1B Ik+2A . . . I2k+1B

111 0 . . . 0 xyz 0 . . . 0
000 0 . . . 0 111 0 . . . 0

(7)

where 0 . . . 0 is a sequence of 2k repetition of the vector 0 and x,
y and z are binary values. The red entry in this matrix is 1,
meaning that the total input to the A unit at time 0 is jA (0) ≥ θ.
Since the B unit is ON and turns OFF at the end time of interval
Ik+1B , i.e., time βk+1B �(2k+1)TR+TD and it remains OFF
throughout the following active tone intervals Ik+2A , . . . , I2k+1B .
Therefore, for the periodicity of these states the delayed
synaptic variable sB (t − D) evaluated at time α1A�0 (red entry)
is equal toL−2k+1 and evaluated at time βk+1A �2kTR+TD (blue entry)
is equal to L+4k+1. Since the red entry is 1 we have that c−bL−2k+1≥θ
and since the last 0 in the blue entry is 0 we have that c−bL+4k+1<θ,
which is absurd since L−2k+1≥L4k+1. Lastly, we prove that Definitions
4.1 and 4.2 cannot be applied to states S and INT. Suppose that one
these definitions can be applied, which we will show to be absurd.
The extended matrix form of the cycle skipping states resulting
from Definitions 4.1 and 4.2 have respectively the general forms

I1A I1B . . . Ik+1A Ik+1B

111 0 . . . 0 xyz
000 0 . . . 0 000

and
I1A I1B . . . Ik+1A Ik+1B Ik+2A . . . I2k+1B

111 0 . . . 0 xyz 0 . . . 0
000 0 . . . 0 000 0 . . . 0

where x � y � z � 0 for state S and x � y � z � 1 for state INT. In
both cases the B unit is OFF at all times. Therefore the synaptic
variable sB is constant and equal to zero and the total inputs to
unit A at the start of intervals I1A and Ik+1A are both equal to c.
These inputs correspond to the red entry and the first zero of
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the blue entry in the matrix forms above. This is absurd since
the values of these entries are different, which concludes the PROOF.

We have therefore proven that the only possible cycle skipping
MAIN states are obtained from segregated states s ∈ S or
integrated states i ∈ I by adding 2TR-multiple silent periods. It
is possible to derive the existence conditions of cycle skipping
states in dependence on the model parameters. Table 3 shows the
matrix form and the existence conditions of all cycle skipping
segregated and integrated MAIN states. We now prove how these
existence conditions are obtained in one example: IDk (shown in
Figure 2 right for k � 1). The proofs for the remaining cases are
analogous.

Theorem 5. The existence conditions for state IDk are

c − bL+
2k < θ

c − bL−
2k+1 ≥ θ

d − bL−
2k+1 < θ

a + d − bL−
2k+1 ≥ θ

a − bL+
2k+1 < θ

Proof. For this state the A and B unit turn and remain ON
during the interval I1A and Ik+1B on the fast time scale, as shown
by its matrix form in Table 3 and are OFF during all the
remaining active tone intervals. The delayed synaptic
variables sA (t − D) and sB (t − D) therefore are ON in the
intervals I1�[D, TD+D] and I2�[(2k+1)TR+D, (2k+1)TR+
TD+D] (marked by the green shaded area in Figure 2). At the
end of these intervals sA (t−D) and sB (t −D) monotonically decay
following the slow subsystem s′ � − s/τi. One can therefore
calculate their values at any point. The total input strength to the
A unit at time βk+1A is therefore equal to c−bL+2k<θ, where the
inequality holds because the first row of the a matrix form below
Ik+1A is zero. Due to the monotonic decay of the delayed synaptic
variables all the entries of the matrix below I1B, . . . , I

k+1
A and

Ik+2A , . . . , I2k+1B are zero, since the total input is lower than
c−bL+2k. The value of the entries x1

A and x2
B are 1 and

indicate dynamics of unit A and B at times 0 and (2k + 1)
TR, respectively. Calculating the value of the delayed synaptic
variables at these times leads to the total inputs to both units
c−bL−2k+1, and thus to the condition c−bL−2k+1≥θ. The value of the
entries x1

B and x2
A are 0. Thus a similar reason leads to the

condition d−bL−2k+1<θ. Since the values of y1
B (y

2
A) is 1 one unit B

(A) turns ON a small delay after A at time 0 ((2k + 1)TR) due to
the excitation with strength a from unit A (B). This occurs
because a+d−bL−2k+1≥θ. Lastly, the condition a−bL+2k+1<θ

guarantees that the state is SHORT. Indeed the total input to
the units at the end times of the active tone intervals I1A and Ik+1B
is equal to a−bL+2k+1. Thus the condition a−bL+2k+1<θ guarantees
that point (1, 1) is not an equilibrium for the fast subsystem at
these times (see [6] for further details), which completes the
PROOF.

Remark 4.1 (Analysis of SHORT CONNECT and LONG states).
Cycle skipping SHORT CONNECT states can be defined using
Definitions 4.1 and 4.2 by adding periods of silence multiple of 2T
R after I1 and/or I2 to the states in Table 2. More precisely, Definition
4.1 can be applied to statesZcS, ScSD andDefinition 4.2 can be applied
to states ZcI, APcI. It can be proven that these definition cannot be
applied to all remaining CONNECT states (ZcAP, ScAS, SDcAS, ZcAS
and APcAS). This proof is analogous to the one of Theorem 4. In
Supplementary Appendix A1 we derived the existence conditions of
all possible cycle skipping SHORT CONNECT states using a similar
approach to that of Theorem 5.

4.1 Analysis of the Remaining Classes of
Cycle Skipping States
The analysis of LONG MAIN and CONNECT states follows
analogously to the SHORT case. One caveat of this analysis is
the need to extend the matrix form for short states during an
active tone interval R (3) by adding one binary entry at the
end of both rows in this matrix (see [6]). This additional
entries are either both 0 or both 1. If they are both 1 both units
are active after the offset of the interval R (LONG condition),
if they are both 0 the units turn OFF at the end of the interval
R. The possible LONG cycle skipping states and their
existence conditions are shown in Supplementary
Appendix A2 (for LONG MAIN cycle skipping states) and
Supplementary Appendix A3 (for LONG CONNECT cycle
skipping states). We note that these conditions depend on
both quantities L±k and R±

k defined in Eq. (5).
Using the analysis above we can group all cycle skipping states of

order k in two classes. The class Sk of all (2k + 2)TR-periodic
segregated cycle skipping states having the same number of
turning ON times as state sk defined by (4.1):

Sk � {SBk, SDk, ZcSk, ScSDk, SDLk, SLk, ScSDLk, ZcSLk},
and the class Ik of all (4k + 2)TR-periodic integrated cycle
skipping states having the same number of turning ON times
as state ik defined by (4.2):

TABLE 3 | Name, matrix form and existence conditions of cycle skipping MAIN states (* asymmetrical states).

SB*
k SD*

k IBk IDk

A B . . . A B
111 0 . . . 0 000
111 0 . . . 0 000

A B . . . A B
111 0 . . . 0 000
011 0 . . . 0 000

A B . . . A B A . . . B
111 0 . . . 0 111 0 . . . 0
111 0 . . . 0 111 0 . . . 0

A B . . . A B A . . . B
111 0 . . . 0 011 0 . . . 0
011 0 . . . 0 111 0 . . . 0

c − bL+2k+1 <θ
d − bL−2k+2 ≥θ
a − bL+2k+2 <θ

c − bL+2k+1 <θ
d − bL−2k+2 <θ
a + d − bL−2k+2 ≥θ
c − bL−2k+2 ≥θ
a − bL+2k+2 <θ

c − bL+2k <θ
d − bL−2k+1 ≥θ
a − bL+2k+1 <θ

c − bL+2k <θ
c − bL−2k+1 ≥θ
d − bL−2k+1 <θ
a + d − bL−2k+1 ≥θ
a − bL+2k+1 <θ
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Ik � {IBk, IDk, ZcIk, APcIk, IDL1
k, IDL2

k, IL
1
k, IL

2
k,

ZcIL1
k, ZcIL

2
k, ZcIL

1
k, APcIL

1
k, APcIL

2
k}.

4.2 Organization in the Parameter Space
Figure 3A shows an example (for other parameters fixed) of the
regions of existence for grouped states Sk and Ikwhen varying c and η.
As c → θ cycle skipping solutions Sk and Ik accumulate in infinite
cascades with period tending to infinity and are separated by exclusive
transition boundaries (Figure 3B, there is no bistability between these
states). The existence regions for each class Sk and Ik form a repeating
pattern as k → ∞ with c decreasing. We note that at k � 0 these
regions correspond to the regions of existence of 2TR-periodic MAIN
and CONNECT states (compare with Figure 1F; same parameter
values). Figures 3C,D show the zoom of regions in panel A
highlighting the features of subdivisions of existence conditions for
states in Sk and Ik. Panel C shows an example of a pattern formed by
SHORT states in S1 and I1. As k increases (c decreases) this pattern
continues for states in groups Sk and Ik and with decreasing
(increasing) width (height). The lower borders separating ZcIk
(ZcSk) and APcIDk (ScSDk) from other non cycle skipping states
shifts downwards and reaches the axis η � 0. At the intersectionwith η
� 0 existence regions for cycle skipping states change to match a
pattern formed by LONG states. Figure 3D shows an example of this
pattern for k � 7, a pattern that repeats as c → θ.

4.3 Parameter Region Relationships
We now show that the width ratio of the region of existence of
successive cycle skipping states in group Sk converges to a constant in
the limit as k → ∞. A similar proof holds for states in Ik and is
therefore omitted. The existence region of each state Sk is bounded
horizontally by vertical lines (Figure 3A). The right vertical boundary
c�cRk separates states SDk and ZcIk, while the left vertical boundary
c�cLk separates states ZcSk and IDk+1 (Figure 3C). From the existence
conditions of these states we can derive these lines analytically and

obtain the expressions cRk �bL2k−1+θ and cLk �bL2k+θ. The width of
group Sk is therefore given by <Sk> �cRk −cLk . It is straightforward to
obtain the limit of the width between successive parameter intervals:

lim
k→∞

<Sk+1>
<Sk>

� e−2TR/τi . (8)

5 SWITCHING STATES

The remaining two classes of states considered in our study
consist of SHORT states with a period that is multiple of TR.
Following the approach outlined in the previous section we define
these states using their matrix form and use the matrix form to
derive their existence conditions. To simplify the notation we
introduce vector 0 �(0, 0, 0) and 1 �(1, 1, 1). We also define two
positive integers values m, k ∈ N such that k ≥ 1, m ≥ 2 even.

Definition 5.1. Letm be even. The Q-switching stateMQm,k is
the periodic SHORT MAIN state with period (m + 2k)TR
described by the matrix form:

We note that this state is characterised by silence in m
repetitions of the half period TR (blue boxes) and k repetitions
of the B unit’s turning ON at every other tone (red boxes). A time
history example of one Q-switching state Q2,3 is shown in
Figure 4. In the next theorem we used an similar analysis to
the one in the previous section to prove the existence conditions
for MQm,k states.

FIGURE 3 | (A)Regions of existence of cycle skipping states in the space of parameters (c, η), where colors show the states’ periods (scaled by 2TR). (B) Section of
panel A at fixed η � 0.8 shows the dependence of states’ period on c. (C) Zoom of panel A showing the subdivision of existence regions for states in groups S1 and I1. (D)
Zoom of panel A showing the subdivision of existence regions for states in groups S7 and I7. Model parameters are the same as in Figure 1F.
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Theorem 6. The existence conditions of state MQm,k are
given by:

c − bL+
m < θ

c − bL−
m+1 ≥ θ

d − bL+
m+2k−2 < θ

a + d − bL+
m+1 < θ

d − bL−
m+2k ≥ θ

a + c − bL−
1 ≥ θ

a − bL+
1 < θ.

(9)

Proof. Due to the monotonic decay of the delayed synaptic
variables in the m between intervals I1B and Im/2+1

A (Theorem 1),
the condition c−bL+m<θ guarantees that the units are OFF during
these intervals (entries of the matrix form are 0 ). This condition
also guarantees two properties. Firstly, that the A unit is OFF at
the onset of the interval I1A, since its total input is c−bL−1<c−
bL+m<θ (sincem ≥ 2 from the definition ofMQm,k). Secondly, that
the A unit is OFF during the A tone intervals Im/2+2

A , . . . , Im/2+k
A

and the B tone intervals Im/2+2
B , . . . , Im/2+k

B . Indeed the total input
to the A unit at the end of the first set of intervals is
c−bL+1≤c−bL+m<θ, and A unit’s input at the end of the second
set of intervals is d−bL+2≤c−bL+m<θ. The condition c−bL−m+1≥θ
guarantees that the B unit turns and remains ON in the interval
Im/2+1
B . Due to the decay of sA (t − D) this is valid also for intervals
Im/2+j
B , for j � 2, . . ., k. Overall, this leads the entries in the second
row below each of the intervals Im/2+j

B , for j � 1, . . ., k to be equal to
1 . The condition d−bL+m+2k−2<θ guarantees that the entry in the
second row below the interval Im/2+k

A is equal to 0 . The decay of

the synaptic variable sA (t − D) implies that all second row entries
below the intervals Ij+kA are 0 , for j � m/2 + 2, . . ., m/2 + k. The
condition a + d − bL+m+1<θ guarantees that the A unit is OFF
during the intervals Im/2+1

B . Moreover, since the total input to the

A unit at the end of the intervals Im/2+j
B , for j � 2, . . ., k is equal to

a + d − bL+2<a + d − bL+m+1, since m ≥ 2. Hence the A unit is also
OFF during all of these intervals. The condition d − bL−m+2k≥θ
guarantees that the B unit turns ON at the onset the interval I1A,
and the condition a + c − bL−1≥θ guarantees that the A unit turns
ON with some small delay from the onset of the interval I1A.
Lastly, the condition a − bL+1<θ guarantees that the state is
SHORT by making sure that the units turn OFF at the offset
of the interval I1A ((1, 1) is not an equilibrium for the fast
subsystem, see [6] for more details), which completes the PROOF.

In Supplementary Appendix A4, 5 we provide a definition and
analyses of the existence conditions for SHORT CONNECT Q-
switching states of order m and k, which have the same period as
MQm,k. We classify these states as: 1) simple CONNECTQ-switching
states (cQm,k, dQm,k and gQm,k) for which one unit turns ON during
only one interval at a delayed time from the interval’s onset, and 2)
complex CONNECT Q-switching states (cdQm,k, cgQm,k, dgQm,k and
cdgQm,k) with delayed turning ON of the units across multiple
intervals. These classes complete CONNECT Q-switching states.
For a fixed k and m, CONNECT Q-switching states preserve the
number and the order of the units’ turning ON times during each
active tone interval fromMQm,k, except for delaying at least one unit’s
turning ON time during at least one active tone interval.

Next we proceed to define the final class of states considered in
this paper: the W-switching states.

Definition 5.2. Letm ≥ 0 be odd. AW-switching stateMWm,k

is the periodic SHORT MAIN state with period 2 (m + 2k)TR
described by the matrix form:

where p(k) � k + (m + 1)/2.

Figure 4 shows the dynamics of state W1,2. We note that this
state demonstrates switching between unit A being active at every

FIGURE 4 | Time history examples of the Q-switching state Q2,3 andW-switching stateW1,2. All parameters are the same as in Figure 2, except for the following:
c � 2.076, d � 0.605 and τ i � 0.4 for the left panel; c � 2, d � 0.57 and τ i � 0.2 for the right panel.
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other tone whilst unit B is inactive, and unit B being active at
every other tone whilst unit A is active. With respect to auditory
streaming this state may be interpreted as a segregated percept
with periodic switching between the A tone in the foreground and
the B tone in the foreground (see Discussion).

We define SHORT CONNECT W-switching states of order m
and k as those states that preserve the number and the order of the
units’ turning ON times during each active tone interval of state
MWm,k, and that delay a unit’s turningON time during one ormore
active tone intervals. The matrix form and existence conditions for
allW-switching states are similar to those ofQ-switching states and
are presented in Supplementary Appendix A6. Also in the case of
CONNECT Q-switching states we differentiate between simple
CONNECT W-switching states (cWm,k, dWm,k and gWm,k) and
complex CONNECT W-switching states (cdWm,k, cgWm,k, dgWm,k

and cdgWm,k) based on the number of active tone intervals for
which the units’ turning ON times are delayed.

From the analysis ofQ- andW-switching states wemay group all
switching states of orderm and k based on having the same number
and order of the units’ turning ON times during each active tone
intervals. Specifically, we have the class of SHORTQ-switching states
formed by all Q-switching states of order m and k:

Qm,k � {MQm,k, cQm,k, dQm,k, gQm,k, cdQm,k, cgQm,k, dgQm,k, cdgQm,k},

and the class of SHORT W-switching states formed by all W-
switching states of order m and k:

Wm,k � {MWm,k, cWm,k, dWm,k, gWm,k, cdWm,k,
cgWm,k, dgWm,k, cdgWm,k}.

Figure 5A shows example of the dependence of the regions
of existence of grouped states Qm,k and Wm,k when varying
parameters c and η (same parameters as Figures 1F, 3). For
decreasing values of η switching groups Qm,k and Wm,k

accumulate in cascades with increasing period so that k →
∞ (Figure 5B) until they reach the curve η � θ/c, which is the
upper boundary of state S shown in Figure 1F. By definition
d � ηc. Therefore, this accumulation occurs for decreasing
values of the lateral input strength d for d→ θ. We note that there
is no bistability between these states (i.e., coexistence between any
pair of states in Qm,k). Figures 5C,D show details from panel A.
These panels show example patterns of the existence regions for
states in groups Q2,4 and W1,3. These patterns repeat at different
sizes as d→ θ. In this limit the height of the intervals of existence of
groups Qm,k and Wm,k decreases to zero.

Remark 5.1. We note that the some Q- andW-switching do not
exist for the selected parameter values in Figure 5 (for example states
MQm,k). However, we numerically checked that these states exist in
other parameter regions (see Figure 4 for state MQ2,3).

We now show that the ratio of the height between successive
W-switching states converges to a constant. An analogous proof
holds for Q-switching states and is therefore omitted. The
transition boundary between groups Wm,k and Wm,k−1 shown
in Figure 5A is marked by the upper existence boundary of states
MWm,k, dWm,k and dgWm,k expressed as a function of c as
ηk(c) � (bL+m+2(k−1)+θ)/c, where L+j �e(jTR−TD −D)/τi . Therefore
the height of the region of existence for the group Wm,k is
given by ηk+1(c) − ηk(c). It is straightforward to find the limit
of the height between successive tone intervals:

FIGURE 5 | (A) Regions of existence of Q- and W-switching states in the space of parameters (c, η), where colors show the states’ period (scaled by 2T R). (B)
Section of panel A at fixed c � 2.1 shows the dependence of the states’ period on η. (C) Zoom of panel A showing the subdivision of existence regions for states in group
Q2,4. (D) Zoom of panel A showing the subdivision of existence regions for states in group W1,3. Model parameters are the same as in Figure 1F.
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lim
k→∞

ηk+1(c) − ηk(c)
ηk(c) − ηk−1(c)

� e−2TR/τi .

This constant is independent from c and equal to the width
ratio of successive cycle skipping states Eq. (8).

6 COMPUTATIONAL ANALYSIS IN A
SMOOTH AND CONTINUOUS SYSTEM

In this section we extend the analysis of switching states Wm,k

using a continuous version of model (1), described by the
following system of six ordinary differential equations (ODEs):

τ _uA(t) � −uA + Sσ(auB − bsB + ciA(t)),
τ _uB(t) � −uB + Sσ(auA − bsA + ciB(t)),
_xA(t) � αx(1 − xA)Sλ(uA)/τ − βxxA,
_xB(t) � αx(1 − xB)Sλ(uB)/τ − βxxB,
_sA(t) � Sλ(xA)(1 − sA)/τ − sA/τi,
_sB(t) � Sλ(xB)(1 − sB)/τ − sB/τi,

(10)

where the gain function S is defined as a sigmoid Sσ(z) � 1/(1 +
e−σ(x−θ)), which approximates a Heaviside function for large σ.
The interpretations of parameters a, b, θ, τ, τi and of variables uA,
uB, sA, sB are the same as the ones described in Section 2 for model
(1). The new parameters αx and βx represent the rate of activation
and inactivation of the variables xA and xB. The parameters σ �
180 and λ � 20 are the selected slopes of the sigmoid.

System (12) differs from the discontinuous delayed model studied
in the previous sections because the delay in the synaptic variable sA
(sB) is introduced by a second variable xA (xB) instead of the fixed
amount D, following [19] as motivated by indirect synapses. For
example, if uA turns ON then xA will activate when uA crosses the
threshold θ. In this case the synaptic variable sA activates when xA
crosses the threshold θ. The delays produced by the indirect synapses
depend on the rates αx and βx. Preliminary simulations revealed that
the variation of these two parameters allows for only small delays to be
produced whilst guaranteeing the convergence to 1 when variables sA
and sB turnON (delaysmeasured to the peak of sA and sB, in the range
0–20ms). Since our previous analysis assumes that D > TD we
consider values of αx and βx that give a delay of approximately 15ms
and fixed TD � 10ms.

The input functions iA and iB are redefined as:

iA(t) � Sσ,0(x)Sσ,0(z) + ηSσ,0(−x)Sσ,0(−z)
iB(t) � Sσ,0(−x)Sσ,0(−z) + ηSσ,0(x)Sσ,0(z), (11)

where x � sin (δt), y � cos (δt), z � sin (δ · TD)y − cos (δ · TD)x
and δ � π · PR. We recall that parameter η is a scaling of the input
strength c so that the lateral inputs have amplitude d � ηc. The
new input function iA and iB are similar to the discontinuous
inputs shown in Figure 1B but with smoothed, square waveform.
To allow numerical continuation with periodical forcing in
AUTO-07p [34] we append the following two ODEs to system
(13), for which x � sin (δt) and y � cos (δt) is a solution:

x′ � x + δy − x(x2 + y2),
y′ � −δx + y − y(x2 + y2).

We simulate model (12) at fixed parameters and find a set of
statesW1,k analogous to the ones shown in Figures 4, 5 for model
(1). We numerically continue each branch of periodic orbit W1,k

for k � 2, 3, 4, 5 varying the parameter η (Figure 6). We find large
regions of stability that accumulate with k increasing as η
decreases (in agreement with Figure 5B). These regions of
stability are non overlapping (no bistability) and are separated
by unidentified bifurcation points (the continuation algorithm
fails to converge at these points). We suspect that these
bifurcation correspond to period-incrementing bifurcations.

Overall, this analysis confirms the existence and of W-
switching states and their organisation in a cascade for
decreasing values of η using a smooth and continuous version
of the original model (1). The numerical continuation of branches
ofW-switching states reveals discontinuous transition points that
suggest bifurcation phenomena that cannot be detected using
continuation software. A similar analysis of system (12) could be
applied to study cycle skipping and Q-switching states.

7 DISCUSSION

In this paper we analysed a system of four periodically forced
delay differential equation encoding rhythm perception. The

FIGURE 6 | Numerical analysis of switching states. (A) Time histories of switching states W1,k for k � 2, 3, 4, 5 computed using forward numerical integration of
system (12) at different values of η. (B) Codimension-1 bifurcation diagram of the stable states in panel A at varying parameter η. Red circles indicate failure of
convergence of the numerical continuation. Model parameters in both panels are a � 0.6, b � 2, c � 2,PR � 10, α � 150, β � 20, θx � 0.5, τ i � 0.3, τ � 0.001, θ � 0.5 and T D
� 0.01.
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system represents two neural populations mutually connected by
fast excitation and slow delayed inhibition receiving square-wave
sound inputs consisting of two alternating pure tones. We
previously used singular perturbation techniques to classify all
viable states 1:1 locked to the inputs and to define their existence
conditions using a binary matrix representation [6]. Here we
extended this analysis to study two classes of n:1 locked states
called cycle skipping and switching states. Cycle skipping states
were derived from 1:1 locked states by adding intervals of silence
(i.e., without response) equal to a multiple of the input period.
Switching states are defined by dynamic alternation between 1:1
locked states. We generalised the matrix form for these states to
visualise their dynamics and derive their existence conditions. We
then analysed the existence regions in the space of parameters (c,
η), where c is the strength of the local inputs and η the scaling
strength of the lateral input. We found that cycle skipping and
switching states accumulate in cascades with diverging periods
for decreasing values of c and η respectively, and that this
accumulation derives from an infinite period-incrementing
cascade of bifurcations. Lastly, we confirmed the analytical
predictions using numerical integration and continuation in a
smooth ODE version of the model.

7.1 Period Incrementing Cascades
Sequences of bifurcations leading to an increased period are a
common features of dynamical systems, a period-doubling
cascade being the most commonly observed. Other period-
increasing cascades have been most widely studied in non-
smooth maps: the period-adding scenario and period-
incrementing scenario (see [35] for a recent review). In the
period-incrementing scenario the period increments from a
base value p0 by a fixed amount Δp in integer n steps: in each
successive increment of the cascade the period is pn � p0 + nΔp. In
the period-adding scenario, the sequence of periods observed as a
parameter is varied is more complicated, with a Cantor-set like
structure [35]. Either scenario can be found in 1D piecewise-
linear maps [31, 36] (and their regularised, smooth counterparts
[37]). Successive intervals typically exist in wedge-shaped regions
converging to a point in the parameter plane (a so-called big bang
bifurcation) and an infinite cascade of period-adding or period-
incrementing transitions is found by following a radial path in
parameter space around these organising centers in the parameter
plane [31, 36]. In some cases, bands of chaotic dynamics (like
periodic windows found in the period-doubling route to chaos)
can be found between parameter intervals with periodic states
[31]. Period-incrementing and period-adding cascades are found
in a broad range of applications in settings that include 1D or nD
maps (non-smooth or smooth), and include continuous time
dynamical systems with delays or with non-smooth
characteristics [35–37]. Our discussion here will focus on a
comparison of our findings with canonical examples [31, 36]
and with models from mathematical neuroscience (below).

In our model we identified several cascades characteristic of
period-incrementing sequences. In each successive parameter
region the period increases in steps associated with the period
of the model inputs. In the case of skipping states the sequence
progresses with increasing period for decreasing values of the

local input strength c. The boundaries of these regions are parallel
in the (c, η)-plane (and thus do not converge at a big bang
bifurcation). Interestingly there are two interleaved period-
incrementing sequences associated with integrated-like states
(both units respond together) and segregated-like states (only
one unit responds). We further found that the ratio of width in c
of successive intervals to be a parameter dependent constant
e−2TR/τi (rather than a universal constant as for the Feigenbaum
constant in period-doubling sequences). The structure in the (c,
η)-plane was similar for switching states but with the sequence
occurring as η is decreased. Interestingly, the ratio of height in η
of successive existence intervals of switching states is also e−2TR/τi .
Noting that the existence regions for periodic states in our model
are disjoint and contiguous, we did not find windows with chaotic
dynamics. While the transition boundaries between successive
skipping states are vertical lines in the space of parameters (c, η),
the boundaries of switching states are curved. We note that by
plotting the existence regions in the space of parameters (c, d)
instead of (c, η) we would obtain horizontal transition boundaries
for switching states and vertical transition boundaries for
skipping states.

7.2 Cascades in Neural Models
Models of single neurons typically feature a time-scale separation
with rapid activation and inactivation dynamics that generate
spikes and slower recovery dynamics leading to a refractory
period between spikes [12]. Methods from singular-
perturbation theory have been central to the development of
our understanding of more complex spiking phenomena such as
bursting [12, 13]. Successive spikes appear on the bursting plateau
as a parameter is varied through a complex series of homoclinic
bifurcations [30, 38, 39]. However, the period does not change
much [40] in these spike-adding sequences (therefore not
classified as period-adding or period-incrementing). However,
there are several examples of single-neuron models with non-
smooth spike resetting dynamics where such cascades have been
reported. In [41], a piece-wise linear approximation of the
Fitzhugh-Nagumo’s nonlinearity was taken. The periodically
forced system exhibits rich dynamics that includes a period-
adding sequence and chaotic dynamics. An integrate and fire
model (with spike reset) also features a period-adding sequence
and chaotic dynamics [42]. More recently a similar model was
reported to have a period-incrementing structure [43] as revealed
through a map on the model’s adaptation variable. In the present
study we did not find evidence of chaotic dynamics. Indeed our
analysis precludes any ‘gaps’ in the contiguous parameter
intervals with cycle skipping and switching states where such
dynamics are found in other models [42, 43].

In canonical models of neural competition at the population
level, timescale separation leads to relaxation oscillations in
models of perceptual rivalry [8, 44] (i.e., perceptual bistability,
as for binocular rivalry or the necker cube). Mixed-mode
oscillations can emerge in these models through a canard
mechanism [15, 45, 46]. A cascade of non-local bifurcations
leads to disjoint, contiguous parameter regions with branches
that have increased period [46], though the period is not fixed on
each segment in this smooth model. This class of models can
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exhibit a cascade sharing many features of a period-
incrementing cascade: when periodic forcing is introduced a
sequence of non-local bifurcations lead to a family of solutions,
similar to the W-switching states reported here, with step-
increments in the period matching the period of the forcing
[46]. Periodic inputs to competition networks have been
considered in several other models [5, 24, 25, 47, 48], but
these typically only report 1:1 locked states or oscillatory
states modulated by forcing but not locked with the forcing.
A model featuring a Heaviside activation function and step-
function or sinusoidal inputs exhibited cycle-skipping states
[25], much like the cycle skipping states found in the present
study. Our study reveals richer dynamics than these earlier
studies and demonstrates a link between the regions with the
switching and cycle skipping states through a single, parameter-
dependent ratio for existence intervals.

7.3 Modelling Assumptions
Our model features several mechanisms that are known to lead to
complex dynamics (in isolation, or in combination with each
other): slow-fast timescale separation, delays, periodic inputs, a
non-smooth (heaviside) activation function and non-smooth
steps in the input profile. In Section 6 we explored whether
the skipping and switching cascades persist when we relax the
non-smooth characteristic of the activation function and the
inputs. We demonstrated that a sequence of solutions selected
from the skipping cascade persists and that, these non-smooth
components in the model are not a requirement to find the
period-incrementing cascades reported. We further explored the
skipping states in a version of the model where the delays were
introduced via synaptic coupling [19] in an extended ODE rather
than DDE formulation. Tracking branch segments with
numerical continuation allowed us to confirm that the
skipping states persist in this case. Whilst it may be possible
to produce switching states [46] and cycle skipping states [25]
without delays, removing the delays in the present model
dramatically simplified the dynamics. Indeed excitation and
inhibition would instantaneously turn ON when the units turn
ON. In the slow-fast limit there are only two possible states: a
state where both units instantaneously turn and remain ON for
each active tone interval (corresponding to IB or ID described in
Section 3) or a state where unit A (B) turns ON for each A (B)
active tone interval (corresponding to AP described in Section 3).
In summary the rich dynamics produced by our model result
from an interaction between slow-fast mechanisms with delays
and periodic forcing.

The condition TD < D assumed in our study guarantees that
the delayed synaptic variables of system 1 are monotonically
decaying in each active tone interval. This simplifies the system
under study by reducing the number of possible states and their
existence conditions (see also [6]). A more detailed analysis of
the case TD ≥ D leads to switching and cycle skipping states
similar to those studied here (not shown). Under this condition
for integrated and segregated cycle skipping states the units’
turn ON for some active tone interval and must turn OFF after
the delay D, instead of TD as in the case TD < D (see Figure 2).
This leads to additional existence conditions for these states.

Overall, a similar organization of the parameter space with
cascades of period adding bifurcations can be proven
analogously under condition TD ≥ D. The latter condition
may be relevant when modelling auditory perception, as the
potential factors for generating delayed inhibition in brain
circuits would most likely lead to short or moderate delays
that could be less than TD.

7.4 Interpretation for Neural Encoding of
Auditory Streams
The solutions found in the switching and skipping cascades
each have a meaningful interpretation for the model. In the
motivating auditory streaming paradigm, two sequences of
interleaved tones can be perceived by human listeners in
different configurations: integrated into a single stream,
segregated with A in the foreground or segregated with B
in the foreground [49]. Some experiments consider only
bistable perception (integrated vs segregated [5, 50]),
whilst others consider tri-stability [49] or multi-stability
[51], allowing for two different segregated states (A or B in
the foreground). In the present model, switching states
correspond to periodic states with alternations between an
equal number of A-foreground and B-foreground cycles
separated by a single integrated cycle during the transition.
Tri-stability in perceptual competition has been investigated
elsewhere in competition models [52].

In the perception of a regular beat, we can follow along (e.g.,
clapping, or tapping a foot) in time with different elements in the
time-structure. Musical rhythms are perceived to have a pulse or
basic beat in the range 0.5–4 Hz that is further subdivided by
higher beat frequencies above 4 Hz, nevertheless, we are able to
follow along at the pulse frequency. The skipping states can be
linked to the encoding of neural rhythms at periods that span
multiple cycles of the input (say tracking every 2nd or 3rd A
tone). Such cycle skipping behaviour has been studied in m: k
Arnold resonance tongues in a model of beat perception [53]. By
contrast we find 1: k locked states appearing in a period-
incrementing cascade in our model. We further find much
larger regions of parameter space (i.e., range of c-values) with
skipping states when the presentation rate is large. The model
therefore predicts that the tendency to skip cycles is more likely
when the inputs are too fast to follow.

8 CONCLUSION

In this study we address the formation of exotic dynamics via several
complex mechanisms (see “Modelling assumptions” above). The
architecture of the proposed model is probably not unique in
producing such dynamics. We expect that similar network
dynamics could be obtained by modification of the connectivity
(i.e., by introducing global inputs and removing the mutual
excitation). Whilst the presented methods should generalise to
larger populations of neurons, this would result in significantly
increased in complexity for the number of possible states and their
existence criteria.
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The states analysed here, and in our previous study [6], do not
cover all the possible dynamics the model can produce. In
preliminary simulations we detected states of infinite period
(quasi-periodic), which remains a topic for future study. A
further topic for future analysis is to modify the inputs by
considering 4TR-periodic inputs representing the repetition of the
triplet ABA-consisting of A and B pure tones and by a silent gap -,
which has been widely used in behavioural experiments [54].

Our approach generalises to the study of complex oscillatory
dynamics in neural population models featuring delays and
different architectures, such as competition models in the
visual or tactile domains. A model is currently being
investigated to study perceptual competition with vibrotactile
stimulation [55].
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