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Moving animal groups exhibit a range of fascinating behaviors. The standard explanation

for how these groups form and function is that the individual animals interact via

attraction, repulsion, and alignment, where alignment is proposed to drive the collective

motion. However, it has been shown both experimentally and theoretically that alignment

interactions are not required to induce group level alignment. In particular, via the use of

self-propelled particle models it has been established that several other mechanisms

induce group level alignment (aka polarization) in combination with attraction alone.

However, no systematic comparison of these mechanisms among themselves, or

with explicit alignment, has been presented and it remains unclear how, or even if,

they can be distinguished at the collective level. Here, we introduce two previously

unreported mechanisms, burst-and-glide and burst-and-stop, and show via simulation

that they also induce polarization in combination with attraction alone. Then, we compare

the polarization inducing characteristics of six mechanisms; asymmetric interactions,

asynchrony, anticipation, burst-and-glide, burst-and stop, and explicit alignment. We

show that the mechanisms induce polarization in different parts of the attraction

parameter space, that the route to polarization from uniformly random initial conditions,

as well as repolarization following strong perturbations, is markedly different among

the mechanisms. In particular, we find that alignment based and non-alignment based

mechanisms can be distinguished via their polarization and repolarization processes.

These findings further challenge the current alignment based theory of collective motion

and may contribute to a more versatile theory of collective motion across scales.

Keywords: flocking, self-propelled particles, polarization, animal behavior, schooling, swarming, intermittent

locomotion, burst and glide

1. INTRODUCTION

Animals moving together in flocks, schools, and herds are ubiquitous in nature. The standard
explanation for how individuals in these groups coordinate to generate the group level behavior
we observe is that they interact locally with nearby individuals via some combination of attraction,
repulsion, and alignment interactions [1, 2]. More specifically, attraction allows individuals to
aggregate, repulsion prevents collisions, and the alignment interaction where individuals align with
the average heading of their neighbors is proposed to drive the collective motion [3].

Much of our understanding of how animals in moving groups coordinate their motion has come
out of the study of self-propelled particle (spp) models [3]. In spp models a number of particles
move and interact with nearby particles via a set of local interaction rules, for example, attraction,
repulsion, and alignment [2, 4]. Models including these three interactions have been shown to
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generate the standard groups: mills, swarms, and aligned (or
polarized or dynamic) groups [4, 5], and have been widely
adopted in modeling collective motion in specific real animal
groups (e.g., [6, 7]) and as base models for general theoretical
investigations (e.g., [8, 9]). The capacity of these models
to produce group level alignment via the explicit alignment
interaction has been critical in modeling groups of animals that
move collectively through the environment. From now on we
refer to group level alignment as “polarization,” and aligned
groups as “polarized groups,” to clearly distinguish these from the
explicit alignment interaction.

Over the past decade experimental studies has failed to
detect explicit alignment interactions between individuals despite
observing polarized schooling [10, 11]. It has also been
established that explicit alignment interactions between particles
are not required to produce polarized groups in spp models [12–
17]. In addition, calculating explicit alignment has been described
as a computationally intensive process [15], and [11] argue that it
is unlikely that real animals will measure and store the speed and
heading of neighbors that are required to compute the explicit
alignment. Furthermore, [17, 18] speculate that the inclusion of
explicit alignment interactions in spp models might explain why
these models tend to fail to produce disruptive phenomena that
are ubiquitous in nature, for example, bistability and switching
between group types in fish [19]. Combined this suggests that
alternatives to explicit alignment for generating polarized groups
is required to explain collective motion in some animal groups
and to address a number of issues related to a theory of collective
motion based on explicit alignment interactions.

A number of specific mechanisms that can induce polarized
collective motion from non-alignment interactions are known
[12–17]. In particular, it is known that asymmetric interactions
[13], anticipation [17], and asynchrony [16] induce polarization
in combination with attraction. Asymmetric interactions, via
blind zones, have been extensively studied in spp models [5, 15,
20–22]. In these models particles that are in a blind zone behind
a particle relative to its direction of travel do not contribute
to some, or all, of the interactions between the particles,
resulting in asymmetric interactions. Given that many animals
have restricted fields of vision [23, 24] and/or interact more
strongly with nearby individuals in certain directions than others
[25] asymmetric interactions represent a biologically plausible
alternative to explicit alignment for explaining collective motion
in some groups. Anticipation, where individuals use the future
anticipated positions and headings of other individuals, rather
than their current positions and headings to update their own
headings is used by a number of animals [26–28], including
humans moving in crowds [29–31]. This type of anticipation
has been included in spp models that contain explicit alignment
interactions [32, 33] and models that do not include them [17,
34]. In alignment based models anticipation has been reported
to inhibit polarization and promote milling and swarming
[32, 33], whereas in attraction based models anticipation has
been shown to induce polarized collective motion [17]. In
most spp models particles update their headings and positions
synchronously, i.e., all particles update at exactly the same time,
however, given stochasticity and other factors it is likely that

individual animals in a moving group update at different times,
in an asynchronous fashion [16]. A number of studies have
investigated asynchronous updating in spp models [16, 35–
37], in particular, [16] has established that sequential random
asynchrony in update in combination with attraction induces
polarization. However, sequential random asynchrony, where
individuals update in a random sequential order on each time
step, is unlikely to occur in real animal groups, but other types
of asynchronous intermittent locomotion has been observed
in animals across taxa [38]. In particular, the burst-and-glide
and burst-and-stop type dynamics observed in fish [39–41],
mammals [39, 42], birds [43], and insects [44] would be a more
biologically plausible type of asynchrony. However, at present no
study is available that has established that this type of asynchrony
has similar polarization inducing capabilities, in combination
with attraction, or other interactions.

Attraction is a fundamental biologically plausible interaction
operating in animal groups [1, 3], and a component of many spp
models [2, 13], but at present its perceived role is often limited
to explain aggregation [3]. However, given that alternatives to
explicit alignment are needed to explain collective motion in
some animal groups, and to address issues related to the current
alignment based theory of collective motion, and the recent
discoveries of several mechanisms that induce polarization in
combination with attraction, its role in the context of collective
motion might require revision. Unfortunately, the information
relating to the polarization inducing capacity of attraction is
scattered throughout the literature and no direct comparison
of the discovered polarization inducing mechanisms among
themselves, or with explicit alignment is available, so how they
differ with respect to the dynamics induced is largely unknown.
Therefore, beyond biological plausibility arguments it remains
unclear how the available polarization inducing mechanisms can
help advance our understanding of collective motion in moving
animal groups.

Here, we present a comparison of a number of known
polarization inducing mechanisms in combination with
attraction: explicit alignment [45, 46], asynchrony [16],
anticipation [17], and asymmetric interactions (via a blind zone)
[13]. We also introduce two previously unreported polarization
inducing mechanisms in combination with attraction, burst-
and-glide and burst-and-stop update, and add these, as well as
explicit alignment alone, to our comparison.

2. MODELS AND METHODS

We use the synchronous local attraction model (LAM) [16],
known to not produce polarized groups, as our base model and
add the polarization inducing mechanisms to it to allow for
a direct comparison of their polarization inducing capabilities.
We start by summarizing this model and then describe how it
was adapted for each of the polarization inducing mechanisms.
We consider eight models in total and label them (I)–(VIII).
We note that all of these, except (V) and (VI), have been
previously described in the literature and we provide the main
references in the description of each. Models (I)–(IV) are
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FIGURE 1 | The interactions in the models. In each model a focal particle is located at position Pit at the center of the interaction zone with radius R and the black

filled circles represents the (potential) neighbors. In the preceding timestep the focal particle moved a distance of δ from its previous position Pit−1 and its current

heading is D̂i
t. (A) The local attraction model (LAM). The focal particle calculates the position of the local center of mass of its neighbors (LCMi

t ) and sets up the

normalized vector Ĉi
t pointing towards it. This describes the interactions in models (I,III,V,VI) and these differ only in how the update is executed. (B) LAM with blind

zone (II). Same as in (A) except that any neighbors that are located in the blind zone specified by the angle β are not included in the LCMi
t and Ĉi

t calculations. Here,

there are five particles within the interaction range R in the figure, but one of them is in the blind zone and therefore excluded from the LCM calculation. (C) LAM with

anticipation (IV). Here, the focal particle calculates the anticipated local center of mass (aLCMi
t ) and the anticipated attraction vector ˆaC

i

t using the anticipated future

positions of its neighbors (open circles) rather than their current positions (black filled circles). The future anticipated position of neighbor j, currently at position P
j
t, is

aP
j
t = P

j
t + τδD̂i

t, that is, the position that neighbor would be at if it continued with its current heading at its current speed δ for a time τ (the anticipation time). (D) LAM

with explicit alignment (VII). Here, the focal particle calculates the local center of mass and set up the Ĉi
t vector like in (A), but it also sets up a normalized vector Âit

which is the average heading of its neighbors. (E) Explicit alignment only (VIII). Here, the focal particle only sets up the Âit vector, there is no attraction. Figure (A) is

from [16] (CC-BY Strömbom), Figure (C) is from [17] (CC-BY Strömbom), and (B,D,E) have been adapted from these.

identical to those presented in the references, but for (VII)–
(VIII) we have only included the main interactions from the
listed sources into the common framework of (I)–(IV) to
facilitate focused comparison of the effects of the mechanisms
themselves. Throughout this manuscript we use “hat” notation
for normalized vectors (e.g., D̂), and “bar” notation for non-
normalized vectors (e.g., D̄).
I. Synchronous LAM [16]
This is a self-propelled particle model in which N particles
move at constant speed δ in two dimensions and interact
via local attraction only (see Figure 1A). On every time step,
each particle calculates the position of the local center of
mass (LCM) of all particles within a distance of R from
it (its neighbors). The new heading of particle i (D̄i

t+1)
is a linear combination of the normalized direction toward
the local center of mass (Ĉi

t) and its normalized current

heading (D̂i
t)

D̄i
t+1 = cĈi

t + D̂i
t . (1)

The parameter c specifies the relative strength of attraction
to the LCM when the relative tendency to proceed
with the current heading is 1. Once all particles have
calculated their new headings based on the current
positions of their neighbors, all particles are simultaneously
moved a distance of δ in the direction specified
by D̄i

t+1.
II. Synchronous LAM with a blind zone ([16] with blind zone
from [13])
Identical to (I) except that a particle does not interact with other
particles in a blind zone defined by the angle β behind it relative
to its direction of travel (see Figure 1B).
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III. Sequential random asynchronous LAM ([16])
Identical to (I) except that particles update their headings and
move in random sequential order on every timestep.
IV. Positional anticipation in the synchronous LAM ([17])
Identical to (I) except that instead of using the actual local center
of mass of the neighbors for the heading update each particle uses
the anticipated local center of mass of the neighbors instead (see
Figure 1C).
V. Burst-and-glide asynchrony LAM
Identical to (I) except that instead of interacting on every
timestep the particles only update their headings at random
“burst” times T defined by Tj+1 = Tj + γ where γ is a glide
time (time between bursts) drawn from a Weibull distribution
Ŵ = Ŵ(κ , λ), where κ is shape parameter and λ is the scale
parameter. The choice of the Weibull distribution is motivated
by empiricial findings [41]. If a particle is scheduled to update its
heading on timestep t it will update it according to Equation (1)
andmove a distance of δ in this direction (see Figure 1A), and for
the subsequent timesteps until its next burst timeTj+1 the particle
proceed with unchanged heading but exponentially decreasing
speed δ̃(t) = δek(Tj−t) (See Appendix A for more details).
VI. Burst-and-stop asynchrony LAM
Identical to (V) except that the particles only move when they
are updating their headings, and on these timesteps they move
a distance of δ. For timesteps between updates the particles
remain stationary.
VII. LAM with explicit alignment (Interactions similar to [46,
47])
Identical to (I) except that an explicit alignment term aÂi

t has
been added to Equation (1) resulting in

D̄i
t+1 = cĈi

t + D̂i
t + aÂi

t , (2)

where

Âi
t =

1

Nn

∣

∣

∣

∣

∣

∣

Nn
∑

j=1

D̂j

∣

∣

∣

∣

∣

∣

, (3)

with Nn representing the number of neighbors of particle i and
D̂j the normalized current heading of neighbor j (see Figure 1D).
VIII. Explicit alignment only. (Interaction from [45])
Identical to (VII) but without the attraction term cĈ. Here,
particles only align with the average heading of their neighbors
without any attraction (see Figure 1E).

2.1. Simulation and Analysis
Various aspects of the polarization behavior of (I)–(IV) and
(VII)–(VIII) have already been described in the literature
[13, 16, 17, 45, 46]. Here, we follow the simulation protocol
employed to analyze (I,III,IV) in [16, 17] to compare and
contrast the polarization inducing capacity of (II)–(VII). In
particular, to illustrate over which attraction strengths c they
induce polarization and where they do not. For the previously
unpublished models (V) and (VI) we also collect particle
trajectories and snapshots of the groups produced in simulations.

We use the standard polarization, or alignment, measure [45]
to analyze all simulations. This measure is defined as follows.

If N is the number of particles in the simulation and D̂i,t is
the normalized current heading of particle i at time t then the
polarization α is defined by

α =
1

N

∣

∣

∣

∣

∣

N
∑

i=1

D̂i

∣

∣

∣

∣

∣

. (4)

If all particles move in the same direction α = 1, and if all particle
heading vectors cancel out α = 0. Polarized groups, by definition,
have large α values and mills and swarms have low α values [16].

Following [16, 17] we ran 100 simulations for each value of c,
from 0 to 2 in increments of 0.1, and measured the polarization
over the last 50 timesteps of each simulation and the mean was
returned. The total simulation time for each model was chosen
so that full polarization would occur in each simulation, and
the number of time steps used for each model was (I,II) 8,000,
(III) 15,000, (IV) 5,000, (V) 40,000, (VI) 20,000, and (VII) 2,000.
Plots showing the distribution of polarization values for each
c in each model were then created to isolate regions of the c
parameter space where polarized groups form for each model
(I)–(VII). More specifically, we partitioned the range of possible
polarization values, i.e., 0 to 1, into intervals of length 1/50, and
then counted the number of polarization values that fell in each
interval for a specific c. Then we divided each interval count for
the specific cwith the total number of simulations (100) to obtain
the distribution (See [16] for more details on this type of plot).
All models and all simulations shared the same basic parameters
used in [13, 16, 17], namely,N = 100, R = 4, δ = 0.5, and for our
comparison here we chose the auxiliary model parameters for the
different models as follows (II) β = π , (IV) τ = 2, (V) κ = 4,
λ = 3, k = 1, (VI) κ = 4, λ = 3, and (VII,VIII) a = 0.01.

We then compared the route to the polarized state from
random initial conditions for each of the models (II)–(VIII).
To do this we ran 5,000 simulations for each model and
recorded the polarization of the group over time from the start
until a polarized group had formed. Then, for each model,
we calculated the median and the median absolute deviation
(mad) of the polarization values at each time step (t) over the
5,000 simulations to obtain trajectories that illustrate how, on
average, the group polarization process proceeds over time. We
also collected the time to polarized group formation in each
simulation and used this data to create “time to polarization”
distributions and to calculate the median and mad “time to
polarization” for each model. For these analyses, we used one
c value from each region of the c-parameter space where a
particular model is known to generate polarized groups. More
specifically, we used c = 1 for (II), c = 0.2 for (III,V,VI,VII),
c = 0.2 and c = 2 for (IV).

We also measured the polarization over time in simulations
(with the same parameter values as above) where as soon as
the group has polarized it is strongly perturbed (all particles
are assigned random headings in [0, 2π]) and then allowed to
repolarize again, and as soon as it has repolarized it is perturbed
again. We used α = 0.99 as the threshold for deciding that a
polarized group had formed in all models except (V) and (VI).
In these two models, the stochastic burst-and-glide/stop motion
prevents complete polarization of the group and therefore we
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used α = 0.85 for (V) and α = 0.9 for (VI). These values are close
to the max polarization values groups generated by these models
have in simulations. This process was repeated until we had at
least 5,000 repolarization events for each model, and we also
collected the time to repolarization following each perturbation
and used this data to create “time to repolarization” distributions
and to calculate the median and mad “time to repolarization”
for each model. We then standardized all the repolarization
trajectories to run from 0 to 1 (where 0 corresponds to the
perturbation timestep and 1 the timestep when full polarization
was recorded) and calculated the median and mad at each
standardized time point over all the standardized repolarization
curves to obtain repolarization curves for each model. Given that
the repolarization typically takes a different number of timesteps
every time we used the Matlab function “interp1” to interpolate
each of the standardized curves over 0 to 1 over a 0.0001 grid so
that a pointwise median and mad could be calculated.

Finally, we ran simulations following the simulation protocols
above to generate route to polarization and repolarization curves
for additional particle numbers N = 50, 75, 200, 1, 000.

All code necessary to verify the results presented in this
manuscript is available (see the Data availability statement).

3. RESULTS

We establish that both burst-and-glide (V) and burst-and-
stop (VI) update induces polarized group formation in
combination with attraction, in addition to producing mills
and swarms. Figure 2A shows the group types produced
by burst-and-glide, and Figure 2B the groups produced by
burst-and-stop. Figure 2C shows the common modified
Weibull distribution Ŵ(4, 3) as measured in simulations, and
Figures 2D,E show the speed over time for two particles in
the simulations with asynchronous burst-and-glide update
(D) and asynchronous burst-and-stop update (E). Finally,
Figures 2F,G show examples of the polarization process through
a simulation with burst-and-glide (F) and burst-and-stop
(G). We note that in both models the polarization increases
up to and flattens out around α = 0.85–0.9. A detailed
investigation of the polarization inducing capacity of these
two mechanisms in combination with attraction, and their
polarization and repolarization characteristics are described in
the comparisons below.

The models that include attraction induce polarization over
different attraction ranges (see Figure 3). We note that three
of the mechanisms induce polarization only when attraction is
weak, random sequential asynchrony (III) (c = 0.1 and 0.2)
[16], burst-and-glide (V) (c = 0.2), burst-and-stop (VI) (c =

0.1 and 0.2). Asymmetric interactions (II), on the other hand,
only induce polarization when attraction is stronger c ≥

0.3. Explicit alignment (VII) induces polarization for c ≤

0.4 when a = 0.01, and this upper c limit will increase
with a (see Supplementary Figure 3). In contrast to all other
mechanisms anticipation (IV) reliably induces polarization in
different parts of the attraction parameter space, in particular, for
weak attraction c ≤ 0.2 and strong attraction c > 1 [17].

The route to polarization from uniformly random initial
conditions is markedly different for the different mechanisms.
Some are stronger polarization inducing mechanisms and
polarize the groups fast, and some are weaker and polarize the
group more slowly, on average. Figure 4A shows that explicit
alignment alone (VIII) and anticipation with larger c (IV with
c = 2) polarize groups very fast on average (t < 100). Explicit
alignment in combination with attraction (VI) is initially on par
with (VIII) and (IV with c = 2) but is slower in the final approach
to max polarization. Anticipation when attraction is weak (IV
with c = 0.2) is not far behind (t < 600) and asymmetric
interactions (III) generate polarized groups at an intermediate
rate (t < 2, 000), on average. Figure 4B shows that the three
asynchronous update models (III,V,VI) tend to take longer to
polarize the groups (t > 2, 000). (See Supplementary Figure 1)
for the median curves used to create Figures 4A,B with mad
error bars. Figure 4C shows the relative frequency distributions
of the time to polarized group formation, and the median±mad
for the eight models are (II) 1051 ± 848, (III) 3729 ± 1414, (IV
with c=0.2) 471 ± 117, (IV with c=2) 72 ± 72, (V) 12959 ±

4953, (VI) 7319 ± 1765, (VII) 365 ± 129, and (VIII) 74 ±

20. (See Supplementary Videos 1, 2 for simulations showing the
polarization process for each of these models).

The polarized groups generated by the different mechanisms
exhibit different repolarization behavior following strong
perturbations. Figure 5A shows the standardized median
repolarization curve for each model. We see that the alignment
based models (VII,VIII) accumulate most of the polarization
very early in the process, on average, and that some models
accumulate polarization at an almost linear rate (II,V). (See
Supplementary Figure 2) for the median curves used to create
Figure 5A with mad error bars. Figure 5B shows the relative
frequency distributions of the time to polarization, and the
median±mad for the eight models are (II) 714 ± 848, (III)
799 ± 1203, (IV with c=0.2) 280 ± 140, (IV with c=2) 8 ± 181,
(V) 9853 ± 4904, (VI) 5353 ± 1560, (VII) 466 ± 134, and (VIII)
460± 138.

The route to polarization (Figure 4) and repolarization
behavior (Figure 5) are significantly affected by particle number
(N) for some mechanisms, but left effectively unchanged for
others (see Figure 6). The top panels in Figure 6 shows that both
burst-and-glide (V) and burst-and-stop (VI) generates polarized
groups faster as the number of particles increase, and that
the polarization curves for the other mechanisms are relatively
unaffected by change in particle number. The bottom panels
in Figure 6 shows that the repolarization behavior of burst-
and-glide (V), and to a lesser extent burst-and-stop (VI), are
affected by particle number. In particular, for particle numbers
less than 100, burst-and-glide exhibits sublinear polarization
curves, but for N > 100 the curves become superlinear. The
repolarization behavior of burst-and-stop (VI) also becomes
more superlinear with increasing particle number, but the basic
shape of the repolarization curves for the other mechanisms
remain relatively unaffected.

1But note that time to polarization is a positive quantity.
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FIGURE 2 | Burst-and-glide and burst-and-stop simulations. (A) Group types produced in the burst-and-glide model (V). From left to right: polarized group (c = 0.2),

mill (c = 1) and swarm (c = 2). Points indicate particle positions and the red rods represent the current heading D̂i
t of each particle. (B) Group types produced in the

burst-and-stop model. From left to right: polarized group (c = 0.2), mill (c = 1) and swarm (c = 2). (C) Common modified Weibull distribution (Ŵ(4, 3)) as measured in

simulations. (D) Speed profiles of two particles in a burst-and-glide model simulation. We note the characteristic burst-and-glide dynamics in both, with bursts to

maximum speed (δ) and exponential decrease in speed between the bursts. (E) Speed profiles of two particles in burst-and-stop model simulation. We note the

burst-and-stop dynamics in both, with bursts to maximum speed (δ) and speed 0 between the bursts. (F) Polarization curve through a simulation of the

burst-and-glide model. At time 0 polarization is low and after about 2× 104 timesteps polarization starts to build up and at 3.5× 104 it begins to stabilize at around

0.85–0.9. (G) Polarization curve through a simulation of the burst and stop model. At time 0 polarization is low (uniformly random headings) and after about 5× 103

timesteps polarization starts to build up and at 7× 103 it begins to stabilize at around 0.85–0.9.

4. DISCUSSION

How collective motion in moving animal groups emerges has

been a question of debate. Explicit alignment was, and to a

large extent still is, the standard explanation. However, motivated
by both experimental and theoretical findings over the past

decade the role of explicit alignment as the driver of collective

motion has come into question. In particular, a number of
biologically plausible auxiliary mechanisms have been shown
to induce polarized collective motion in combination with
attraction, another fundamental interaction operating in moving
animal groups. However, a comparison of the effects of these
recently discovered mechanisms between themselves or with

explicit alignment has not been conducted and it is still unclear
exactly how one can distinguish the effects of the different
mechanisms. Here, we present such a comparison, including
two previously unreported mechanisms that generate collective
motion in combination with attraction; burst-glide asynchrony
in update, burst-stop asynchrony, in update.

The finding that burst-glide and burst-stop asynchrony induce
polarization in combination with attraction here is important
in its own right. While it was previously known that sequential
random asynchrony induces polarization [16], this particular
type of asynchrony is less biologically plausible than the burst-
and-glide/stop asynchrony that has been observed in animals
across taxa [38–44]. Our findings suggest that it might be the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 January 2022 | Volume 7 | Article 717523

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Strömbom and Tulevech Attraction vs. Alignment

FIGURE 3 | Comparison of models (I)–(VII) over c from 0 to 2. Each plot represents the distribution of polarization values α returned from 100 simulations for each c

from 0 to 2 in increments of 0.1. For a particular c value the plot color coding shows the proportion of simulations that returned a particular polarization value, the

darker the band the more simulations returned that polarization value. For example, for model (III) with c = 0.1 all simulations returned a polarization value close to 1

(so only polarized groups formed) and with c = 0.5 all simulations returned a polarization value close to 0 (so polarized groups did not form). We note that the

synchronous LAM (I) does not produce polarized groups for any value of c, that there are four models that induce polarization for small c only (III,V,VI,VII), one model

that induces polarized group formation for larger c only (II), and one model that induces polarized group formation for both small and larger c (IV). We note that the

results for (I,III) were originally published in [16] and the result for (IV) in [17].

attraction and burst-and-glide/stop dynamics that leads to the
polarization observed in some of these groups, not explicit
alignment interactions. In particular, [41, 46] has modelled
experiments involving burst-and-glide moving rummy nose tetra
fish using a model based on attraction and explicit alignment
interactions. Investigating how a model based on attraction and
burst-and-glide asynchrony compare with the attraction and
alignment model originally proposed for this system could be
useful as a benchmark to examine if their respective effects
can be distinguished when parameterized by, and compared to,
the same data of a specific system. Similarly, while the current
explanations for the schooling behavior of fish in [10, 11] do
not involve explicit alignment, they do involve attraction and
asymmetric interactions (potentially via blind zones). Given that
some fish species have a very large field of vision [48], including
the Golden shiner used in [11], perhaps blind zones are not the
main polarization inducing mechanism at play in these systems.

At least, attraction and burst-and-glide dynamics might offer an
alternative explanation.

It is well-known that a large number of different spp
models can produce the same type of groups, in particular,
polarized groups, mills and swarms, and thus we cannot
infer which mechanisms led to a particular group from the
final result alone [2, 49]. Our work shows that focusing on
the polarization process might provide additional ways to
distinguish between mechanisms proposed to be operating in
groups that tend to polarize. As a complement to currently
used methods focusing on macroscopic properties of the
groups and microscopic analysis of individual behavior and
interaction patterns [2, 25, 49]. In particular, our comparison
shows that some of the polarization inducing mechanisms
included here induce polarization in different parts of the
parameter space (Figure 3). This observation might help narrow
down the potential candidate mechanisms, given that attraction
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FIGURE 4 | Polarization processes for the eight models. (A) Median polarization curves for the models focused on those that generate polarized groups at a fast or

intermediate rate (III,IV,VII,VIII). (B) Median polarization curves for the models focused on the three models that polarize the group more slowly (II,V,VI). (C) Relative

frequency distributions of the time to polarization for each model.

FIGURE 5 | Repolarization processes for the eight models. (A) Median standardized repolarization curves for all models. 0 corresponds to the time the strong

perturbation occurred and 1 corresponds to when full polarization was reached. We note that explicit alignment alone (VIII) and in combination with attraction (VII) are

virtually indistinguishable, the curves overlap, and they exhibit an exponential repolarization process. We also note that (II) and (III) do start of recovering polarization at

an exponential rate, but the process is interrupted and from then on the polarization accumulation for (II) is almost linear, and for (IV) with c = 0.2 moderately

superlinear. The curve for (IV) with c = 2 exhibits a similar polarization accumulation process as (IV) with c = 0.2, but the initial accumulation is interrupted later within

the repolarization period and the post interruption increase is faster. (II) and (V) effectively accumulate polarization at a linear rate throught the process, and (VI) exhibits

a moderately superlinear accumulation. (B) Relative frequency distributions of the (simulation) time to polarization for each model. Here, we can visually confirm the

calculated median (simulation) time steps to repolarization for each of the models. (II) 714, (III) 799, (IV with c=0.2) 280, (IV with c = 2) 8, (V) 9853, (VI) 5353, (VII) 466,

and (VIII) 460. The main thing to note here is that the median repolarization time of the anticipation with strong attraction model (IV with c = 2) is only 8 time steps. Far

faster than the second and third fastest models which repolarize in 466 (VII) and 460 (VIII) time steps, respectively.

may be gauged from trajectory data [25]. For example, for
animals that exhibit polarized collective motion and very strong
attraction, asymmetric interactions or anticipation may be more
plausible explanations than sequential random and burst-and-
glide/stop, because the latter do not induce polarization for
strong attraction, at least in our framework. The observation
that some mechanisms polarize the groups faster than others
(Figure 4) may also be used to distinguish between proposed

candidate mechanisms for a given situation. For example, if very
rapid polarization from uniformly random initial configurations
are observed, out of the mechanisms included here, only
explicit alignment, anticipation, and asymmetric interactions are
likely candidates. However, if the process is slower the other
mechanisms might be more plausible drivers. The repolarization
curves (Figure 5) could similarly be used to distinguish between
mechanisms from trajectory data in experiments where groups
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FIGURE 6 | Impact of particle number on the polarization and repolarization processes. Top panels show the route to polarization for the eight models with N = 50,

75, 200, and 1,000 particles, and the bottom panels the corresponding repolarization curves. We note that the polarization curves for models V and VI change

significantly with increasing particle number. In particular, the polarization process of model V is, on average, more than four times faster with N = 1, 000 than with

N = 50. The polarization processes of models II–IV and VII–VIII do not show any drastic changes with increasing particle number. Similarly, the repolarization curves for

models V and VI are dramatically changed by particle number. In particular, the repolarization process of model V is sublinear for N = 50− 75, but distinctly

superlinear for N = 1, 000. The repolarization curves for models II–IV and VII–VIII retain their basic shape for increasing particle number, but the curves are moderately

shifted. In particular, for the models with alignment (VII,VIII) more polarization is accumulated early in the process as particle number increases, whereas the

alignment-free models accumulate less of the polarization early in the process as particle number increases.

are repeatedly perturbed. Given that inferring the interaction
rules from data of steady state configurations often is less
informative than inferences based on the approach towards
the stable configuration [49] a perturbation approach might be
particularly fruitful to address certain questions. In particular,
it seems unlikely that any statistical method that allows for the
detection of an explicit alignment interaction will fail to detect it
in data collected mainly from a stable polarized group, regardless
of how that group level alignment was induced. Perturbation
experiments, similar in setup to experiments designed to study
fish escape behavior [50, 51], but with repeated perturbations
may help resolve this issue in some cases.

Here, we have focused on the polarization inducing capacity
of the mechanisms, and thus on polarized groups, however,
it is worth noting that all included models, except explicit
alignment (VIII), also generate mills and swarms. While this
is not surprising given that mills and swarms are produced
by the synchronous local attraction model [16], to which each
of the mechanisms were added in (II)–(VII), the fact that all
attraction based alternatives here produce all the three standard

groups: polarized groups, mills, and swarms, but the polarization
is induced by different mechanisms in each case suggests that this
is a useful and versatile class of models for collective motion.

In conclusion, our work shows that alignment based
and non-alignment based mechanisms may be distinguished
from their polarization processes and how they interact with
attraction. In particular, models containing explicit alignment
exhibit exponential polarization accumulation processes whereas
most non-alignment based processes exhibit more moderate
polarization accumulation processes, anticipation being the
exception. In addition, explicit alignment based models polarize
faster from uniformly random initial configurations than
they repolarize following strong perturbations, in contrast to
all attraction based models that repolarize faster than they
polarize from uniformly random configurations. These insights
could potentially be used to probe whether explicit alignment
is operating in a particular group or not via perturbation
experiments. However, as described in the simulation and
analysis section the analysis presented here is based on the
limited ranges/values of the auxiliary model parameters (c, R,
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δ, τ ) used in [13, 16, 17], and the results may depend on the
actual parameters used. Therefore, anyone planning to utilize the
approach introduced here for situations beyond these parameter
ranges should generate the polarization and repolarization curves
corresponding to their situation and parameter values of interest
first. To facilitate such analysis for specific experimental systems,
or further theoretical study, we provide the full code needed to
generate the polarization curves (Figure 4) and repolarization
curves (Figure 5) for parameter values beyond those considered
here. See the Data availability statement for how to access it.
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APPENDIX A: DETAILS OF THE
BURST-AND-GLIDE AND
BURST-AND-STOP MODELS

As outlined in the main text, the burst-and-glide (V) and
burst-and-stop (VI) models are modified versions of the local
attraction model (LAM) [13]. The LAM is a self-propelled
particle model where N particles interact via local attraction only
(see Figure 1A). With the notation in Figure 1A the positional
update formula for the local attraction model can be expressed as

Pit+1 = Pit + δ
cĈi

t + D̂i
t

|cĈi
t + D̂i

t|
(5)

where δ is constant. In order to extend this model to animals
using burst-and-glide locomotion δ must be redefined. From the
literature we know that during the burst phase, fish and other
animals, quickly accelate to a certain speed and then during the
glide phase the speed drops exponentially until the next burst
[41]. To create a simple model of this behavior we define a speed
function that is a function of time t, particle i’s most recent burst
time Ti,t , a constant representing the particles maximum speed
δmax, and a rate of speed decay constant k > 0, defined by

δ(t) = δmaxe
k(Ti,t−t). (6)

We note that δ = δmax at the burst time t = Ti,t and after
this time, when t > Ti,t , the term k(Ti,t − t) is negative and
decreasing so δ is decreasing exponentially from δmax at a rate
determined by the constant k. Substituting equation 6 in 5 gives
us the positional update formula for the local attraction model
with individual burst-and-glide locomotion

Pt+1
i = Pti + δmaxe

k(Ti,t−t) cĈt
i + D̂t

i

|cĈt
i + D̂t

i |
, (7)

and the burst-and-glide behavior will be determined by the
process that defines the evolution of burst times Ti,t . Here we
define this process in terms of the distribution of times between
two successive bursts Ŵ because it has been empirically estimated
in experiments with fish [41]. We call the time between two
successive bursts the glide time and denote the current glide
time of particle i by γi,t . In order to utilize equation 7 to
update the particle positions we must define the processes for
Ti,t and γi,t so that they are both constant over the current
glide period and then both updated when the current glide
period is over. A simple way to achieve this is to define them
as follows

Ti,t =

{

Ti,t−1 if γi,t−1 + Ti,t−1 − t > 0

t if γi,t−1 + Ti,t−1 − t = 0
(8)

γi,t =

{

γi,t−1 if γi,t−1 + Ti,t−1 − t > 0

∈ Ŵ if γi,t−1 + τi,t−1 − t = 0.
(9)

So while particle i is still in its current glide period (Ti,t−1 +

γi,t−1 > t) both Ti,t−1 and γi,t−1 remain unchanged as
t increases, but as soon as the current glide period ends
(Ti,t−1 + γi,t−1 = t) Ti,t is set to the current time t and
a new current glide time γ i,t is drawn from the distribution
Ŵ. We choose the distribution Ŵ for the current work to
be a Weibull distribution with shape parameter κ = 4
and shape parameter λ = 3 because this choice leads to a
glide time distribution (Figure 2C) that is similar to Figure 1G

in [41].
Above we have described the burst-and-glide model. The

burst-and-stop model works exactly the same way except that δ

is set to 0 after the burst rather than decrease in an exponential
fashion. See the Data availablity statement for how to access the
full model code.
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