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Stochastic resonance is a phenomenon in which the effects of additive noise strengthen
the signal response against weak input signals in non-linear systems with a specific barrier
or threshold. Recently, several studies on stochastic resonance have been conducted
considering various engineering applications. In addition to additive stochastic noise,
deterministic chaos causes a phenomenon similar to the stochastic resonance, which is
known as chaotic resonance. The signal response of the chaotic resonance is maximized
around the attractor-merging bifurcation for the emergence of chaos-chaos intermittency.
Previous studies have shown that the sensitivity of chaotic resonance is higher than that of
stochastic resonance. However, the engineering applications of chaotic resonance are
limited. There are two possible reasons for this. First, the stochastic noise required to
induce stochastic resonance can be easily controlled from outside of the stochastic
resonance system. Conversely, in chaotic resonance, the attractor-merging bifurcation
must be induced via the adjustment of internal system parameters. In many cases,
achieving this adjustment from outside the system is difficult, particularly in biological
systems. Second, chaotic resonance degrades owing to the influence of noise, which is
generally inevitable in real-world systems. Herein, we introduce the findings of previous
studies concerning chaotic resonance over the past decade and summarize the recent
findings and conceivable approaches for the reduced region of orbit feedback method to
address the aforementioned difficulties.
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1 INTRODUCTION

In a wide range of non-linear systems, it is known that additive stochastic noise and internal
dynamical fluctuation enhance the ordering of spatio-temporal behaviors, such as the emergence of
periodicity and synchronization (as reviewed in [1–6]). Among these phenomena, stochastic
resonance is a phenomenon in which the effects of additive noise strengthen the signal response
against weak input signals in the non-linear systems with a specific barrier or threshold [7–9] (as
reviewed in [1,2,4,10,11]). Recent studies on stochastic resonance have been conducted considering
various engineering applications, such as biomedical engineering [12,13], telecommunications [14],
and memory storing mechanisms [15–17]. Considering the biological systems in particular, Kurita
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et al. developed a wearable device that enhances the tactile
sensitivity of a surgeon’s hands by applying appropriate
vibrations [12,13]. Enders et al. and Seo et al. demonstrated
that applying vibrotactile noise in human sensory systems, as a
rehabilitation method, improves the haptic sensations in patients
with paralysis [18,19]. Van et al. showed that an optimal amount
of noise applied using transcranial random noise stimulation as a
non-invasive brain stimulation technique to the visual cortex
enhances the accuracy of visual-perceptual decisions [20]. In
telecommunication systems, Tadokoro et al. proposed a binary
phase-shift keying (BPSK) receiver improved using an
appropriate additive noise in terms of its bit error rate
performance [14]. He et al. showed that in a wireless sensor
network, an optimal noise may be used to enhance the sensitivity
of a wireless signal for node positioning [21]. In memory storing
systems, Ibanez et al. and Stotland et al. demonstrated that the
presence of appropriate additive noise enhances the memory
functions in memory elements with bi-stable oscillations, even
under extremely low power consumption [15,16].

In addition to the additive stochastic noise, deterministic
chaos also causes a phenomenon similar to stochastic
resonance, which is known as chaotic resonance (as
reviewed in [3,4,6]). Chaotic resonance is classified into two
types; the first is chaotic resonance in excitable systems, which
is typified as spiking neural systems [22–26] (as reviewed in
[6]), and the second is systems with chaos-chaos intermittency
(CCI), which is the behavior of intermittent transitions of
chaotic orbits among separated attractors, such as in a cubic
map [27,28], and neural systems [27,29–32]. In this perspective,
we focus on the latter type of chaotic resonance. In the latter
type, the signal response of chaotic resonance is maximized
around the attractor-merging bifurcation for the emergence of
CCI [3]. Previous studies have shown that the sensitivity of
chaotic resonance is higher than that of stochastic resonance
[30,32]. However, the engineering applications of chaotic
resonance are limited.

There are two possible reasons for this limitation. First, the
stochastic noise required to induce stochastic resonance can be
easily controlled from outside of a stochastic resonance system.
Conversely, in chaotic resonance, the attractor-merging
bifurcation must be induced via the adjustment of internal
system parameters [27,29,30]. In many cases, achieving this
adjustment from outside of the system is difficult, particularly
in biological systems. Second, chaotic resonance degrades owing
to noise, which is generally inevitable in real-world systems.
Herein, we summarize the recent findings and conceivable
approaches to address the aforementioned difficulties, as well
as introduce the findings of studies concerning chaotic resonance
from the previous decade.

2 MECHANISM FOR
ATTRACTOR-MERGING BIFURCATION

Chaotic resonance emerges in systems with CCI behaviors. In this
section, the mechanism for the emergence of CCI is reviewed
using a cubic map (as reviewed in [3]):

x t + 1( ) � F x t( )( ), (1)

F x( ) � ax − x3( )exp −x2/b( ), (2)

where parameter b is set to 10.0 [33]. The top and middle sections of
Figure 1 (a) show the dependence of system behaviors on the internal
parameter a using the bifurcation diagram and attractor-merging
condition F (fmax,min) − xd [33] as a function of the internal system
parameter a. Here, xd indicates the attractor-separating point of the
map function; a cubic map corresponds to xd � 0. Fmax,min exhibits
local maximum and minimum values of the map function F at
approximately xd. The attractor-merging bifurcation can be detected
by F (fmax,min) − xd � 0. As a result, at a ≲ 2.84 and under the
conditions of F (fmax)− xd> 0 and F (fmin)− xd< 0, the chaotic orbit is
constrained in either the positive or negative x(t) regions depending
on the initial value of x (0). By increasing internal system parameter a
to a ≈ 2.84, the attractor-merging bifurcation F (fmax,min) − xd � 0
emerges. Subsequently, x(t) fluctuates between positive and negative
x(t) regions (CCI) under the conditions of F (fmax) − xd < 0 and F
(fmin) − xd > 0 in a ≳ 2.84. As typical examples of the orbit x(t) and
map function F, the bottom section of Figure 1 (a) shows a chaotic
orbit constrained in either the positive or negative x(t) region at a �
2.75 for F (fmax) − xd > 0 and F (fmin) − xd < 0. Additionally, a chaotic
orbit with CCI at a � 2.86 is shown for F (fmax) − xd < 0 and F (fmin) −
xd > 0, as are the map functions of F. By increasing the value of a, the
absolute values of the local maximum/minimum of themap function
F increases, and the subsequent attractor-merging conditions are
satisfied as F (fmax)− xd< 0 and F (fmin)− xd> 0. Themechanism that
induces attractor-merging bifurcation is widely observed in chaotic
systems [3,34], such as radio-physical oscillators [35], electrical
circuits for Shinriki’s circuit [36,37], multilevel DC/DC converters
[38], and neural systems for networks composed of excitatory and
inhibitory neural populations [39,40], as well as memories embedded
in chaotic neural networks [27].

3 FEEDBACK CONTROL FOR CHAOTIC
RESONANCE

The frequency of autonomous CCI is very low around the
attractor-merging bifurcation, as shown in section 2; therefore,
the external signals induce CCI even though the strength of the
signals is weak. Consequently, the CCI synchronizes with the
external signals, i.e., chaotic resonance appears (see [3,4,6]).
Considering the transition of the system state to this
bifurcation point, the internal system parameter must be
adjusted (reviewed in [3,4,6]). However, in many systems,
achieving this adjustment from the outside environment is
difficult, particularly in biological systems. To overcome this
difficulty, we proposed “reduced region of orbit” (RRO)
feedback methods [33]. To demonstrate the effect of RRO
feedback signals, the cubic map with an RRO feedback signal
u is provided by

x t + 1( ) � F x t( )( ) +Ku x t( )( ), (3)

u x( ) � − x − xd( )exp − x − xd( )2/ 2σ2( )( ). (4)

Here,K and σ are the strength of the RRO feedback signals and
the parameter used for determining the range of the RRO
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FIGURE 1 | (A) Dependence of system behaviors on the internal parameter. The bifurcation diagram is shown as a function of the internal system parameter a. The
red and blue dots indicate negative and positive x (0) cases (top part), respectively, and the attractor-merging condition F (fmax,min)− xd is shown (middle part) (b �10, xd
�0). The orbit, map functions, and attractor-merging condition F (fmax,min)− xd (indicated by magenta and green dots, respectively) are also shown (bottom part). (B)
Attractor-merging and separating achieved by “reduced region of orbit” (RRO) feedback signals in a cubic map (b � 10, σ �0.6). The orbit, map functions, and
attractor-merging condition F (fmax,min)+ Ku(fmax,min)− xd (indicated by the magenta and green dots, respectively) under the attractor-separating condition (a �2.75, K �0)
(left-hand side in the upper section) and those under the attractor-merging condition induced by the RRO feedback signal with a negative strength (K � −0.2) (right-hand
side in the upper part) are shown. The orbit, map functions, and attractor-merging condition F (fmax,min) + Ku(fmax,min)− xd under the attractor-merging condition of a �
2.86, K �0 (left-hand side in the bottom part), as well as those under the attractor-separating condition induced by an RRO feedback signal with a positive strength (K �
0.2) (right-hand side in the bottom part) are shown. (C) Ability of the signal response measured by the correlation coefficient maxτC(τ) as a function of the attractor-
merging condition F (fmax,min) + Ku(fmax,min)− xd in the case where attractor-merging is induced by the RRO feedback signal (a � 2.82, 2.825,2.83) (left side), and where
attractor-separating is induced by the RRO feedback signal (a �2.85, 2.855,2.86) (right side). Solid line and shaded area represent the mean and standard deviation,
respectively, among 10 trials with different initial x (0).
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feedback signal, respectively. In the upper part of Figure 1 (b), the
mechanism of the RRO feedback methods is shown. Under the
attractor-separating condition F (fmax) − xd > 0, F (fmin) − xd < 0,
the RRO feedback signals with a negative strength increases the
local maximum and minimum values of the map functions.
Through this effect, the attractor-merging condition F (fmax) +
Ku(fmax) − xd < 0, F (fmin) + Ku(fmin) − xd > 0 is induced through
the attractor-merging bifurcation, and CCI subsequently
emerges. Under the attractor-merging condition F (fmax) − xd
< 0, F (fmin) − xd > 0, the RRO feedback signals with a positive
strength reduce the local maximum and minimum values of the
map functions. Due to this phenomenon, the attractor-separating
condition F (fmax) + Ku(fmax) − xd > 0, F (fmin) + Ku(fmin) − xd < 0
is induced (see the lower section of Figure 1B).

In addition to the RRO feedback signal, the weak external
signal S(t) � A sin (Ωt) (A � 0.005, Ω � 0.005) is applied [33]:

x t + 1( ) � F x t( )( ) +Ku x t( )( ) + S t( ). (5)

To quantify this signal response, the correlation between x(t) and
S(t), given bymaxτC(τ) (τ: delay of signal response of x(t)), is utilized
[31,33,41,42]. Figure 1C shows the ability of the signal response
measured by maxτC(τ) as a function of the attractor-merging
condition F (fmax,min) + Ku(fmax,min) − xd in the case where
attractor-merging is induced by the RRO feedback signal (a �
2.82, 2.825, 2.83) and in the case where attractor-separating is
induced by the RRO feedback signal (a � 2.85, 2.855, 2.86). In
both the cases, around the attractor-merging condition F (fmax,min) +
Ku(fmax,min) − xd � 0, the ability of signal response exhibits a
unimodal maximum peak (the signal-to-noise ratio is widely
utilized as the other index for determining the ability of signal
response, [3]). This result demonstrates that the RRO feedback
signal induces chaotic resonance by controlling the attractor-
merging bifurcation. In addition, the RRO feedback signal realizes
the induction of chaotic resonance in various types of chaotic systems,
including the other cubic maps [33,42], neural systems composed of
excitatory and inhibitory neurons [31,41], and continuous [6].

In the previous studies concerning the chaos controlling theory
[43], chaotic behaviors, which are considered to degrade system
performances, have been removed and transited to a fixed point
and periodic state using several types of feedback signals, including
the Ott-Grebogi-Yorke method [44], delayed feedback method
[45–47], and extended delayed feedback method [48]. By
comparison, the RRO feedback method adjusts the chaotic state
to an appropriate state, i.e., the attractor-merging bifurcation point,
while maintaining the chaotic behaviors. Therefore, this method is
significantly different from other conventional chaos controlling
methods. As an additional approach for controlling attractor-
merging, additive stochastic noise has exhibited effects similar
to RRO feedback signals with positive feedback strengths [3]. In
our previous studies, the degree of synchronization between a weak
input signal and CCI, as well as its sensitivity, were investigated in
terms of chaotic resonance under noise [32,49]. The results showed
that the degree of synchronization and the sensitivity of chaotic
resonance induced by the RRO feedback signals are superior to
those achieved using additive stochastic noise. This phenomenon
occurred because stochastic noise acts to prevent synchronization
via perturbations in addition to providing effects for attractor-

merging [32,49]. Additionally, from the perspective of availability,
additive stochastic is only utilized under attractor-separating
conditions to induce the attractor-merging bifurcation, while
RRO feedback signals can be applied to both attractor-
separating and merging conditions to induce attractor-merging
bifurcation (see Figure 1B) [32,49]. Therefore, the RRO feedback
method also exhibits a higher applicability than the method using
additive stochastic noise.

4 INFLUENCE OF NOISE FOR CHAOTIC
RESONANCE

Considering that both background noise and errors inmeasurements
used to estimate the RRO feedback strength exist in real-world
situations, the influences of these factors on chaotic resonance are
inevitable. In our recent study [50], two types of noise were assumed
for the application of chaotic resonance, namely additive stochastic
noise and contaminant noise due to background noise and
measurement errors for the estimation of the RRO feedback
signal. Here, we assumed that these types of noise are
independent of each other. In the map function F for a non-
linear system, the additive stochastic noise Daξ(t) in the map
function and the contaminant noise Dcη(t) in the RRO feedback
signal u are applied as follows:

x t + 1( ) � F x t( )( ) + Ku x t( ) +Dcη t( )( ) +Daξ t( ), (6)

u x( ) � − x − xd( )exp − x − xd( )2/ 2σ2( )( ). (7)

Here, ξ and η represent Gaussian white noise, while Da and Dc

are the noise strengths for the additive stochastic noise and
contaminant noise, respectively. Under the noise-free
condition, the frequency of autonomous CCI around the
attractor-merging bifurcation where chaotic resonance arises is
considerably low [33]. The application of external noise with a
relatively weak strength to the system with this low autonomous
CCI acts as a perturbation for inducing exogenous CCI.
Therefore, both noises increase the CCI frequency. This
perturbation that is unrelated to the input signal degrades the
degree of synchronization in chaotic resonance [32,41,50,51].
Conversely, under the influence of external noise with greater
noise strength, two types of noise result in different CCI
tendencies. In the case with additive stochastic noise, the CCI
frequency increases with increasing noise strength, as is observed
in the case with relatively weak noise strength. In the case with
contaminant noise, although low noise strength results in a
similar tendency for increasing the CCI, a contaminant noise
with greater strength diminishes the profile the RRO feedback
function u to induce attractor-merging bifurcation [41,50,51].
Consequently, both noises significantly degrade the occurrence of
chaotic resonance induced by the RRO feedback signals. The
application of chaotic resonance induced by RRO feedback
methods is currently being investigated, especially in the
biomedical field, such as a novel approach for neurofeedback
to stabilize abnormal circadian rhythms in bipolar disorder [41]
and frontal neural activity in attention-deficit hyperactivity
disorder [51]. In these applications, the significant difference
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between the influence of chaotic resonance toward additive and
contaminant noise may become important. Additionally, our
recent study demonstrated that although the RRO feedback
method cannot be applied in strongly noisy conditions [41,51],
attractor-merging controlling achieved by additive and
contaminant noise may be applied instead of RRO feedback
methods [31,50]. Therefore, according to noise strength,
choosing an appropriate method for attractor-merging control
is crucial for chaotic resonance applications. Additionally, in the
case where several types of noise are dependent on each other, the
complex characteristic of signal response might depend
considerably on the noise strength compared to the case
where different types of noise are independent of each other;
therefore, this case should be investigated in detail in a future
study for efficient application of chaotic resonance and stochastic
resonance.

5 CONCLUSION

In this perspective, based on the recent trends of studies
concerning chaotic resonance, we reviewed the RRO feedback
method as a new approach to induce chaotic resonance from the
outside of a system. Our previously proposed RRO feedback
method is currently being investigated for use in biomedical
research, and has been typified as neurofeedback-optimized
chaotic resonance induced by the RRO feedback method
[41,51]. Therefore, although several issues in chaotic resonance

remain, we believe that the RRO feedback method provides a
novel approach for chaotic resonance applications.
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