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The purpose of this paper is to examine the effects of vegetative growth on the reliability of
electric power distribution system under normal (storm exclusion) operating conditions,
and to determine an effective vegetation maintenance schedule. Generalized statistical
linear regression models, including Poisson, Negative Binomial, Zero-Inflated, and their
mixed model variants are developed and are applied into a 5-years outage data along with
vegetation maintenance history from a power company in Midwestern United States. From
the methodological point of view, advanced statistical models such as zero-inflated
models and mixed models are utilized the first time on outage data and provided good
fit to the occurrence of outages. In practice, numerical results from this study suggest that
an optimal cycle length of every 6 years could be greatly helpful for power companies in
devising a cost-effective schedule, improving system reliability, and maintaining customer
satisfaction.
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1 INTRODUCTION

Virtually all power distribution circuitry in the United States operate in a multi-earth-grounded
configuration. This means that an electrical fault will exist if an electrical connection is made to
ground. If the normal growth of vegetation under or next to distribution lines is not held in check by
pruning, growth will eventually bring it close enough to the wires to create a conductive path to earth;
causing a fault which will lead to an outage.

To ensure high levels of reliability in the distribution system, vegetative maintenance (tree
trimming and other vegetation control measures) is periodically conducted by electric utilities. Since
the costs of such maintenance counts a large fraction of the total amount spent on distribution
system maintenance [1] and can be millions of dollars even for a small utility [2], the cycle length is
generally selected by economics. It might seem like a longer trimming cycle would be the most
economical choice because it spreads the cost out over time. However, this thinking is flawed because
the amount of work that has to be done increases very rapidly with time. The work load increases due
to two factors. First, the amount of biomass that must be cut and handled increases rapidly with each
year of growth and second, as the tree grows closer to the energized lines, workers must use caution to
keep from getting hurt or killed. In fact, short cycles are expensive due to the amount of work and
long cycles are also costly due to excessive biomass and loss of productivity. Therefore, an advanced
understanding on the relationship between vegetative growth and system reliability can help the
power companies determine an effective vegetation maintenance schedule.
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Some studies have been made to quantitatively analyze the
effects of vegetative growth on distribution system outages. The
paper [3] presented a time series and a non-linear machine
learning regression model for predicting the number of
vegetation-related outages that occur in power distribution
systems on a monthly basis. In the article [1], several direct
failure-rate models were investigated to predict the time-
varying, vegetation-related failure rates of overhead distribution
power lines. The authors in [4] developed statistical models for
estimating the impacts of tree trimming on electric power system
outages under normal operating conditions. Another study [5]
reported a maintenance-scheduling algorithm that determines the
optimal location and time for performing vegetation maintenance
on overhead distribution feeders using a vegetation failure rate
model. However, the number of literature on this critical issue is
still limited due to the difficulty of collecting outage data, therefore
this problem has not been investigated to the fullest extent yet.

In this paper, a novel approach to quantify the impact of
vegetation growth on electric power system outages is proposed.
Utilizing statistical and machine learning predictive models, the
proposedmethod advances the understanding on the relationship
between vegetative growth and system reliability and enables
effective and timely decision-making actions by power industry.
What distinguishes this approach from the other studies in the
literature could be summarized in the following three aspects:

• From a theoretical perspective, to the best of our knowledge,
ours is the first study that includes some statistical models
such as zero-inflated Poisson and zero-inflated Negative
Binomials, as well as the mixed models into the analysis
of actual outage data. Considering a majority of 0’s in the
data and the clustering nature, those models provide better
fit to the occurrence of outages than the existing methods.

• One main reason for the perceived lack of studies on this
critical problem is the limited access to a sufficient amount
of outage data. Our approach takes advantage of a
considerable amount of vegetation-related outage data
that is provided by a power company in Midwestern
United States, thus allows a sound statistical basis and
strong conclusions to be drawn.

• In practice, our study explicitly suggests an optimal cycle
length of every 6 years, which could be greatly helpful for
power companies in devising a cost-effective schedule,
improving system reliability, and maintaining customer
satisfaction.

The rest of this paper is organized as follows. Section 2
describes the outage data. In Section 3, generalized statistical
linear regression models, including Poisson, Negative Binomial,
Zero-Inflated, and their mixed model variants are introduced and
developed. In Section 4, we fit the statistical models on a real
outage data, the results are presented and discussed. The paper
ends with discussion and future research directions.

2 DATA DESCRIPTION

The analysis in this paper is based on data from a power company
in Midwestern U.S, containing 431 vegetation-caused outages on

144 circuits for 2012 through 2016. A vegetation-caused outage is
defined as any outage caused when the vegetation gets close
enough to sway into the line or to create a path for a tree dwelling
animal to bridge the air-gap between energized lines and
vegetation, under normal (storm exclusion) operating
conditions. For this data, the date and time of each outage,
the duration of the outage, the name of the circuit where the
outage occurred, the number of years since the last routine
vegetation maintenance was performed (year of vegetative
growth), and the number of customers affected by the outage
are recorded. Figure 1 shows the histogram of vegetation-caused
outages on each circuit. It can be seen that most circuits only have
1 outage, and the distribution is right skewed.

3 STATISTICAL MODELS

In statistics, count data is a type of data in which the observations
can take only the non-negative integer values, for example, the
number of power outages on a circuit in this paper. When
modeling count data, the classical ordinary least-squares (OLS)
regression is often inappropriate because the homoscedasticity
and normality assumptions are violated. The violation of the basic
OLS assumptions can result in inaccurate estimates of standard
errors, and misleading p-values and consequent confidence
intervals [6]. A class of generalized linear regression models
has been developed for modeling count data. These models
have a number of advantages over an ordinary linear
regression model, including a skew, discrete distribution, and
the restriction of predicted values to non-negative numbers [7].

The most widely used model for count data is Poisson model.
The Poisson model is made up of a Poisson probability mass
function (PMF) denoted as P (yi � k) used to calculate the

FIGURE 1 | Histogram of the vegetation-caused outages on each
circuit.
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probability of observing k events given a mean event rate of λ, and
a link function that is used to express the mean rate λ as a function
of the regression variables X. The Poisson PMF is

P(yi � k) � e−λiλki
k!

, i � 1, 2, . . . , n, (3.1)

where yi is the observed count for the ith row in the dataset, λi is
the event rate corresponding to the ith sample. The link function
of the Poisson regression model is expressed as

ln(λi) � xiβ, (3.2)

where ln (·) is the natural logarithm function, xi � [xi1, xi2, . . . ,
xip] is the regression variables in the ith row, and β is the vector of
regression coefficients.

The Poisson model assumes that the mean and variance of the
errors are equal, but usually in practice the variance of the errors
is larger than the mean. In these cases, we say that the data is
“overdispersed”. When overdispersion arises, the Poisson model
is not proper, and an alternative is a Negative Binomial (NB)
model. The Negative Binomial distribution is a form of the
Poisson distribution in which the distribution’s parameter is
itself considered a random variable. The variation of this
parameter can account for a variance of the data that is higher
than the mean. With a NB model, the count data are assumed to
follow a NB PMF as what follows,

P(yi � k) � Γ(k + 1/α)
Γ(k + 1)Γ(1/α)

1
1 + αλi

( )1/α
αλi

1 + αλi
( )k

, (3.3)

where Γ(·) is the gamma function, α is the overdispersion
parameter, and the regression model is same as for the
Poisson model in (3.2).

When count data has both excess zeros and large counts, zero-
inflated Poisson regression (ZIP [8]) is a practical way to deal with
such situation. It assumes that with probability p the only possible
observation is zero, and with probability 1 − p a Poisson (λ)
random variable is observed. The intuition behind the ZIP model
is that there is a second underlying process that is determining
whether a count is zero or non-zero. A ZIP distribution can be
written as

P(yi � k) �
pi + (1 − pi)e−λi if k � 0;

(1 − pi) e
−λiλki
k!

if k � 1, 2, . . .

⎧⎪⎪⎨⎪⎪⎩ (3.4)

The Poisson mean λi and the probability pi are linked to the
explanatory variables through the log link in (3.2) and logit link as

logit(pi) � ziγ, (3.5)

where zi is the vector of covariates for the ith subject, and γ is the
vector of the corresponding regression coefficients.

The zero-inflated Negative Binomial (ZINB) regression is used
for count data that exhibits overdispersion and excess zeros. The
data distribution combines the NB distribution and the logit
distribution. The model can be expressed as

P(yi � k) � pi + (1 − pi)g(yi � 0) if k � 0;
(1 − pi)g(yi) if k � 1, 2, . . . ,

{ (3.6)

where g (yi) � P (yi � k) is defined in (3.3), and the link functions
are the same with the ZIP model in (3.2) and (3.5).

4 STATISTICAL ANALYSIS

In this section, we fit the models on the outage data set and draw
conclusions on the basis of these fitted models. The Akaike
Information Criterion (AIC [9]) and Bayesian Information
Criterion (BIC [10]) are utilized to compare models. The AIC
of a fitted model is defined as

AIC � −2p ln L̂ + 2pk, (4.1)

and the BIC is expressed as

BIC � −2p ln L̂ + log(n)pk, (4.2)

where L̂ is the maximum value of the likelihood function for the
model, k is the number of estimated parameters in the model, n is the
sample size. In comparingmodels, a smaller AIC and BIC is favorable.

TABLE 1 | Trimming patterns and cumulative growth years.

Pattern 2012 2013 2014 2015 2016 Cumulative years

1 0 1 2 3 4 10
2 1 2 3 4 5 15
3 2 3 4 5 6 20
4 3 4 5 6 7 25
5 4 5 6 7 0 22
6 5 6 7 0 1 19
7 6 7 0 1 2 16
8 7 0 1 2 3 13

FIGURE 2 | Mean outages over cumulative years.
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4.1 Total Outages v.s. Cumulative Growth
Years
First, we focus on the relationship between the total vegetation-
caused outages on each circuit and its cumulative vegetative growth
year. Over the 5-years of reliability data on the current 7 years
maintenance cycle, there are eight possible trimming patterns for
each of the circuit. For example, for all circuits last maintained in
2012, the years of growth after the trimming for 2012–2016 are
0,1,2,3,4, respectively, therefore are assigned pattern 1 and this
pattern has a cumulative years of growth 0 + 1 + 2 + 3 + 4 � 10.
Likewise, the rest of the patterns look like in Table 1. Assuming all
the circuits are independent, using the total outages on a circuit as
the response and the cumulative years of vegetative growth as the
predictor is to fulfill the independence assumption of classical
regressionmodels. In Figure 2we can observe an overall increasing
trend in the mean outages as cumulative years grow.

For each circuit i, i � 1, . . . , 144, we sum the total number of
vegetation-caused incidents on circuit i in the 5-years period and
define the vector the response variable yi, and let the predictor xi be
the cumulative years of growth from 2012 to 2016. We then apply
the four regression models discussed in Section 3 on this data. In
order to fit for the ZIP and ZINBmodels, we subtract the number of
outages by 1 so that to have a majority of 0’s in the data. Statistical
software R is used to facilitate this analysis. The “glm” and “glm.nb”
functions are implemented to fit the Poisson andNBmodels, both of
which are in the package “MASS”, and the “zeroinfl” function within
the package “pscl” is applied to fit the ZIP and ZINB models. The
regression parameter estimates and p-values, as well as the values of
AIC and BIC from the four models are reported in Table 2.

Overall, NB-type models fit the data substantially better than
Poisson models do. It is not surprising as the response variable is
overdispersed with a variance of 6.216 and a mean of 1.993. Based
on the values of AIC and BIC, we find that the NB model fits the
data the best. The results demonstrate that vegetative growth has
a significant positive effect on vegetation-caused outages.

To decide the optimal cycle length, we introduce some
indicator variables pj as follows,

pj� 1 if atrimmingpatterninTable1includesvegetativegrowthyearj;
0 otherwise.

{
Along the 7 years trimming cycle, j � 0, . . . , 7. For example,
growth year of 7 is included in trimming patterns 4, 5, 6, 7, 8, thus

p7 � 1 if a circuit has a pattern 4, 5, 6, 7, or 8;
0 if a circuit has a pattern 1, 2, or 3.

{

If p7 is a significant predictor on outages, it means the patterns
involving year 7 have significant more outages than other
patterns, in other words, growth year 7 tends to have more
outages than other years. We then fit the NB model with the
response yi on each pj, individually. The results are included in
Table 3. Table 3 shows that growth year 7 tends to have
significantly more outages than other years, therefore the
power company should consider shortening the current 7 years
trimming cycle to a 6 years cycle, in order to decrease vegetation-
caused outages.

4.2 Outages v.s. Vegetative Growth Years
In this section, we will quantify the relationship between the
number vegetative-caused outages in each year on each circuit
and the number of years of vegetative growth when the outage
occurred. If we consider each circuit as a cluster, thus the data
has a clustered structure and the outages on the same circuit
across different years are correlated. Statistical models
introduced in Section 3 can not be directly employed to
clustered data since they all assume the observations are
independent. The violation of the independence assumption
might result in misleading conclusions. The mixed effects
models treat clustered data adequately and assumes two
sources of variation, within cluster and between clusters. Two
types of coefficients are distinguished in the mixed model: fixed
effects and random effects (or cluster specific effects). The fixed
effects have the same meaning as in classical statistics, the
random effects are random and are estimated as posterior
means [11].

For count data specially, a generalized linear mixed model,
i.e., a Poisson generalized linear mixed (GLM) model with a
random intercept, is conducted for this analysis. This model
assumes that the conditional distribution of the count data is the
Poisson distribution as in (3.2), but it adds an extra random term
in the link function as shown in (4.3),

ln(λij) � xijβ + bi, (4.3)

where bi is the random effect in cluster i and represents circuit-
specific variability. By accommodating both fixed and random
effects, this model provides an effective and flexible way of
representing the mean as well as the covariance structure of
the data. Similarly, we can have the GLM variant for NB, ZIP,
ZINB models in Section 3.1.

TABLE 2 | The regression parameter estimates, p-values, values of AIC and BIC
from the Poisson, NB, ZIP, and ZINB models.

Model Estimate p-value AIC BIC

Poisson 0.046 0.001 662.406 668.346
NB 0.051 0.042 551.112 560.021
ZIP 0.019 0.202 606.478 618.357
ZINB 0.035 0.226 553.482 568.331

TABLE 3 | The regression parameter estimates and p-values for the indicator
variables.

Indicator Estimate p-value

p0 0.201 0.400
p1 −0.075 0.764
p2 −0.403 0.118
p3 −0.481 0.054
p4 −0.212 0.417
p5 0.221 0.423
p6 0.205 0.336
p7 0.431 0.040
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We then define the response variable yij as the total number of
vegetative-caused outages incidents on circuit i on growth year j,
and let the fixed effect xij be the growth year for circuit i on year j,
the circuit effect is consider random in the mixed model. For each
circuit, we only focus on those years having vegetative-caused
outages, thus yij > 0 for all (i, j). This generates a data set with 306
observations from 144 circuits. Figure 3 shows an increasing
trend of the mean vegetative-caused outages over growth years.

In order to fit for the ZIP and ZINB GLMmodels, we subtract
the number of outages by 1, so that we have amajority of 0’s in the
data. The “glmmPQL” function in package “MASS”, “glmer.nb”
function in package “lme4”, “glmmTMB” function in package
“glmmTMB”, and “gam” function in package “mgcv”, are
implemented to fit the GLM models for Poisson, NB, ZIP, and
ZINB, respectively. The fixed effect estimates and p-values, as well
as the values of AIC and BIC from the four models are reported in
Table 4.

The estimates from different models in Table 4 are fairly close
and are all have a small p-value, thus we can conclude that the
vegetative growth has significant effect on the number of outages.
Based on the ZINB model which has the smallest AIC and BIC,
we estimate that as the growth year increases by 1, the expected
number of outages increases by exp (0.114) � 1.12 or about 12%.

To decide the optimal cycle length, we define several indicator
variables gk as follows,

gk � 1 if the outage occurred at growth yeark;
0 otherwise,

{
where k � 0, . . . , 7. For example,

g7 � 1 if theoutageoccurredatgrowthyear7;
0 if theoutageoccurredatgrowthyear0,1,2,3,4,5,or6.

{
If g7 is a relevant predictor, it would suggest that growth year 7
tends to have more outages than other years. We then fit the
ZINB GLM model with the response yij on each gk, individually.
The results are shown in Table 5. We observe from Table 5 that
both growth years 6 and 7 have more outages than other years.
Notice that the conclusions drawn from Section 4.1 and Section
4.2 are consistent, both of which show that there is a significant
statistical relationship between the reliability of the electric power
distribution system and the number of years of vegetative growth
on distribution circuits, and advocate a 6 years cycle as the
reasonable vegetation maintenance schedule.

5 CONCLUDING REMARKS

This paper investigates the role of vegetative growth on
distribution reliability. Some statistical models including
Poisson, Negative Binomial, Zero-Inflated models and their
variants are utilized. Based on this study, the following
conclusions can be drawn.

1) There is a significant statistical relationship between the
reliability of the electric power distribution system and the
number of years of vegetative growth on distribution circuits.

2) An optimal vegetation maintenance should be scheduled
every 6 years.

3) The Negative Binomial model and its modifications are
particularly effective at fitting vegetation-caused outages.

The study can advance the understanding on the relationship
between vegetative growth and system reliability and should be
useful to help the power companies determine an effective
vegetation maintenance schedule. However, there are three

FIGURE 3 |Mean vegetative-caused outages on different growth years.

TABLE 4 | The fixed effect estimates, p-values, values of AIC and BIC from the
Poisson, NB, ZIP, and ZINB GLM models.

Mixed model Estimate p-value AIC BIC

Poisson 0.097 0.022 524.800 536.000
NB 0.097 0.039 518.097 532.991
ZIP 0.096 0.026 524.831 536.002
ZINB 0.114 0.018 506.765 521.632

TABLE 5 | The GLM regression model parameter estimates and p-values for the
indicator variables.

Predictor Coefficient p-value

g0 −0.042 0.901
g1 −0.0092 0.767
g2 −0.571 0.137
g3 −0.649 0.089
g4 −0.124 0.682
g5 −0.238 0.462
g6 0.791 0.004
g7 0.429 0.062
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main limitations of the models and future research could be
conducted to obtain more accurate results.

First, we limited the attention on the effect of vegetative
growth on power system reliability, other possible factors are
not included due to lack of access to related data. As a result, the
performance of the analysis may be improved by the inclusion of
additional climate and geographical information. The second
limitation lies on the fact that the models are fit with data
from only normal (storm exclusion) operating conditions,
which means that our models might underestimate the
benefits of tree pruning. Additional data and study would be
needed to learn the impacts of tree maintenance on distribution
system reliability under storm conditions. The third limitation is
that the analysis is based on data from only one company,
consequently the model may not fit the data from another
power company, especially if the region where the tree types,
temperature, population density, wind regimes, and precipitation

patterns is substantially different fromMidwestern United States.
If more data are available, it will further test the effectiveness of
the statistical models, and enhance insights on the importance of
vegetative maintenance in improving power system reliability.
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