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Time series data play an important role in many applications and their analysis reveals

crucial information for understanding the underlying processes. Among the many time

series learning tasks of great importance, we here focus on semi-supervised learning

based on a graph representation of the data. Two main aspects are studied in this paper.

Namely, suitable distance measures to evaluate the similarities between different time

series, and the choice of learning method to make predictions based on a given number

of pre-labeled data points. However, the relationship between the two aspects has never

been studied systematically in the context of graph-based learning. We describe four

different distancemeasures, including (Soft) DTW andMPDist, a distancemeasure based

on the Matrix Profile, as well as four successful semi-supervised learning methods,

including the recently introduced graph Allen–Cahn method and Graph Convolutional

Neural Network method. We provide results for the novel combination of these distance

measures with both the Allen-Cahn method and the GCN algorithm for binary semi-

supervised learning tasks for various time-series data sets. In our findings we compare

the chosen graph-based methods using all distance measures and observe that the

results vary strongly with respect to the accuracy. We then observe that no clear best

combination to employ in all cases is found. Our study provides a reproducible framework

for future work in the direction of semi-supervised learning for time series with a focus

on graph representations.

Keywords: semi-supervised learning, time series, graph Laplacian, Allen-Cahn equation, graph convolutional

networks

1. INTRODUCTION

Many processes for which data are collected are time-dependent and as a result the study of time
series data is a subject of great importance [1–3]. The case of time series is interesting for tasks such
as anomaly detection [4], motif computation [5] or time series forecasting [6]. We refer to [7–10]
for more general introductions.
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We here focus on the task of classification of time series [11–
16] in the context of semi-supervised learning [17, 18] where we
want to label all data points1 based on the fact that only a small
portion of the data is already pre-labeled.

An example is given in Figure 1where we see some time series
reflecting ECG (electrocardiogram) data and the classification
into normal heartbeats on the one hand and myocardial
infarction on the other hand. In our applications, we assume
that only for some of the time series the corresponding class is
known a priori. Our main contribution is to introduce a novel
combination of incorporating the data into a graph and then
incorporate this representation into several recently introduced
methods for semi-supervised learning. For this, each time series
becomes a node within a weighted undirected graph and the
edge-weight is proportional to the similarity between different
time series. Graph-based approaches have become a standard tool
in many learning tasks (cf. [19–24] and the references mentioned
therein). The matrix representation of the graph via its Laplacian
[25] leads to studying the network using matrix properties. The
Laplacian is the representation of the network that is utilized from
machine learning to mathematical imaging. Recently, it has also
been used network-Lasso-based learning approaches focusing on
data with an inherent network structure, see e.g., [26, 27]. A very
important ingredient in the construction of the Laplacian is the
choice of the appropriate weight function. In many applications,
the computation of the distance between time series or sub-
sequences becomes a crucial task and this will be reflected in our
choice of weight function.We consider several distance measures
such as dynamic time warping DTW [28], soft DTW [29], and
matrix profile [30].

We will embed these measures via the graph Laplacian
into two different recently proposed semi-supervised learning
frameworks. Namely, a diffuse interface approach that originates
from material science [31] via the graph Allen-Cahn equation as
well as a method based on graph convolutional networks [21].
Since these methods have originally been introduced outside of
the field of time series learning, their relationship with time
series distance measures has never been studied. Our goal is
furthermore to compare these approaches with the well-known
1NN approach [11] and a simple optimization formulation
solved relying on a linear system of equations. Our motivation
follows that of [32, 33], where many methods for supervised
learning in the context of time series were compared, namely that
we aim to provide a wide-ranging overview of recent methods
based on a graph representation of the data and combined with
several distance measures.

We structure the paper as follows. In section 2, we introduce
some basic notations and illustrate the basic notion of graph-
based learning motivated with a clustering approach. In section
3, we discuss several distance measures with a focus on the
well-known DTW measure as well as two recently emerged
alternatives, i.e., Soft DTW and the MP distance. We use section
4 to introduce the two semi-supervised learningmethods inmore
detail, followed by a shorter description of their well-known

1We here view one time-series as a data point and the feature vector for this data

point is the vector with the associated data collected in a vector.

competitors. section 5 will allow us to compare the methods and
study the hyperparameter selection.

2. BASICS

We consider discrete time series xi given as a vector of real
numbers of length mi. In general, we allow for the time series to
be of different dimensionality; later we often consider allmi = m.
We assume that we are given n time series xi ∈ R

mi . The goal of
a classification task is to group the n time series into a number k
of different clusters Cj with j = 1, . . . , k. In this paper we focus
on the task of semi-supervised learning [17] where only some of
the data are already labeled but we want to classify all available
data simultaneously. Nevertheless, we review some techniques
for unsupervised learning first as they deliver useful terminology.
As such the k-means algorithm is a prototype-based2 clustering
algorithm that divides the given data into a predefined number
of k clusters [34]. The idea behind k-means is rather simple as
the cluster centroids are repeatedly updated and the data points
are assigned to the nearest centroid until the centroids and data
points have converged. Often the termination condition is not
handled that strictly. For example, the method can be terminated
when only 1% of the points change clusters. The starting classes
are often chosen at random but can also be assigned in a more
systematic way by calculating the centers first and then assign the
points to the nearest center. While k-means remains very popular
it also has certain weaknesses coming from its minimization of
the sum of squared errors loss function [35]. We discuss this
method in some detail here to point out the main mechanism
and this is based on assigning points to clusters and hence the
cluster centroids based on the distance being the Euclidean norm,
which would also be done when k-means is applied to time
series. As a result the clusters might not capture the shape of the
data manifold as illustrated in a simple two-dimensional example
shown in Figure 2. In comparison, the alternativemethod shown,
i.e., a spectral clustering technique, performs much better. We
briefly discuss this method next as it forms the basis of the main
techniques introduced in this paper.

2.1. Graph Laplacian and Spectral
Clustering
As we illustrated in Figure 2 the separation of the data into two-
classes is rather difficult for k-means as the centroids are based
on a 2-norm minimization. One alternative to k-means is based
on interpreting the data points as nodes in a graph. For this,
we assume that we are given data points x1, ..., xn and some
measure of similarity [23]. We define the weighted undirected
similarity graph G = (V ,E) with the vertex or node set V and
the edge set E. We view the data points xi as vertices, V =
{x1, . . . , xn}, and if two nodes (xi, xj) have a positive similarity
function value, they are connected by an edge with weight wij

equal to that similarity. With this reformulation of the data we
turn the clustering problem into a graph partitioning problem
where we want to cut the graph into two or possibly more classes.

2Here the prototype of the cluster is the centroid.
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FIGURE 1 | A typical example for time series classification. Given the dataset ECG200, the goal is to automatically separate all time series into the classes normal

heartbeats and myocardial infarction.

FIGURE 2 | Clustering based on original data via k-means (left) vs. transformed data via spectral clustering (right).

This is usually done in such a way that the weight of the edges
across the partition is minimal.

We collect all edge weights in the adjacency matrix W =
(wij)i,j=1,...,n. The degree of a vertex xi is defined as di =

∑n
j=1 wij

and the degree matrix D is the diagonal matrix holding all n
node degrees. In our case we use a fully connected graph with
the Gaussian similarity function

w(xi, xj) = exp
(

−
dist(xi, xj)

2

σ 2

)

, (1)

where σ is a scaling parameter and dist(xi, xj) is a particular
distance function such as the Euclidean distance dist(xi, xj) : =

‖xi − xj‖2. Note that for similar nodes, the value of the distance
function is smaller than it would be for dissimilar nodes while the
similarity function is relatively large.

We now use both the degree and weight matrix to define
the graph Laplacian as L = D − W. Often the symmetrically
normalized Laplacian defined via

Lsym = D− 1
2 LD− 1

2 = I − D− 1
2WD− 1

2 (2)

provides better clustering information [23]. It has some very
useful properties that we will exploit here. For example, given a
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non-zero vector u ∈ R
n we obtain the energy term

uTLsymu = 1

2

∑

i,j

wij

(

ui√
di

−
uj
√

dj

)2

. (3)

Using this it is easy to see that Lsym is positive semi-definite with
non-negative eigenvalues 0 = λ1 ≤ λ2 ≤ ... ≤ λn. The main
advantage of the graph Laplacian is that based on its spectral
information one can usually rely on transforming the data into
a space where they are easier to separate [23, 25, 36]. As a result
one typically requires the spectral information corresponding to
the smallest eigenvalues of Lsym. The most famed eigenvector is
the Fiedler vector, i.e., the eigenvector corresponding to the first
non-zero eigenvalue, which is bound to have a sign change and as
a result can be used for binary classification. The weight function
(1) is also found in kernel methods [37, 38] when the radial basis
kernel is applied.

2.2. Self-Tuning
In order to improve the performance of the methods based on
the graph Laplacian, tuning the parameter σ is crucial. While
hyperparameter tuning based on a grid search or cross validation
is certainly possible we also consider a σ that adapts to the given
data. For spectral clustering, such a procedure was introduced in
[39]. Here we use this technique to learning with time series data.
For each time series xi we assume a local scaling parameter σi. As
a result, we have the generalized square distance as

dist(xi, xj)

σi

dist(xi, xj)

σj
=

dist(xi, xj)
2

σiσj
(4)

and this gives the entries of the adjacency matrixW via

wi,j = exp

(

−
dist(xi, xj)

2

σiσj

)

. (5)

The authors in [39] choose σi as the distance to the K-th nearest
neighbor of xi where K is a fixed parameter, e.g., K = 9 is used in
[31].

In section 5, we will explore several different values for K and
their influence on the classification behavior.

3. DISTANCE MEASURES

We have seen from the definition of the weight matrix that the
Laplacian depends on the choice of distance measure dist(xi, xj).
If all time series are of the same length then the easiest distance
measure would be a Euclidean distance, which especially for large
n is fast to compute. This makes the Euclidean distance incredibly
popular but it suffers from being sensitive to small shifts in the
time series. As a result we discuss several popular and efficient
methods for different distance measures. Our focus is to illustrate
in an empirical study how the choice of distance measure impacts
the performance of graph-based learning and to provide further
insights for future research (cf. [40]).

3.1. Dynamic Time Warping
We first discuss the distance measure of Dynamic TimeWarping
(DTW, [28]). By construction, DTW is an algorithm to find an
optimal alignment between time series.

In the following, we adapt the notation of [28] to our case.
Consider two time series x and x̃ of lengthsm and m̃, respectively,
with entries xi, x̃i ∈ R for i = 1, . . . ,m and j = 1, . . . , m̃. We
obtain the local cost matrix C ∈ R

m×m̃ by assembling the local
differences for each pair of elements, i.e., Cij = |xi − x̃j|.

The DTW distance is defined via (m, m̃)-warping paths, which
are sequences of index tuples p =

(

(i1, j1), ..., (iL, jL)
)

with
boundary, monotonicity, and step size conditions

1 = i1 ≤ i2 ≤ . . . ≤ iL = m, 1 = j1 ≤ j2 ≤ . . . ≤ m̃,

(iℓ+1 − iℓ, jℓ+1 − jℓ) ∈ {(1, 0), (0, 1), (1, 1)} (ℓ = 1, . . . , L− 1).

The total cost of such a path with respect to x, x̃ is defined as

cp(x, x̃) =
L
∑

ℓ=1

|xiℓ − x̃jℓ |.

The DTW distance is then defined as the minimum cost of any
warping path:

DTW(x, y) : = min{cp(x, y) | p is a (m,m̃)-warping path}. (6)

Both the warping and the warping path are illustrated in Figure 3.
Computing the optimal warping path directly quickly

becomes infeasible. However, we can use dynamic programming
to evaluate the accumulated cost matrix D recursively via

D(i, j) : = |xi−x̃j|+min{D(i, j−1),D(i−1, j),D(i−1, j−1)}. (7)

The actual DTW distance is finally obtained as

DTW(x, y) = D(m, m̃). (8)

The DTW method is a heavily used distance measure for
capturing the sometimes subtle similarities between time series.
In the literature it is typically stated that the computational cost
of DTW being prohibitively large. As a result one is interested in
accelerating theDTWalgorithm itself. One possibility arises from
imposing additional constraints (cf. [28, 41]) such as the Sakoe-
Chiba Band and the Itakura parallelogram as these simplify
the identification of the optimal warping path. While these are
appealing concepts the authors in [42] observe that the well-
known FastDTW algorithm [41] is in fact slower than DTW.
For our purpose we will hence rely on DTW and in particular
on the implementation of DTW provided via https://github.com/
wannesm/dtaidistance. We observe that for this implementation
of DTW indeed FastDTW is outperformed frequently.

3.2. Soft Dynamic Time Warping
Based on a slight reformulation of the above DTW scheme,
we want to look at another time series distance measure, the
Soft Dynamic Time Warping (Soft DTW). It is an extension of
DTW designed allowing a differentiable loss function and it was
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FIGURE 3 | DTW warping (left) and warpings paths (right).

introduced in [29, 43]. We again start from the cost matrix C
with C(i, j) = |xi − x̃j| for time series x and x̃. Each warping

path can equivalently be described by a matrix A ∈ {0, 1}m×m̃

with the following condition: The ones in A form a path starting
in (1, 1) going to (m, m̃), only using steps downwards, to the
right and diagonal downwards. A is called monotonic alignment
matrix and we denote the set containing all these alignment
matrices with A(m, m̃). The Frobenius inner product 〈A,C〉
is then the sum of costs along the alignment A. Solving the
following minimization problem leads us to a reformulation of
the dynamic time warping introduced above as

DTW(C) = min
A∈A(N,M)

〈A,C〉. (9)

With Soft DTWwe involve all alignments possible inA(N,M) by
replacing the minimization with a soft minimum:

min
x∈S

f (x) ≈ minγ
x∈S

f (x) : = −γ log
∑

x∈S
exp

(−f (x)

γ

)

(10)

where S is a discrete subset of the real numbers. This function
approximates the minimum of f (x) and is differentiable. The
parameter γ controls the tuning between smoothness and
approximation of the minimum. Using the DTW-function (9)
within (10) yields the expression for Soft Dynamic TimeWarping
written as

DTWγ (x, x̃) = minγ
A∈A(m,n)

〈A,C〉

= −γ log
∑

A∈A(m,n)

exp

(−〈A,C〉
γ

)

. (11)

This is now a differentiable alternative to DTW, which involves
all alignments in our cost matrix.

Due to entropic bias3, Soft DTW can generate negative values,
which would cause issues for our use in time series classification.
We apply the following remedy to overcome this drawback:

Div(x, y) = DTWγ (x, y)−
1

2
·
(

DTWγ (x, x)+ DTWγ (y, y)
)

.

(12)
This measure is called Soft DTW divergence [43] and will be
employed in our experiments.

3.3. Matrix Profile Distance
Another alternative time series measure that has recently been
introduced is the Matrix Profile Distance (MP distance, [30]).
This measure is designed for fast computation and finding
similarities between time series.

We will again introduce the concept of the matrix profile
of two time series x and x̃. The matrix profile is based on the
subsequences of these two time series. For a fixed window length
L, the subsequence xi,L of a time series x is defined as a contiguous
L-element subset of x via xi,L = (xi, xi+1, . . . , xi+L−1). The all-
subsequences set A of x contains all possible subsequences of x
with length L, A = {x1,L, x2,L, . . . , xm−L+1,L}, where m is again
the length of x.

For the matrix profile, we need the all-subsequences sets A
and B of both time series x and x̃. The matrix profile PABBA is
the set consisting of the closest Euclidean distances from each

3This term is commonly used when the regression results shrink toward a mass at

the barycenter of a target [44].
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subsequence in A to any subsequence in B and vice versa:

PABBA =
{

min
x̃j,L∈B

‖xi,L − x̃j,L‖
∣

∣

∣

∣

xi,L ∈ A

}

∪
{

min
xi,L∈A

‖x̃j,L − xi,L‖
∣

∣

∣

∣

x̃j,L ∈ B

}

With the matrix profile, we can finally define the MP distance
based on the idea that two time series are similar if they have
many similar subsequences. We do not consider the smallest or
the largest value of PABBA because then the MP distance could
be too rough or too detailed. For example, if we would have two
rather similar time series, but either one has a noisy spike or some
missing values, then the largest value of the matrix profile could
give a wrong impression about the similarity of these two time
series. Instead, the distance is defined as

MPdist(X,Y) = k-th smallest value in sorted PABBA,

where the parameter k is typically set to 5% of 2N [30].
We now illustrate the MP distance using an example as

illustrated in section 3.3, where we display three time series of
length N = 100. Our goal is to compare these time series using
the MP distance. We observe that X1 and X2 have quite similar
oscillations. The third time series X3 does not share any obvious
features with the first two sequences.

The MP distance compares the subsequences of the time
series, depending on the window length L. Choosing the window
length to be L = 40, we get the following distances:

MPdist(X1,X2) = 0.433,

MPdist(X1,X3) = 5.425,

MPdist(X2,X3) = 5.404.

As we can see, the MP distance identified the similarity between
X1 and X2 shows that X1,X2 differ from X3. We also want to
show that the MP Distance depends on the window length L.
Let us look at the MP distance between the lower oscillation time
series X2 and X3, which is varying a lot for different values of L as
indicated in Table 1. Choosing L = 10 there is not a large portion
of both time series to compare with and as a result we observe
a small value for the MP distance, which does not describe the
dissimilarity of X2 and X3 in a proper way. If we look at L = 40,
there is a larger part of the time series structure to compare the
two series. If there is a special recurring pattern in the time series,
the length L should be large enough to cover one recurrence. We
illustrate the comparison based on different window lengths in
Figure 4.

For the tests all data sets consist of time series with a certain
length, varying for each data set. Thus we have to decide which

TABLE 1 | MP distance depending on the window length.

L 10 20 30 40

MPdist(X2,X3) 0.270 2,034 3,955 5,404

window length L should be chosen automatically in the classifier.
An empirical study showed that choosing L ≈ N/2 gives good
classification results.

We briefly illustrate the computing times of the different
distance measures when applied to time series of increasing
length shown in Figure 5. It can be seen that DTW is faster
than fastDTW. Obviously, the Euclidean distance shows the best
scalability. We also observe that the computation of the SDTW
is scaling worse than the competing approaches when applied to
longer time series.

4. SEMI-SUPERVISED LEARNING BASED
ON GRAPH LAPLACIANS

In this section, we focus mainly on two methods that have
recently gained wide attention. This first method is inspired by
a partial differential equation model originating from material
science and the second approach is based on neural networks that
incorporate the graph structure of the labeled and unlabeled data.

4.1. Semi-supervised Learning With Phase
Field Methods: Allen–Cahn Model
Within the material science community phase field methods
have been developed to model the phase separation of a
multicomponent alloy system (cf. [45, 46]). The evolution of the
phases over time is described by a partial differential equation
(PDE) model, such as the Allen-Cahn [46] or Cahn-Hilliard
equation [47] both non-linear reaction-diffusion equations of
second and fourth order, respectively. These equations can be
obtained as gradient flows of the Ginzburg–Landau energy
functional

E(u) =
∫

ε

2
|∇u|2 + 1

ε
φ(u)

where u is the order parameter and ε a parameter reflecting the
width of the interface between the pure phases. The polynomial
φ is chosen to have minima at the pure phases, namely u = −1
and u = 1, to enforce that a minimization of the Ginzburg–
Landau energy will lead to phase separation. A common choice
is the well-known double-well potential φ(u) = 1

4 (1 − u2)2. The

Dirichlet energy term |∇u|2 corresponds to minimization of the
interfacial length. The minimization is then performed using a
gradient flow, which leads to the Allen-Cahn equation

ut = 1u− 1

ε
φ′(u) (13)

equipped with appropriate boundary and initial conditions. A
modified Allen–Cahn equation was used for image inpainting,
i.e., restoring damage parts in an image, where a misfit ω

(

f − u
)

term is added to Equation (13) (cf. [48, 49]). Here, ω is a penalty
parameter and f is a function equal to the undamaged image parts
or later training data. In [31], Bertozzi and Flenner extended this
idea to the case of semi-supervised learning where the training
data correspond to the undamaged image parts, i.e, the function
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FIGURE 4 | Illustration of Matrix Profile distance (left), subsequences indicated in red with window length L = 10 (middle) and L = 30 (right).

FIGURE 5 | Runtimes of distance computation between a single pair of time series with increasing length.

TABLE 2 | Default parameters used in the experiments.

Method Parameters and default values

Allen–Cahn me = 20, ε = 1√
n
, c = 3

ε
+ ω, ω = 1e10, τ = 0.01, tol = 1e− 8

GCN 10-NN sparsification, h = 32, dropout p = 0.5, Adam

optimization [62], learning rate 0.01, weight decay 0.0005, 500

epochs

Linear System β = 1, tol = 1e− 5

1NN —

f . Their idea is to consider the modified energy of the following
form

E(u) = ε

2
uTLsymu+ 1

4ε

n
∑

i=1

(u2i − 1)2 +
n
∑

i=1

ωi

2
(fi − ui) (14)

where fi holds the already assigned labels. Here, the first
term in (14) reflects the RatioCut based on the graph Laplacian,
the second term enforces the pure phases, and the third term
corresponds to incorporating the training data. Numerically, this
system is solved using a convexity splitting approach [31] where

we write

E(u) = E1(u)− E2(u)

with

E1(u) : =
ε

2
uTLsymu+ c

2
uTu

and

E2(u) : =
c

2
uTu− 1

4ε
+

n
∑

i=1

(u2i − 1)2 −
n
∑

i=1

ωi

2
(fi − ui)

where the positive parameter c ∈ R ensures convexity of both
energies. In order to compute the minimizer of the above energy
we use a gradient scheme where

ul+1 − ul

τ
= −∇E1(u

l+1)+ ∇E2(u
l)

where the indices k, k + 1 indicate the current and next time
step, respectively. The variable τ is a hyperparameter but can be
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TABLE 3 | Study of self-tuning parameters.

k = 7 (%) k = 20 (%) k =
√
n (%) k = 0.1n (%) k = 0.05n (%)

ECG200 (n = 200)

MPDist GCN 83.58 81.74 81.90 81.74 82.54

Allen-Cahn 81.00 79.00 80.00 79.00 80.00

SDTW GCN 91.95 91.34 90.70 91.43 90.55

Allen-Cahn 92.00 90.00 91.00 90.00 91.00

DTW GCN 88.92 86.76 87.43 86.76 88.97

Allen-Cahn 82.00 82.00 83.00 82.00 82.00

SonyAIBORobotSurface1 (n = 621)

MPDist GCN 95.45 88.74 93.08 78.10 89.62

Allen-Cahn 75.54 72.88 73.04 75.37 73.71

SDTW GCN 90.32 91.46 92.48 87.34 92.85

Allen-Cahn 93.68 85.19 82.36 81.36 82.36

DTW GCN 97.59 97.58 97.48 96.49 97.35

Allen-Cahn 84.03 86.85 87.69 87.19 88.19

ECGFiveDays (n = 884)

MPDist GCN 99.70 99.77 99.51 99.66 99.15

Allen-Cahn 89.89 90.71 95.35 95.82 96.40

SDTW GCN 97.30 97.11 97.31 96.49 97.06

Allen-Cahn 82.00 86.99 85.48 86.76 87.57

DTW GCN 97.22 97.19 97.39 97.20 97.35

Allen-Cahn 77.35 76.31 75.72 73.17 74.68

TwoLeadECG (n = 1,162)

MPDist GCN 99.81 99.78 99.81 99.62 99.74

Allen-Cahn 99.12 97.10 96.49 97.72 96.57

SDTW GCN 92.10 90.74 90.53 89.98 90.72

Allen-Cahn 97.19 93.24 91.04 87.27 87.71

DTW GCN 92.94 94.04 94.98 93.97 96.49

Allen-Cahn 93.85 92.36 92.10 94.12 93.50

Bold values indicate most accurate classification.

interpreted as a pseudo time-step. In more detail following the
notation of [20], this leads to

ul+1 − ul

τ
+ εLsymul+1 + cul+1 = cul − 1

ε
∇ψ(ul)+ ∇φ(ul)

with

ψ(ul) =
n
∑

i=1

((uli)
2 − 1)2, φ(ul) =

n
∑

i=1

ωi

2
(fi − uli).

Expanding the order parameter in a number of the small
eigenvectors φi of Lsym via u =

∑me
i=1 aiφi = 8mea where a is

a coefficient vector and 8me = [φ1, . . . ,φme ]. This lets us arrive
at

(1+ετλjal+1
j +cτ )al+1

j = (1+τ c)alj−
1

ε
blj+dlj, ∀j = 1, . . . ,me

using

bl = 8T
me
∇ψ(8mea

l), dl = 8T
me
∇φ(8mea

l).

In [50], the authors extend this to the case of multiple classes
where again the spectral information of the graph Laplacian are
crucial as the energy term includes ε2 tr(U

TLsymU) withU ∈ R
n,s,

s being the number of classes for segmentation, and tr being the
trace of the matrix. Details of the definition of the potential and
the fidelity term incorporating the training data are found in
[50]. Further extensions of this approach have been suggested in
[20, 22, 51–55].

4.2. Semi-supervised Learning Based on
Graph Convolutional Networks
Artificial neural networks and in particular deep neural networks
have shown outstanding performance in many learning tasks [56,
57]. The incorporation of additional structural information via a
graph structure has received wide attention [24] with particular
success within the semi-supervised learning formulation [21].

Let h(l)i denote the hidden feature vector of the i-th node in the
l-th layer. The feature mapping of a simple multilayer perceptron
(MLP) computes the new features by multiplying with a weight
matrix 2(l)T and adding a bias vector b(l), then applying a
(potentially layer-dependent) ReLU activation function σl in all
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TABLE 4 | Varying the number of eigenpairs for the reduced Allen–Cahn equation.

Number of eigenvalues 10 (%) 20 (%) 30 (%) 150 (%) 190 (%)

Dataset ECG200

MPDist 82.00 81.00 86.00 62.00 56.00

SDTW 78.00 92.00 92.00 68.00 66.00

DTW 78.00 82.00 87.00 69.00 54.00

Number of eigenvalues 10 (%) 20 (%) 30 (%) 500 (%) 600 (%)

SonyAIBORobotSurface1

MPDist 85.36 75.54 73.04 51.58 51.08

SDTW 96.17 93.68 83.19 52.08 49.92

DTW 90.01 84.03 72.71 52.41 48.58

Number of eigenvalues 10 (%) 20 (%) 30 (%) 700 (%) 800 (%)

ECGFiveDays

MPDist 87.19 89.89 85.95 50.29 51.22

SDTW 91.52 82.00 84.20 54.00 52.38

DTW 68.87 77.35 77.00 49.82 50.29

Bold values indicate most accurate classification.

layers except the last. This layer operation can be written as

hli = σl

(

2(l)Th
(l−1)
i + b(l)

)

.

In Graph Neural Networks, the features are additionally
propagated along the edges of the graph. This is achieved by
forming weighted sums over the local neighborhood of each
node, leading to

hli = σl

(

∑

j∈Ni∪{i}

ŵij
√

d̂id̂j

2(l)Th
(l−1)
j + b(l)

)

. (15)

Here, Ni denotes the set of neighbors of node i, 2
(l) and b(l) the

trainable parameters of layer l, the ŵij denote the entries of the

adjacency matrixW with added self loops, Ŵ = W + I, and the

d̂i denote the row sums of that matrix. By adding the self loops, it
is ensured that the original features of that node are maintained
in the weighted sum.

To obtain a matrix formulation, we can accumulate state
matrices X(l) whose n rows are the feature vectors h(l)Ti for i =
1, . . . , n. The propagation scheme of a simple two-layer graph
convolutional network can then be written as

X(1) = σ

(

D̂−1/2ŴD̂−1/2X(0)2(1) + b(1)
)

X(2) = D̂−1/2ŴD̂−1/2X(1)2(2) + b(2)
(16)

where D̂ is the diagonal matrix holding the d̂i.
Multiplication with D̂−1/2ŴD̂−1/2 can also be understood

in a spectral sense as performing graph convolution with the
spectral filter function ϕ(λ) = 1 − λ. This filter originates from
truncating a Chebyshev polynomial to first order as discussed
in [58]. As a result of this filter the eigenvalues λ of the graph
Laplacian operator L (formed in this case after adding the self

loops) are transformed via ϕ to obtain damping coefficients
for the corresponding eigenvectors. This filter has been shown
to lead to convolutional layers equivalent to aggregating node
representations from their direct neighborhood (cf. [58] for more
information).

It has been noted, e.g., in [59] that traditional graph neural
networks including GCN are mostly targeted at the case of sparse
graphs, where each node is only connected to a small number of
neighbors. The fully connected graphs that we utilize in this work
present challenges for GCN through their spectral properties.
Most notably, these dense graphs typically have large eigengaps,
i.e., the gap between the smallest eigenvalue λ1 = 0 and the
second eigenvalue λ2 > 0may be close to 1. Hence the GCN filter
acts almost like a projection onto the undesirable eigenvector φ1.
However, it has been observed in the same work that in some
applications, GCNs applied to sparsified graphs yield comparable
results to dedicated dense methods. Our experiments justified
only using Standard GCN on a k-nearest neighbor subgraph.

4.3. Other Semi-supervised Learning
Methods
In the context of graph-based semi-supervised learning a rather
straightforward approach follows fromminimizing the following
objective

min
u

1

2

∥

∥u− f
∥

∥

2
2
+ β

2
uTLsymu (17)

where f holds the values 1,−1, and 0 according to the labeled and
unlabeled data. Calculating the derivative shows that in order to
obtain u, we need to solve the following linear system of equations

(

I + βLsym
)

u = f

where I is the identity matrix of the appropriate dimensionality.
Furthermore, we compare our previously introduced

approaches to the well-known one-nearest neighbor (1NN)
method. In the context of time series classification this method
was proposed in [11]. In each iteration, we identify the indices
i, j with the shortest distance between the labeled sample xi and
the unlabeled sample xj. The label of xi is then copied to xj. This
process is repeated until no unlabeled data remain.

In [60], the authors construct several graph Laplacians and
then perform the semi-supervised learning based on a weighted
sum of the Laplacian matrices.

5. NUMERICAL EXPERIMENTS

In this section, we illustrate how the algorithms discussed in this
paper perform when applied to multiple time series data sets. We
here focus on binary classification and use time series taken from
the UCR time series classification archive 4 [61]. All our codes are
to be found at https://github.com/dominikalfke/TimeSeriesSSL.
The distance measure we use here are the previously introduced

4We focussed on all binary classification series listed in

TwoClassProblems.csv within http://www.timeseriesclassification.com/

Downloads/Archives/Univariate2018_arff.zip.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 January 2022 | Volume 7 | Article 784855

https://github.com/dominikalfke/TimeSeriesSSL
http://www.timeseriesclassification.com/Downloads/Archives/Univariate2018_arff.zip
http://www.timeseriesclassification.com/Downloads/Archives/Univariate2018_arff.zip
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bünger et al. Graph-Based Semi-supervised Time Series Classification

FIGURE 6 | Comparison of the proposed methods using various distance measures for a variety of time series data. The size of the training set is specified in

TwoClassProblems.csv within http://www.timeseriesclassification.com/Downloads/Archives/Univariate2018_arff.zip.

DTW, Soft DTW divergence, MP, and Euclidean distances. For
completeness, we list the default parameters for all methods
in Table 2.

We split the presentation of the numerical results in the
following way. We start by exploring the dependence of
our schemes on some of the hyperparameters inherent in
their derivation. We start by investigating the self-tuning
parameters, namely the value of the chosen neighbor to

compute the local scaling. We then study the performance
of the Allen–Cahn model depending on the number of
eigenpairs used for the approximation of the graph Laplacian.
For our main study, we pair up all distance measures with
all learning methods and report the results on all datasets.
Furthermore, we investigate how the method’s performance
depends on the number of available training data using random
training splits.
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FIGURE 7 | Comparison of the proposed methods using various distance measures for a variety of time series data.
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FIGURE 8 | Method accuracy comparison for random training splits of different sizes (part 1/5).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 January 2022 | Volume 7 | Article 784855

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles


Bünger et al. Graph-Based Semi-supervised Time Series Classification

FIGURE 9 | Method accuracy comparison for random training splits of different sizes (part 2/5).
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FIGURE 10 | Method accuracy comparison for random training splits of different sizes (part 3/5).
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FIGURE 11 | Method accuracy comparison for random training splits of different sizes (part 4/5).
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FIGURE 12 | Method accuracy comparison for random training splits of different sizes (part 5/5).
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5.1. Self-Tuning Values
In section 2, we proposed the use of the self-tuning approach
for the Gaussian function within the weight matrix. The
crucial hyperparameter we want to explore now is the choice
of neighbor k for the construction of σi = dist(xi, xk,i)
with xk,i the k-th nearest neighbor of the data point xi.
We can see from Table 3 that the small values k = 7, 20
perform quite well in comparison to the larger self-tuning
parameters. As a result we will use these smaller values in all
further computations.

5.2. Spectral Approximation
As described in section 4 the Allen–Cahn equation is projected
to a lower-dimensional space using the insightful information
provided by the eigenvectors to the smallest eigenvalues of
the graph Laplacian. We now investigate how the number
of used eigenvectors impacts the accuracy. In the following
we vary the number of eigenvalues from 10 to 190 and
compare the performance of the Allen–Cahn method on
three different datasets. The results are shown in Table 4

and it becomes clear that a vast number of eigenvectors
does not lead to better classification accuracy. As a result
we require a smaller number of eigenpair computations
and also fewer computations within the Allen–Cahn
scheme itself. The comparison was done for the self-tuning
parameter k = 7.

5.3. Full Method Comparison
We now compare the Allen-Cahn approach, the GCN
scheme, the linear systems based method, and the 1NN
algorithm, each paired up with each of the distance
measures introduced in section 3. Full results are
listed in Figures 6, 7. We show the comparison for
all 42 datasets.

As can be seen there are several datasets where the
performance of all methods is fairly similar even when the
distance measure is varied. Here, we name Chinatown,
Earthquakes, GunPoint, ItalyPowerDemand,
MoteStrain, Wafer. There are several examples where
the methods do not seem to perform well, with GCN and
1NN relatively similar outperforming the Linear System and
Allen–Cahn approach. Such examples are DodgerLoopGame,
DodgerLoopWeekend. The GCN method clearly does
not perform well with the GunPoint datasets where the
other methods clearly perform well. It is surprising to note
that the Euclidean distance, given its computational speed
and simplicity, does not come out as underperforming
with respect to the accuracy across the different methods.
There are very few datasets where one distance clearly
outperforms the other choice. We name ShapeletSim,
ToeSegementation1 here. One might conjecture that the
varying sizes of the training data might be a reason for the
difference in performance of the models. To investigate this
further we will next vary the training splits for all datasets
and methods.

5.4. Varying Training Splits
In Figures 8–12, we vary the size of the training set from 1 to 20%
of the available data. All reported numbers are averages over 100
random splits. The numbers we observe mirror the performance
of the full training size. We see that the methods show reduced
performance when only 1% of the training data are used but often
reach an accuracy plateau when 5 to 10% of the training data
are used. We observe that the size of the training set alone does
not explain the different performance in the various datasets and
methods applied here.

6. CONCLUSION

In this paper we took to the task of classifying time series data
in a semi-supervised learning setting. For this we proposed to
represent the data as a fully-connected graph where the edge
weights are created based on a Gaussian similarity measure (1).
The heart of this function is the difference measure between
the time series, for which we used the (Soft) Dynamic Time
Warping and Matrix Profile based distance measures as well as
the Euclidean distance. We then investigated several learning
algorithms, namely, the Allen–Cahn-based method, the Graph
Convolutional Network scheme, and a linear system approach,
all reliant on the graph Laplacian, as well as the Nearest Neighbor
method. We then illustrated the performance of all pairs of
distance measure and learning methods. In this empirical study
we observed that the methods tend to show an increased
performance adding more training data. Studying all binary
time-series with the timeseriesclassification.com repository gives
results that in accordance with the no free lunch theorem
show no clear winner. On the positive side the methods
often perform quite well and there are only a few datasets
with decreased performance. The comparison of the distance
measures indicates there are certain cases where they outperform
their competitors but also there is no clear winner with regards
to accuracy. We believe that this empirical, reproducible study
will encourage further research in this direction. Additionally,
it might be interesting to consider model-based representations
of time-series such as ARMA [63, 64] to use within the graph
representations used here.
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