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Based on the asymmetric copula function, this paper analyzes the static

and dynamic correlation between Shanghai Composite Index and Shenzhen

Composite Index. Through the static analysis, it is found that the asymmetric

copula function is better than Gumbel Copula in describing the distribution

characteristics of the top tail dependence between the Shanghai Composite

Index and the Shenzhen Composite Index, and the copula correlation

coe�cient definition based on the asymmetric copula function can well

describe the asymmetric dependence between variables. In the time-varying

analysis, the paper improves the traditional dynamic evolution equation of

the tail-dependence coe�cient. Through empirical analysis, the result shows

that the improved dynamic evolution equation can better reflect the dynamic

evolution process of the tail-dependence coe�cient.
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asymmetric copula function, copula correlation coe�cient, upper tail dependence
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Introduction

In investment risk management, diversified investment strategies are generally

adopted to avoid risks, and a large number of studies show that selecting assets with low

correlation for a portfolio can reduce investment risks. Therefore, it is very important to

analyze the correlation between assets in the risk analysis of financial assets.

In origin correlation analysis, Pearson’s linear correlation coefficient is generally used

to describe the correlation between variables. However, since the calculation of Pearson’s

correlation coefficient requires the existence of finite variance, financial time series

usually follow a thick-tailed distribution, and the variance sometimes does not exist.

This greatly limits the application of Pearson’s correlation coefficient in the correlation

analysis of financial assets.

As a function that connects the joint distribution function and the edge distribution

function of random variables, the copula almost contains all the dependent information

of random variables. Because it does not limit the type of edge distribution, the copula

has been widely used in describing the correlation between financial assets. Common

copula-based correlation measures include Spearman’s ρ and Kendall’s τ .
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In recent years, some scholars have done a lot of studies

on the application of the copula model and obtained some

important results. For example, Romano [1] applied copula

theory to study the problem of portfolio risk in the Italian

capital market. Rosenberg and Schuerman [2] used the copula

theory to analyze the aggregation of market risk, credit

risk, and operational risk. Patton [3] studied the impact of

asymmetric correlation structure on the performance of two

asset portfolios. In addition, Patton [4] proposed the definition

of conditional copula and used it to characterize the asymmetric

dependence structure between exchange rates. Palaro and Hotta

[5] used the conditional copula to dynamically analyze the

dependence relationship among financial assets. Nikolai et al.

[6] summarized in detail the development and application

of copula function in recent years and made a reasonable

prospect for its future development. Many Chinese scholars

have also conducted numerous studies on the copula and

obtained many conclusions [7–18]. Zhang [7] analyzed the

feasibility of the copula function application in financial data

analysis. Zhang [8] studied the calculation method of multi-

asset VaR based on the copula. Wu et al. [9] applied the

copula theory to the risk analysis of the financial asset portfolio.

Besides, Wu et al. [11] combined the T GARCH model with

multivariate normal copula and multivariate T copula to analyze

the portfolio problem among multiple stocks. Wei and Zhang

[12] combined the copula function with the GARCH model

to analyze the correlation structure between Shanghai and

Shenzhen stock markets, and Wei and Zhang [13] used the

copula function and the GARCH model to conduct a dynamic

analysis of the interdependence between the various sectors

of the Shanghai Stock market. Zhang and Li [14] studied

the integration risk of the asset portfolio based on copula

from the goodness-of-fit. Li et al. [16] measured the financial

risk based on Claytoncopula, and Du and Zhang [17] used

mixed cane copula to compare the calculation accuracy of

VAR of the asset portfolio. Ren and Zhang [18] studied the

value at risk of the financial asset portfolio by using multiple

Archimedean Copula. Among copula functions, Archimedean

Copula has been widely used in the financial field due to

its simple construction method and thick-tailed distribution.

For example, Clayton Copula [19] with the characteristics of

lower tail dependence distribution, Frank Copula [20] with

asymptotically independent tail distribution, Gumbel Copula

[21] with upper tail dependence, and Joe copula [22] with

both upper and lower tails dependence all have been widely

used in correlation analysis of financial assets. However,

the correlation measures spearman’s ρ, Kendall’s τ , Blest’s

correlation coefficient, Kochar, and Gupta’s based on the

Archimedean copula are all symmetric correlation measures.

This is not characteristic of the relationship between financial

assets. Generally speaking, for two variables X and Y, the

dependence relationship between X and Y is not the same as

that between Y and X. In order to describe the dependence

structure between variables more accurately, scholars have

carried out a large number of studies on the asymmetric copula

model between variables. Alfonsi and Brigo [23] proposed

a new construction method for asymmetric copula functions

based on periodic functions. Khoudragi [24] proposed a

method to construct copula based on the product copula

function. Liebscher [25] proposed a method for constructing

asymmetric copula functions based on copula and Archimedes

Copula, respectively.

In this paper, based on the asymmetric copula function

that constructed by Eckhard Liebscher, this paper analyzes

the static and time-varying dynamic relationship between

the Shanghai Composite Index and the Shenzhen Composite

Index. Through analysis, it is found that the asymmetric

copula can better depict the tail distribution characteristics

between variables than the traditional Archimedes copula

Gumbel function, and, in the static analysis, the concept

of the copula correlation coefficient is introduced. For the

asymmetric copula function, copulas correlation coefficients

ρ1|2 and ρ2|1, in general, are not equal; the paper engraves

the asymmetric relationship between variables through the

calculation of the asymmetric copulas correlation coefficient. In

addition, in the time-varying analysis, this paper improves the

evolution process of the traditional tail-dependence coefficient

and makes a comparative analysis between the new evolution

process and the traditional evolution process through empirical

analysis. The result shows that the improved dynamic evolution

equation can better reflect the dynamic evolution process of the

tail-dependence coefficient.

The paper is arranged as follows: Part one consists of

the Introduction and Part two consists of the construction

of the asymmetric copula function. This section introduces

the construction method of the asymmetric copula function

proposed by Eckhard Liebscher and discusses its tail distribution

characteristics. The third part is a correlation analysis of

asymmetric copula function. First, this paper gives the

parameter estimation method of the asymmetric copula

function by using the empirical tail copula function; in this

section, the definition of the copula correlation coefficient is

introduced, and the estimation value of the copula correlation

coefficient is calculated by Monte Carlo simulation so as

to explain the asymmetric dependence relationship between

variables. Part four is a static empirical analysis based on

the asymmetric copula function. The correlation between the

Shanghai Composite Index returns and the ShenzhenComposite

Index returns is analyzed statically by using the asymmetric

copula function. Part five is a dynamic empirical analysis

based on asymmetric copula function. The traditional dynamic

evolution equation is improved, and the empirical analysis

shows that the improved dynamic evolution equation can

more accurately describe the dynamic evolution process of the

upper- and tail-dependence coefficients. Part six consists of

the Conclusion.
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Construction method of asymmetric
copula function

Archimedes copula function

Let C
(

u1, · · · , ud
)

= ϕ−1[ϕ (u1) + · · · + ϕ(ud)],; here,

ui ∈ [0, 1],ϕ is a strictly decreasing function for [0, 1] to

[0,∞). According to a document [10], if ϕ−1 is d- monotonous,

namely, (−1)k dk

dtk
ϕ−1(t) ≥ 0, the function C

(

u1, · · · , ud
)

is a

copula function.

The Archimedean copula is a symmetric copula function,

which can also be expressed in another form:

C
(

u1, · · · , ud
)

= ϕ−1
0 (ϕ0 (u1) × · · · × ϕ0(ud)), ui ∈ [0, 1],

where ϕ0 : [0, 1] → [0, 1],ϕ0 (t) = exp(−ϕ(t)).

In the Archimedean copulas, Clayton copula, Frank copula,

and Gumbel copula are widely used in the financial field due to

their thick-tailed distribution.

Tail copula function and tail-dependence
coe�cient

Definition 2.1. Set H is a distribution function, the

corresponding copula is C, if for each point in R
2
+ = [0,∞]2

{(∞,∞)}
,

the following limits 3L
(

x, y
)

= lim
t→∞

t · C
( x
t ,

y
t

)

exists, then,

the function 3L(x, y): R
2
→ R is called the lower-tail copula

function associated with H.

Likewise, if the 3U (x, y) = lim
t→∞

tC

(

x
t lim
t→∞

,
y
t

)

limit

exists, we say 3U (x, y) the upper tail copula function.

Tail-dependence estimation is not an easy task, especially

for non-standard distributions. It is for this reason that we

are prompted to consider tail-dependence coefficients, or,

rather, tail-dependence coefficients are a special case of tail

copula functions.

Definition 2.2. (The tail-dependence coefficient) A random

vector (X, Y) is called upper tail dependence; if 3U (1, 1) exists

and λU = 3U (1, 1) = tC
(

1
t ,

1
t

)

> 0, λU is called the upper

tail-dependence coefficient; if λU = 0, (X,Y)is said to be upper

tail independent. Similarly, the lower tail-dependence coefficient

is defined by λL = 3L(1, 1). If λL > 0(= 0), the lower tail-

dependence coefficient exists, and λL = 0 says (X,Y) is the lower

tail asymptotically independent.

In addition, for λU = lim
t→∞

t · C

(

1

t
,
1

t

)

= lim
t→∞

C
(

1
t ,

1
t

)

1
t

= lim
u→0

C(u, u)

u
= lim

u→1

C(1− u, 1− u)

1− u
;

λL = lim
t→∞

t · C
(x

t
,
y

t

)

= lim
t→∞

C
( x
t ,

y
t

)

1
t

= lim
u→0

C (u, u )

u
.

Therefore, this definition is essentially consistent with the

definition of the tail-dependence coefficient by Joe [22].

The upper- and lower-tail-dependence coefficients are the

values of the upper- and lower-tail-dependence functions at a

point. By comparison, the tail-dependence function can more

intuitively reflect the dependence structure between variables.

As the dependence relationship between financial variables

is not fixed, the dependence coefficient and even the dependence

structure between variables may change with the change of time.

Therefore, many scholars have carried out a large number of

dynamic analyses on the dependence structure between financial

variables. In the past dynamic correlation analysis, we mostly

used the symmetric copula function model to describe the

dependence relationship, so the dependence relationship is also

mostly symmetric, but, in practice, the dependence relationship

between different variables is not symmetric. Specifically, for X

and Y variables, the dependence relationship between X and Y

is not equal to the dependence relationship between Y and X.

Based on this, this paper uses the asymmetric copula function to

dynamically analyze the correlation between financial variables.

First, the asymmetric copula function model that was selected

for analysis is presented.

Asymmetric copula function model

According to the expression of Archimedean copulas

C
(

u1, · · · , ud
)

= ϕ−1
0 (ϕ0 (u1) × · · · × ϕ0(ud)), ui ∈

[0, 1],ϕ0 : [0, 1] → [0, 1], we can see, since the functions acting

on each ui are the same, the Archimedean copula is characterized

by symmetry. In order to construct the asymmetric copula

function, we can compound different functions ϕ0 (ui) for

different ui. Based on this idea, Eckhard Liebscher generalized

the Archimedes copula function in literature [25] and proposed

a construction method of the asymmetric copula function.

Theorem 2.1 Let C
(

u1, · · · , ud
)

=

ϕ( 1m
∑m

j=1 hj1(ϕ
−1(u1)) · · · hjd(ϕ

−1(ud))), here,

ϕ(d)exists,ϕ
′
(u) > 0,ϕ(i)(u) ≥ 0, i = 2, · · · , d, u ∈ [0, 1], let

ϕ (0) = 0,ϕ (1) = 1. Assume that, for each j ∈ {1, · · · ,m} and

k ∈ {1, · · · , d}, hjk is derivable and strictly increasing function

on [0, 1] to [0, 1], and hjk (0) = 0, hjk (1) = 1, 1
m

∑m
j=1 hjk(x) =

x, k = 1, · · · , d, x ∈ [0, 1], so C
(

u1, · · · , ud
)

can be concluded

to be an absolutely continuous copula function.

Proof: Fist,

C (u1,1,· · ·,1) = ϕ





1

m

m
∑

j=1

hj1

(

ϕ−1 (u1)
)



= u1,

C
(

0,u2, · · ·,ud
)

= ϕ (0 )=0.

Then, we show that ∂d

∂u1∂u2···∂ud
C (u) ≥ 0 for all u; i.e., the

copula has a density. Let ϕ̃ (·) = ϕ
(

·
m

)

. By induction, we can
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prove that

∂k

∂u1∂u2· · ·∂uk
C (u)

=

k
∑

v=1

ϕ̃(v)





m
∑

j=1

hj1

(

ϕ−1 (u1)
)

· · · hjd

(

ϕ−1 (ud)
)





×
∑

M1∪···∪Mµ is a decomposition of {1,··· ,k}

avk
(

M1, · · · ,Mµ

)

×

µ
∏

i=1

∂

∂uMi





m
∑

j=1

hj1

(

ϕ−1 (u1)
)

· · · hjd

(

ϕ−1 (ud)
)



 (∗)

For k = 1, · · · , d. The notation ∂
∂uM

means ∂ l

∂ui1 ···∂uil
,

where M =
{

i1, · · · , il
}

. In formula (∗), avk
(

M1, · · · ,Mµ

)

denotes an integer depending on k, v,M1, · · · ,Mµ. Obviously,

(∗) is true for k = 1. Differentiating both sides of (11)

w·r·t·uk+1, the right-hand side gets the form of the right-

hand side of (11) with k replaced by k + 1. Therefore, by

induction, we obtain that (11) is valid for all 1 ≤ k ≤ d. Since
∂m

∂ui1 ···∂uim

(

∑m
j=1 hj1

(

ϕ−1 (u1)
)

· · · hjd
(

ϕ−1 (ud)
)

)

≥ 0

for different i1, · · · , im by assumption, we have
∂

∂uM

(

∑m
j=1 hj1

(

ϕ−1 (u1)
)

· · · hjd
(

ϕ−1 (ud)
)

)

≥ 0 for

M ⊂
{

1, · · · , k
}

. Remember that ϕ̃(v) (u) ≥ 0, by assumption.

Thus, the proof of this theorem is complete.

Example 2.1. Let ϕ(t) =
exp(−α(1−t)

1
r )−e

−α

1−e−α , so ϕ−1(t) =

1 − (− ln(e−α+t−te−α

α )
r
, then set h1k = xζk , ζk ∈ [1, 2], h2k =

2x − xζk ,where r ∈ (1,+∞), to be simple, let d = 2,m = 2.

According to the theorem, ϕ (t)and hij(x) can be composited to

construct the asymmetric copula function.

C∗ (u1, u2) = ϕ





1

2

2
∑

j=1

hj1

(

ϕ−1(u1)
)

hj2

(

ϕ−1(u2)
)





In the following, the upper tail copula3U (x, y) and the

upper- and lower tail-dependence coefficients of the copula

C∗ (u1, u2) are calculated.

First, the upper tail copula function is evaluated as follows:

3U (x, y) = x+ y− lim
t→∞

∂C
(

1− x
t , 1−

y
t

)

∂
(

1− x
t

) x

− lim
t→∞

∂C
(

1− x
t , 1−

y
t

)

∂
(

1−
y
t

) y

= x+ y− x · 2
1
r−1 − y · 2

1
r−1

λU (r) = 3U (1, 1) = 1 + 1− 2
1
r−1 − 2

1
r−1 = 2− 2

1
r

The lower-tail-dependence coefficient λL = 0 can be

calculated by using the samemethod, that is, the copula function

constructed in the example is upper tail dependence and lower

tail asymptotically independent.

In order to compare the tail dependence structure of

asymmetric copula andArchimedean copula, this paper analyzes

the tail-dependence function of Gumbel copula, which also has

the characteristics of upper-tail-dependence distribution.

Gumbel copula is an Archimedean copula that is

generated by ϕ(t) = (−lnt)
1
α ,α ∈ (0, 1], C(u, v) =

exp
(

−
(

(−lnu)
1
α + (−lnv)

1
α

)α)

, the upper-tail-dependence

function of C (u, v) is calculated by the following:

3U (x, y) = lim
t→∞

tC
(x

t
,
y

t

)

= lim
t→∞

t
(x

t
+

y

t
− 1+ C

(

1−
x

t
, 1−

y

t

))

= x+ y+ lim
t→∞

t · C
(

1−
x

t
, 1−

y

t

)

= x+ y+ lim
t→∞

C
(

1− x
t , 1−

y
t

)

− 1

1
t

= x+ y− 2α−1 · x− 2α−1 · y

So, λU (r) = 3U (1, 1) = 1 + 1 − 2α−1 − 2α−1 =

2− 2α ,; the upper-tail-dependence function and the upper-tail-

dependence coefficient of Gumbel copula have the same form as

the asymmetric copula function C∗ (u1, u2 ).

Correlation analysis of the
asymmetric copula function

Parameter estimation method of the
asymmetric copula function

Due to the complex structure, the commonly used

parameter estimation methods, such as maximum likelihood

estimation, marginal distribution inference method, and

maximum likelihood estimation, are not easy to calculate for

the asymmetric copula function. In this paper, we present a

parameter estimation method of asymmetric copula function

based on empirical tail copula function.

First, the concept of rank is given.

Definition 3.1. Let(x1, y1), (x2, y2), · · · , (xN , yN ) be N

samples of a random variable (X,Y); arrange x1, x2, · · · , xN

in order, from small to large; the position of xn in the queue,

namely, rank rn, is called its rank. Similarly, the rank of yn

iny1, y2, · · · , yN is sn, where n = 1, 2, · · · ,N.

Suppose (X,Y), (X1,Y1), · · · , (Xm,Ym) are random vectors

with distribution functions F, edge distributions G, H, and joint

distributions C, in the following non-parametric estimates of

upper- and lower-tail-dependent functions are given.

Let Cm represent the empirical copula function, defined

as follows:

Cm(u, v) = Fm(G
−1
m (u),H−1

m (v)), (u, v) ∈ [0, 1]2
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Here, Fm,Gm,Hm represent the empirical distribution

functions corresponding to F, G, H. Similarly, experience

survival can be defined as copula Cm(u, v).

Cm(u, v) = H(Fm
−1

(u),Gm
−1

(v)), (u, v) ∈ [0, 1]2

Hm(x, y) = 1
m

∑m
j = 1 I

{

xj>x,yj>y
}, Fm(u) =

1 − Fm(u),Gm(v) = 1 − Gm(v), so Fm
−1

(u) =

sup

{

x ∈ R|F(x) ≥ u

}

, and sup {8} = −∞

Let R
j
m1 and R

j
m2 represent the rank of Xj and Yj,

respectively, j = 1, 2, · · · ,m, and then the estimation of tail-

dependent function as the following:

3̂L,m
(

x, y
)

=
m

k
CM

(

kx

m
,
ky

m

)

≈
1

k

m
∑

j=1

I{
R
j
m1

≤kx,R
j
m2

≤ky
}

3̂U,m
(

x, y
)

=
m

k
CM

(

kx

m
,
ky

m

)

≈
1

k

m
∑

j=1

I{
R
j
m1

≥m−kx,R
j
m2

≥m−ky
}

They are called the experience tail copulas function;

λ̂U = 3̂U (1, 1) , λ̂L = 3̂L (1, 1)are called the experience tail

correlation coefficient.

Since the empirical tail copula function is calculated

according to the empirical copula function, the empirical

copula function is only related to the sample data. For the

same group of sample data, when the asymmetric copula

function or Archimedes copula function is used to describe the

interdependent structure between variables, an empirical tail

copula can be used as an estimate of their tail copulas. Through

previous analysis, we know the upper-tail-dependence function

of asymmetric copulas as 3C∗

U

(

x, y
)

= x + y − x · 2
1
r−1,and

the upper-tail-dependence coefficient λC
∗

U (x, y) = 3U (1, 1) =

2 − 2
1
r , the upper-tail-dependence function of Gumbel copulas

as 3G
U

(

x, y
)

= x + y − x · 2α−1 − x · 2α−1, the upper-

tail-dependence coefficientλGU (x, y) = 3U (1, 1) = 2 − 2α ,

because the empirical tail-dependence coefficient λ̂U , λ̂Lcan also

be estimated as either λCU orλGU . Since λC
∗

U (r) = 2− 2
1
r , we can

get an estimation of r that is calculated from λC
∗

U . In addition

to using λGU to estimate λC
∗

U , we can also directly estimate

λC
∗

U with empirical tail-dependence coefficients, and also get the

parameter estimates of the asymmetric copula function.

Copula correlation coe�cient

Nelsen [26] gives Spearman’s ρ and Kendall’s τ expressions.

Definition 3.2. Let the random variable (U,V) with copula

C (U,V), expressions of Spearman’s ρ and Kendall’s τ as follows:

ρ (C) = 12

∫ 1

0

∫ 1

0
C(u, v)dudv− 3, τ (C)

= 4

∫ 1

0

∫ 1

0
C(u, v)dC(u, v)− 1

In correlation analysis, Pearson’s correlation coefficient

describes the linear correlation between variables, while

Spearman’s ρ and Kendall’s τ describe the non-linear

correlation between variables, but cannot describe the

asymmetric relationship between variables. Therefore, in

order to describe the asymmetric correlation between

variables, many scholars have carried out numerous

studies. Sungur [27] proposed a correlation coefficient

based on the copula function. Dabrawska [28] analyzed

a correlation measure based on regression. Dette et al.

[29] proposed a regression-dependent non-parametric

measure based on copula function on the basis of regression

correlation measure. Shih and Emura [30] improved the

copula correlation coefficient proposed by Sungur and

gave an expression of the copula correlation coefficient

based on convolution operation. Based on the copula

correlation coefficient proposed by Jia-Han Shih, this

paper analyzes the asymmetric dependence relation

of the asymmetric copula function that is presented in

this paper.

Sungur [27] pointed out, ρ2|1 (C) and ρ1|2 (C)

respectively express directional dependence of V on Uand

directional dependence of U on V , where ρ2|1 (C) =
Var{E(V|U)}

Var(V)
, ρ1|2 (C) =

Var{E(U|V)}
Var(U)

, ρ2|1 (C) , ρ1|2 (C) ∈ [0, 1].

As can be seen from the definition that ρ2|1 (C) measure

the part of the variation in V that is explained by U and

ρ1|2 (C)measure the part of the variation in U that is

explained by V, if ρ2|1 (C) > ρ1|2 (C) , then it means that

U explains more change in V than V explains the change

in U.

Based on Sungur’s research, Jia - Han Shih

improved the definition of the type of ρ2|1 (C) and

ρ1|2 (C), and put forward the following two methods

of definition.

Definition 3.3. Let the random variable (U,V) have copula

C (U,V), according to Spearman’s ρ of the convolution copula

CT∗C or C∗ CT , the copula correlation coefficient can be

defined as follows: ρ2|1 (C) = ρ(CT∗C) and ρ1|2 (C) =

ρ(C∗CT).

where convolution is defined as follows:

(

CT∗C
)

(u, v) =

∫ 1

0
∂2C

T(u, t)∂1 (t, v) dt, u, v ∈ [ 0, 1]

Since Parsow et al. [31] proved that if C1,C2 are

copula, then C1∗C2 (u, v) is also copula, that is, the copula

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2022.1005956
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Li and Hou 10.3389/fams.2022.1005956

function is closed under convolution operation. Therefore,

the above definition indicates that the copula correlation

coefficient ρ2|1 (C) ρ1|2 (C) is Spearman’s ρ of copula function

obtained after convolution operation of CT and C. Thus,

the calculation problem of the copula correlation coefficient

is transformed into Spearman’s ρ of convolution copula

function. According to the definition, if C is asymmetric,

then ρ2|1(C) 6= ρ1|2(C). If C is symmetrical, then

ρ2|1 (C) = ρ1|2(C).

According to the definition of Spearman’s ρ, we can obtain:

ρ2|1 (C) = ρ(CT∗C) = 12

∫ 1

0

∫ 1

0
CT∗Cdudv− 3

ρ1|2 (C) = ρ(C∗CT) = 12

∫ 1

0

∫ 1

0
C∗CTdudv− 3

If the C is symmetrical, CT = C, then ρ2|1 (C) =

12
∫ 1
0

∫ 1
0 CT∗Cdudv−3 = 12

∫ 1
0

∫ 1
0 C∗CTdudv−3 = ρ1|2 (C),.

There is no conclusion that the Archimedean copula

is closed under convolution; in other words, for an

Archimedean copula C (u, v), convolving with itself

is not necessarily the same type of Archimedean

copula. The definition of Spearman’s ρ is ρ (C) =

12
∫ 1
0

∫ 1
0 C(u, v)dudv − 3,; therefore, ρ2|1 (C) and

ρ (C)are two dependent indicators from different

angles. Even for the FGM copula function closed under

convolution operation, that is, for the FGM copula,

CT∗C and C∗CT are still FGM copula, but the obtained

copula function and the original copula function have

different parameters, and the dependence relationship is

also different.

The copula correlation coefficient gives us a way to

define the asymmetric correlation between variables, but,

for the general asymmetric copula function, expressions of

Cu (v) and Cv(u) are very complex and difficult to calculate.

Therefore, the literature [31] presents a method to calculate

estimates of copula correlation coefficients using the quasi-

Monte Carlo simulation.

Estimation of the copula correlation
coe�cient

Sungur [27, 33] mentioned that, if (U,V) is a random

vector with uniform edge distribution of [0, 1] and copula

C, then in the case of given U = u, the conditional

distribution function of V is represented by CU (V), and

then CU (V) = P (V ≤ v|U = u) = ∂C(U,V)
∂u . The

copula regression function of V on U can be expressed

with rCV|U (u), and rCV|U (u) = EC (V|U = u) = 1 −
∫ 1
0 CU (V) dV . Similarly, CV (U) = P (U ≤ u|V = v) =

∂C(U,V)
∂v , rCU|V (v) = EC (U|V = v) = 1 −

∫ 1
0 CV (U) dU,

and then,

ρ1|2 (C) =
Var

{

E(U|V)
}

Var(U)
=

Var
{

rcU|V (v)
}

Var(U)

=

E

[

(

rCU|V (v) − 1
2

)2
]

1
12

= 12E

[

(

rCU|V (v)
)2

]

− 3

ρ2|1 (C) =
Var

{

E(V|U)
}

Var(V)
=

Var
{

rcV|U (u)
}

Var(V)

=

E

[

(

rCV|U (u) − 1
2

)2
]

1
12

= 12E

[

(

rCV|U (u)
)2

]

− 3.

For asymmetric copula functions, CU (V) and CV (U)

calculations are complicated.

Kim and Kim [32] proposed the copula correlation

coefficient estimation method by using the method of

quasi-Monte Carlo simulation, and the specific steps

are as follows:

Step 1. First, the pseudo-Monte Carlo simulation method

is used to generate two independent random sequences on

[0,1], (u1, · · · , un), (v1, · · · , vn).

Step 2. Analog data were used to calculate CU (vn)

andCV (un ),

CU (vn) =
∂C(U,V ,α)

∂U
|
V=vn

,CV (un) =
∂C(U,V ,α)

∂V
|
U= un

.

Step 3. According to CU (vn) and CV (un), the estimation

of the copulas regression function rCV|U (u) , rCU|V (v)can be

calculated; specific methods are as follows:

rCV|U (u) ≈ r̃CV|U (u) = 1−
1

n

n
∑

i=1

CU (vi), r
C
U|V (v) ≈ r̃CU|V (v)

= 1−
1

n

n
∑

i= 1

CV (ui).

Step 4. The estimation of the copula correlation coefficient

was calculated according to the estimation of the copula

regression function.

ρ1|2 ≈ ρ̃1|2 =
12

n

n
∑

i=1

(

r̃CU|V (ui)
)2

− 3, ρ2|1 ≈ ρ̃2|1

=
12

n

n
∑

i=1

(

r̃CV|U (vi)
)2

− 3

The above is the method to estimate the copula correlation

coefficient. For the asymmetric copula function mentioned

in this paper, we can use the above method to estimate its

copula correlation coefficient so as to explain the asymmetric

correlation between variables.

The following is a static analysis of the correlation between

financial assets using the asymmetric copula function that is

introduced in Example 3.1. The specific steps are as follows:
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Step 1. First, the edge distribution of financial time series

is modeled. Since the fluctuation of financial time

series is characterized by time variation, aggregation,

skew, peak, and thick tail, we can choose ARCH,

GARCH, and SV models to describe the distribution

characteristics of financial time series to describe

the edge distribution.

Step 2. According to the GARCH model selected by the sample

data, the original time series is transformed by probability

integral, and the marginal distribution is transformed into

(0, 1) uniform distribution, and the transformed variables are

represented by (u, v).

Step 3. Parameter estimation and copula function selection.

First, the maximum likelihood estimation method is used

to estimate the parameter r in copula function from

three common Archimedean copulas, Gumbel, Clayton, and

Frank, and the copula with the best fitting degree is selected

by AI Ck.

Step 4. According to the tail distribution characteristics of the

copula selected in Step 3, the asymmetric copula function

with the same distribution characteristics is selected, and the

parameter estimates of the asymmetric copula function are

given according to the tail dependence coefficients of the

copula selected in Step 3.

Step 5. By calculating the copula function selected in Step 3 and

the square Euclidean distance between the asymmetric copula

function selected in Step 4 and the empirical copula function,

the goodness of fit between the two copula functions

was judged.

Step 6. Finally, according to the estimation methods of

copula correlation coefficients ρ1|2 and ρ2|1 that have been

introduced before, copulas correlation coefficient estimations

of the asymmetric copulas are calculated, which were selected

in Step 4, thus explaining the asymmetric correlation between

financial variables.

Static empirical analysis based on
asymmetric copula function

Data selection and statistical description

In order to analyze the relationship between the

Shanghai stock market and the Shenzhen stock market,

the Shanghai Composite Index and the Shenzhen Composite

Index are selected as the research objects (represented by

X1,X2 respectively). The stock price is defined as the daily

closing price Pt . The time span of sample selection is from 31

July 2015 to 27 September 2021, with a total of 1,500 valid data.

The data source is the Sina Securities network.

The return rate of assets Xion the t trading day

Rjt = 100(ln pnt − lnPnt−1). The following is a correlation

analysis of the return rates R1t ,R2t of financial assets X1,X2.

First, the statistical characteristics analysis table of return rates

is presented, as shown in Table 1. The data show that the return

rates of both the Shanghai Composite Index and the Shenzhen

Composite index are right-biased, and both show peaks. The

ADF test statistics are significant at the significance level of 0.01,

so both sequences are stationary.

Selection of edge sequence

Since the conditional distribution of financial time series

shows the distribution characteristics of wave aggregation, peak,

and thick tail, while t-distribution and GED distribution show

the distribution characteristics of the thick tail, the GARCH

model can well describe the fluctuation law of financial time

series. Therefore, GARCH-T or GARCH-GED can be selected

to describe the distribution characteristics of the peak, thick

tail, and fluctuation aggregation of financial time series. The

GARCH-t and GARCH-GED models were used to simulate

and analyze the sample data with R software. The simulation

result shows that the GARCH (1, 1)-t model can describe the

fluctuation rule of each return rate series well. The specificmodel

is as follows:

Rnt = εnt , n = 1, 2, t = 1, 2, · · · ,T

εnt = h
1
2
ntξnt

hnt = Wn + αnε
2
n,t−1 + βnhn,t−1

(ξ1t , ξ2t) ∼ C(Tv1 (ξ1t) ,Tv2 (ξ2t))

where Tv1 (·) and Tv2 (·) express the normalized t-distribution

of mean 0, variance 1, the freedom degrees of v1 and v2,

respectively, namely,
√

v1
v1−2 ξ

1t
∼ t(v1),

√

v2
v2−2 ξ

2t
∼ t(v2).

Parameter estimation results of the GARCHmodel with two

edge sequences are shown in Table 2.

According to the k-s probability value, it can be seen that,

by using the estimated conditional marginal distribution, the

sequence after the probability integral transformation of the

original financial time series can be considered to obey (0,

1) uniform distribution, indicating that the GARCH (1,1)-t

model can better simulate the marginal distribution of various

financial series.

Selection of copula model

The following is the correlation analysis of the two sequences

obtained after the probability integral transformation of the

original financial sequence using Clayton, Gumbel, and Frank

Archimedes copulas, respectively. The analysis results are

as follows:

The Akaike Information Criterion (AIC) is a standard to

measure the excellence of statistical model fitting. The smaller
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TABLE 1 Analysis of statistical characteristics of the return rate.

Mean Standard deviation Skewness Kurtosis Range ADF test

Shangzheng −0.009855 1.611986 0.914784 4.51023 15.079 −11.041**

Shenzheng 0.001489 1.274330 1.114244 7.92333 14.427 −11.757**

** Means significant at the 0.01 level.

TABLE 2 Parameter estimation of the GARCHmodel.

u w α β V Log

likelihood

K-S

statistic

K-S

probability

Shangzheng −0.06555

(−2.207)*

0.021780

(1.287)

0.065800

(3.14)**

0.932980

(39.468)***

4.36013

(8.128)***

−2610.869 0.3372 0.024336

Shengzheng −0.014895

(−0.721)

0.013206

(1.891)

0.084388

(4.554)***

0.918962

(55.402)***

3.91628

(8.909)***

−2157.952 0.2510 0.026299

* Means significant at the 0.05 level, ** means significant at the 0.01 level, *** means significant at the 0.001 level.

TABLE 3 Parameter estimation of the copula function.

Function Parameter LogLikelihood AIC BIC

Gumbel 0.2857 1321.95 −2641.89 −2636.58

Frank 12.7 1221.16 −2440.31 −2435

Clayton 3.22 1042.52 −2083.03 −2077.72

the AIC value is, the better the model is. Generally, the

model with the smallest AIC is selected. Bayesian Information

Criterion (BIC) refers to BIC that is similar to AIC, which is

used for model selection. The smaller the value, the better the

model is.

According to AIC and BIC criteria in Table 3, the Gumbel

copula is selected to describe the interdependence structure

between the Shanghai Composite Index and the Shenzhen

Composite index. According to the results of the analysis in

2.3, λU (α) = 2 − 2α , and according to 4-3,α = 0.2857, so

λU = 0.7810 , λL = 0, we can say that there is a strong upper

tail dependence between the Shanghai Composite Index and the

Shenzhen Composite Index.

Selection of asymmetric copula functions

As we know from the previous analysis, the return rates of

the Shanghai Composite Index and the Shenzhen Composite

Index have a strong upper tail dependence relationship.

Here, we select the asymmetric copula function with the

distribution characteristics of upper tail dependence for

analysis. According to the previous analysis, the asymmetric

copula C∗(u, v) = ϕ( 12
∑2

j=1 hj1(ϕ
−1(u))hj2(ϕ

−1(v))), where

TABLE 4 d2 of C* (u,v) and Gumbel.

Copula d
2

Gumbel 0.0665

C*
1(u, v) 0.3930

C*
2(u, v) 0.1754

C*
3(,u, v) 0.0996

C*
4(u, v) 0.0741

C*
5(u, v) 0.0660

C*
6(u, v) 0.0640

C*
7(u, v) 0.0640

C*
8(u, v) 0.0644

C*
9(u, v) 0.0649

C*
10(u, v) 0.0653

ϕ(t) =
exp(−α(1−t)

1
r )−e

−α

1−e−α , r ∈ (1,+∞), h11(x) = x
3
2 , h21(x) =

2x − x
3
2 , h12(x) = x2, h22(x) = 2x − x2, namely, C∗(u, v) =

ϕ
(

1
2 ((ϕ

−1(u))
3
2 (ϕ−1(v))

2
+ (2(ϕ−1(u))− ((ϕ−1(u))

3
2 )

(2(ϕ−1(v)) − (ϕ−1(v))2))
)

, and Gumbel copula are identical in

form with the tail-dependence function and the tail-dependence

coefficient, and, according to the previous discussion, the upper-

tail-dependence coefficient of C∗(u, v) is λC
∗

U = 2− 2
1
r , and it is

identical in form with Gumbel copula. According to the analysis

results in 4.3, the upper- and lower-tail- dependence coefficients

of Gumbel copula are, respectively, λU = 0.7810 , λL = 0,

so λC
∗

U and λGU can be estimated by empirical tail-dependence

functions and empirical tail-dependence coefficients. Therefore,

the value λGU can be used as an estimate of λC
∗

U , namely,

2− 2
1
r = 0.78,so r̂ = 3.5.
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In order to compare the advantages and disadvantages of the

asymmetric copula C∗8, Gumbel copula in describing dependent

structures, the square Euclidean distance between asymmetric

copula C∗, Gumbel copula, and empirical copula is calculated

respectively; the result is as follows: (and C∗i is the asymmetric

copula function with α = i. For example, C∗1 indicates α = 1).

This is only the case where α = 1, 2... 10. It can be seen

from the Euclidean distance in Table 4 that when α = 5, 6,

7, 8, 9, 10, the Euclidean distance between the asymmetric

copula C∗ and the empirical distribution function is smaller

than that between Gumbel and the empirical distribution

function, and that, when α = 6 and α = 7, d2 minimizes.

Both equal 0.0640. The smaller the Euclidean distance is, the

higher the fitting degree of the original data is. Therefore, when

describing the interdependent structure of financial variables,

asymmetric copula shows higher advantages than Archimedean

C∗ (U,V) = ϕ−1
(

1

2
(ϕ (u))

3
2 (ϕ (v))2 +

1

2

(

2ϕ (u) − (ϕ (u))
3
2

) (

2ϕ (v) − (ϕ (v))2
)

)

,We can get

∂C∗(U,V)

∂U
|
V=vi

=

(

3
4ϕ

1
2 (u) ϕ2 (vi) +

1
2

(

2− 3
2ϕ

1
2 (u)

)

(

2
(

ϕ (vi) − ϕ2 (vi)
))

)

(

− ln
(

e−α + u− ue−α
))r−1

exp(−α (1− s)
1
r )

(α (1− s)
1
r )
r−1

(e−α + u− ue−α)

rCV|U (u) ≈ r̃CV|U (u) = 1−
1

n

n
∑

i=1

CU (vi)

rCU|V (v) ≈ r̃CU|V (v) = 1−
1

n

n
∑

i=1

CV (ui), ρ2|1 ≈ ρ̃2|1 =
12

n

n
∑

i=1

(

r̃CV|U (vi)
)2

− 3

copula. In addition, the asymmetric copula function can also

describe the asymmetric interdependent structure between

variables, and more truly reflect the interdependent relationship

between variables.

According to the above analysis, the upper-tail-dependence

coefficient of the asymmetric copula is only related to parameter

r. The larger the value of r is, the larger the value of

∂C∗(U,V)

∂V
|
U=ui

=

(

ϕ
3
2 (ui) ϕ (v) +

(

2ϕ (ui) − ϕ
3
2 (ui)

)

(1− ϕ (vi))
)

(

− ln
(

e−α + v− ve−α
))r−1

exp
(

−α (1− s)
1
r

)

(

α (1− s)
1
r

)r−1
(e−α + v− ve−α)

r̃C∗U|V (v) = 1−
1

n

n
∑

i=1

CV (ui), ρ̃1|2 =
12

n

n
∑

i=1

(

r̃C
∗

U|V (vi)

)2

− 3,

where r = 3.5,

ϕ−1(t) =
exp

(

−α(1− t)
1
r

)

− e
−α

1− e−α
,ϕ(t) = 1− (−

ln
(

e−α + t − te−α
)

α
)

r

.

the tail-dependence coefficient will be. Therefore, we can say

that parameter R is a parameter representing the strength of

tail dependence. In addition, the Euclidean distance between

the copula function and the empirical copula function can be

changed by changing the parameter α, and the empirical copula

can reflect the overall dependence pattern of the data. Therefore,

it can be said that the parameter α is the parameter representing

the overall dependence structure. The different parameters of

asymmetric copula provide convenience for a more accurate

description of the correlation between variables.

Copula correlation coe�cient of the
asymmetric copula

The biggest advantage of using the asymmetric copula

function to describe the interdependent structure of financial

variables is that the asymmetric interdependent relationship

between financial variables can be explained by the copula

correlation coefficient.

According to the discussion in 3.3, at first, the stochastic

simulation method is used to generate two independent random

sequences (u1, · · · , un), (v1, · · · , vn),ui, viǫ [0, 1], for some fixed

U, and then calculateC∗U (vi) =
∂C∗(U,V)

∂U |
V=vi

. Since

where r = 3.5; the result can be obtained by Matlab,

ρ̃2|1 = 0.3536. This result shows that 35.36% of

the changes in the Shenzhen Composite Index can be

explained by the copula regression on the Shanghai

Composite Index.

The same method should be used to calculate ρ̃2|1. First, for

some fixed V, we calculated C∗V (ui) =
∂C∗(U,V)

∂V |
U= ui

,

Using Matlab to calculate available ρ̃1|2 = 0.8450,

the results show that changes in the Shanghai index,

84.5% of the part can be explained by the Shenzhen index

on the Shenzhen index Copula regression. The different

values of ρ̃Ň1|2ρ̃2|1 illustrate the different relationships

between the Shanghai index and the Shenzhen index. It

provides conditions for correctly describing the dependence

between variables.
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Time-varying analysis based on the
asymmetric copula function

Because the correlation between variables will change with

the change of time, scholars have conducted a lot of research

on the dynamic copula model, and some results have been

obtained. Deng [34] gave the estimation of Var based on

a time-varying copula. Wei and Zhang [35] analyzed the

correlation mode and dynamic correlation structure among

financial markets, respectively, based on the copula theory

and the time series model. Wang et al. [36, 37] analyzed

the time-varying correlation model and the variable structure

correlation model between financial assets based on Spearman’s

ρ respectively. However, the symmetric Archimedean copula

and elliptic copula were used in most previous analyses. In this

paper, we used the asymmetric copula function to analyze the

time dependence of variables.

The basic idea of time-varying analysis is to determine

the evolution process of the population parameter, according

to the dynamic evolution process of the dependent indexes

and the correspondence between the dependent indexes

and the population parameter. According to the previous

analysis, the upper-tail-dependence coefficient λU (r) =

2 − 2
1
r , and the lower-tail-dependence coefficient λL =

0 for the asymmetric copula C∗. Since there is a one-

to-one correspondence between the upper-tail-dependence

coefficient and the population parameter r, this paper uses

the dynamic evolution process of the upper-tail-dependence

coefficient to analyze the time variation of asymmetric

copula C∗.

Improvement of the dynamic evolution
process of the upper-tail-dependence
coe�cient

Patton [38] was the first to study the time-dependent copula

model and proposed that the dynamic evolution process of the

parameter ρ of the binary normal copula function could be

described by an equation similar to ARMA (1, 10). For tail-

dependence coefficients, the commonly used dynamic evolution

equation is as follows:

λUm = 3(γU + βUλUm−1 + αUWm) (5− 1)

λLm = 3(γL + βLλ
L
m−1 + αLWm) (5− 2)

In the above equation, the function 3(·) is the logistic

transformation function, defined as 3 (x) = 1
1+e−x . The reason

why 3 (x) is defined is to ensure that the upper-tail correlation

coefficient and the lower-tail correlation coefficient are in the

interval of (0, 1) at any time. The right side of the equation

includes an autoregressive term and an exogenous variableWm.

There are two common forms of the exogenous variable at

present: one is Wm = 1
q

∑q
i=1

∣

∣um−j − vm−j

∣

∣,; another is

W′
m = 1

q

∑q
i=1 um−jvm−j; q means the lagging term, where

Wm is the mean of the absolute value of the difference between

ui and vi in the lagging q period, and W′
m is the mean of

the product of dependent random variables ui and vi in the

lagging q period. If X and Y are positively correlated, U and V

are probability integral transformations of X and Y, so U and

V are also positively correlated; therefore, the variable will be

the main diagonal on the unit square, because |ut − vt| , and

the point (ut , vt) is proportional to the main diagonal of the

shortest distance. Therefore,Wmselects the mean of the absolute

value of the difference between ut and vt in the lag q period as an

exogenous variable, and because the tail-dependence coefficient

describes the dependence relationship of variables at the extreme

value, so W′
m_m selects the mean of the product of two

dependent variables in the lag q period as an exogenous variable.

The dynamic evolution process of the tail dependence

coefficients above describes the local evolution process of the

copula function model to a certain extent. The autoregressive

term on the right-hand side of the equation can explain the

sustainability of the tail distribution, but in the process of

exogenous variables calculation, only using the lag q period data.

These data are not necessarily tail data, and the evolution process

of the upper tail and the lower tail is uniform in form, so it is not

very good to reflect the tail data influence on the tail-dependence

coefficient based on this idea. This paper attempts to improve the

above evolution equation into the following form:

λ
∗U
m = 3(γ

∗

U + β
∗

Uλ
∗U
m−1 + α

∗

uW
∗U
m ) (5− 3)

λ
∗L
m = 3(γ

∗

L + β
∗

LλLm−1 + α
∗

LW
∗L
m ) (5− 4)

The function 3 (·) is still the logistic transformation

function, defined as 3 (x) = 1
1+e− x

W
∗U
m =

1

q

q
∑

j=1

∣

∣um−j − vm−j

∣

∣ I

(

um−j >
3

4
, vm−j >

3

4

)

,

W
∗L
m =

1

q

q
∑

j=1

∣

∣um−j − vm−j

∣

∣ I

(

um−j <
1

4
, vm−j <

1

4

)

Equation 5-3 represents the dynamic evolution equation

of the upper-tail-dependence coefficient, and Equation 5-4

represents the dynamic evolution equation of the lower-tail-

dependence coefficient.

Exogenous variables can also be taken in the following form:

W
∗U
m =

1

q

q
∑

j=1

um−jvm−jI

(

um−j >
3

4
, vm−j >

3

4

)

W
∗L
m =

1

q

q
∑

j=1

um−jvm−jI

(

um−j <
1

4
, vm−j <

1

4

)
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In an exogenous variable expression, an indicator function

I

(

um−j >
3

4
, vm−j >

3

4

)

=



















1,

um−j > 3
4 , vm−j > 3

4

0,

else

I

(

um−j <
1

4
, vm−j <

1

4

)

=



















1,

um−j < 1
4 , vm−j < 1

4

0,

else

By multiplying the indicator function, we can better

characterize the dynamic distribution of the variable in the tail.

Here, we still take asymmetric copula C∗ as an example to

conduct a dynamic analysis of the correlation between financial

assets. The analysis steps are as follows:

Step 1. First, the edge distribution of financial time series

is modeled.

Step 2. According to the GARCH model selected

by the sample data, the original time series is

transformed by probability integral, and the marginal

distribution is transformed into (0, 1) uniform

distribution, and the transformed variables are

expressed by (U,V).

Step 3. The statistics of the upper-tail-dependence coefficient

should be calculated according to the sample data, and

the upper-tail-dependence coefficient sample statistics are

as follows:

λU =

∑950
i=m I

(

ui > 3
4 , vi > 3

4

)

∑950
i=m I

(

ui > 3
4

) ,m = 1, 2, · · · , 900

Step 4. According to the sample data distribution obtained in

Step 3, the parameters of the following four dynamic evolution

equations are calculated.

λ
∗U
1m = 3

(

γ
∗

1u + β
∗

1uλ
∗U
1m−1 + α

∗

1uW
∗U
1m

)

whereW∗U
1m = 1

q

∑q
j=1

∣

∣um−j − vm−j

∣

∣ I
(

um−j > 3
4 , vm−j > 3

4

)

;

λ
∗U
2m = 3

(

γ
∗

2u + β
∗

2uλ
∗U
2m−1 + α

∗

2uW
∗U
2m

)

whereW∗U
2m = 1

q

∑q
j=1 um−jvm−jI

(

um−j > 3
4 , vm−j > 3

4

)

;

λU1m = 3(γ1U + β1UλU1m−1 + α1UW
U
1m)

whereWU
1m = 1

q0

∑q0
j=1

∣

∣um−j − vm−j

∣

∣;

λU2m = 3(γ2U + β2UλU2m−1 + α2UW
U
2m)

whereWU
2m =

1

q0

q0
∑

j=1

(um−jvm− j)

Improved dynamic evolution equation, the exogenous

variables of considering only the tail ui > 3
4 , vi >

3
4 ; thus, the amount of data involved in calculating

reduces; in order to improve the fitting accuracy, the lag

period q of the improved dynamic evolution equation of

the lag period is chosen to 20, and the lag periods of

the original dynamic evolution equation, in general, are

chosen to 10.

Step 5. λUm is estimated according to the obtained dynamic

evolution equations, and the square root of the mean square

error is calculated for the estimated values and sample values of

the four evolution equations.

RMSE = ( 1N
∑

(λ̂ − λ)
2
)
1
2
. The advantages and

disadvantages of four kinds of dynamic evolution equations are

judged. In this paper, the dynamic evolution equation, which

minimizes the square root of the mean square error, is selected

for further analysis.

Step 6. Finally, by using the selected dynamic evolution

equation, according to the one-to-one correspondence between

the upper-tail-dependence coefficient and the population

parameter, the estimated value of the population parameter

is obtained so as to dynamically analyze the dependence

relationship between the Shanghai Composite Index return rate

and the Shenzhen Composite Index return rate.

Empirical analysis

The Shanghai Composite Index and the Shenzhen

Component Index are still selected as research objects

(represented by X1 and X2, respectively). Stock The stock price

is defined as the daily closing price Pt ,. The time span of sample

selection is from 31 July 2015 to 27 September 2021, with a

total of 1,500 valid data. The return rate of financial asset Xi

on the t trading day Rjt = 100 (ln Pnt − lnPnt−1). According

to the previous analysis, the GARCH (1,1) -t model can be

used to describe the probability distribution of each return rate

series. The GARCH (1,1) -t model can be used to describe the

probability distribution of each return rate series. The sequence

(ui, vi) is obtained by the probability integral transformation of

the original sequence X1 and X2, i = 1, 2, · · · , 1, 500.

1. The sample sequence (ui, vi) should e selected, i =

1, 2, · · · , 900, and the statistical value of the upper- tail-

dependence coefficient λUm should be calculated by using the

statistics defined in Step 3, as shown below:

λU =

∑900
i=m I

(

ui > 3
4 , vi > 3

4

)

∑900
i=m I

(

ui > 3
4

) ,m = 1, 2, · · · , 850

where the numerator and the denominator are sliding window

data. In the above equation, the maximum value of m is 850.

In the definition of 5.1 λU , the maximum value of m is 900.

The reason for this choice in the paper is that it is found in the
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FIGURE 1

A dynamic diagram of upper- tail-dependence coe�cients statistics.

data analysis process that, if the maximum value ofm is selected

as 850, the advantages of describing the dynamic dependence

relationship between variables are more obvious according to

the improved dynamic evolution equation. In order to fully

demonstrate the advantages of the improved dynamic evolution

equation in theory and practice, the maximum value of m is

selected as 850 in the empirical analysis.

According to Figure 1, λU increases with the increase of

m, indicating that, for the sample sequence (ui, vi), i =

1, 2, · · · , 900, the larger the m is, the further the position

of the sliding window is, the further the data involved in

the calculation are, and the smaller the amount of data is.

At this point, when
(

ui > 3
4

)

, i = m,m + 1, · · · , 900, the

number of
(

vi > 3
4

)

also increases. As shown in Figure 1,

the statistical value of λU reaches the maximum when the

sliding window is located at m = 700, indicating that, under

the conditions of
(

ui > 3
4

)

, i = 700, 701, · · · , 900. The

number of data that simultaneously satisfies
(

vi > 3
4

)

is

largest. Through calculation, it is found that the statistical

values of λUm swing around 0.8. In the previous static

analysis of the Shanghai Composite Index and the Shenzhen

Component Index, the estimated value of the upper-tail-

dependence coefficient is 0.7809863, close to 0.8. Therefore,

the estimated value of the upper-tail-dependence coefficient in

the static analysis is basically consistent with the results of the

dynamic analysis.

2. The estimated values of the four model parameters are

obtained using the statistics of λUm, as shown in the

table below:

3. The four dynamic evolution equations were used to estimate

the upper-tail-dependence coefficients, and the square root

of the mean square error (RMSE) of the estimated value and

the sample value were calculated. RMSEs were expressed as

d∗1 , d
∗
2 , d1, d2, respectively. The calculated results are shown

in the following table:

It can be seen from the table that the RMSEs of the two

improved dynamic evolution equations are both smaller than

that of the original dynamic evolution equation, indicating

that the improved dynamic evolution equation can more

accurately depict the dynamic evolution process of the upper-

tail-dependence coefficient compared with the original dynamic

evolution equation.

In fact, according to the values of (ui, vi), it can be seen

that some pairs of (ui, vi) do not belong to the upper tail

data. It is obviously not appropriate to calculate the upper-tail-

dependence coefficients directly based on all values of (ui, vi).

It is theoretically more feasible to select the upper-tail data

by multiplying the function of expression to calculate the

upper-tail-dependence coefficients. According to Table 9, d∗1 is

3×10−5smaller than d1, and d
∗
2 is 2×10−5 smaller than d2,; the

difference is relatively small. The reasons for the small difference

are as follows: (1) By multiplying the exogenous variable by an
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TABLE 5 Parameters estimates of the time-varying model for the

upper-tail-dependence coe�cients λ*U
1m.

γ *
1u β*

1u α*
1u

−4.4017 7.2317 −0.7593

TABLE 6 Parameters estimates of the time-varying model for the

upper-tail-dependence coe�cients λ*U
2m.

γ *
2u β*

2u α*
2u

−4.4176 7.2491 −0.0255

TABLE 7 Parameters estimates of the time-varying model for the

upper-tail-dependence coe�cients λU

1m.

γ1u β1u α1u

−4.4799 7.3085 0.1007

TABLE 8 Parameters estimates of the time-varying model for the

upper-tail-dependence coe�cients λU

2m.

γ2u β2u α2u

−4.4183 7.2501 −0.0141

TABLE 9 RMSE values of estimated values and sample values.

RMSE d
*
1 d

*
2 d1 d2

2.66×10−3 2.68×10−3 2.69×10−3 2.70×10−3

explicit function, the value of the exogenous variable will be

smaller than that of the original exogenous variable; however,

according to Tables 5–8 it can be seen that the absolute values

of the coefficient α∗
1u and α∗

2u of the exogenous variable in the

improved dynamic evolution equation increase. Therefore, after

multiplying the improved exogenous variable and its coefficient,

the larger and smaller parts will cancel each other. There

is not much difference between d∗i and di (i = 1, 2) on the

surface. (2) The difference between d∗i and di (i = 1, 2) becomes

smaller due to a large amount of data. Although the difference

between d∗i and di is not large, theoretically, the improved

dynamic evolution equation is more reasonable, and the value

of d∗i is smaller, and the dynamic evolution process of the

tail-dependence coefficient can be described more accurately.

In addition, among the two improved dynamic evolution

equations, the RMSE corresponding to the exogenous variable

W∗U
1m is smaller than that corresponding to the exogenous

variable W∗U
2m , indicating that it is more appropriate to choose

the exogenous variableW∗U
1m . However, according to Table 9, the

difference between d∗1 and d∗2 is very small. It shows that there

is no significant difference between the two types of exogenous

variables in the dynamic analysis of the Shanghai Stock index

and the Shenzhen Stock index.

4. The selected dynamic evolution equation should be used to

calculate the estimated value of λuand draw the dynamic

evolution diagram of the estimated value and the sample

value, as shown in the figure below:

As can be seen from Figure 2, the estimated value and

the sample value calculated by using the dynamic evolution

equation are highly consistent in both trends and fluctuation,

which fully demonstrates that dynamic evolution Equation 5-

3 can accurately depict the dynamic evolution process of the

upper-tail-dependence coefficient.

5. According to the correspondence between the upper-tail-

dependence coefficient λuand the population parameter r,

λu(r) = 2 − 2
1
r , the dynamic estimate of the population

parameter r is obtained, as shown below Figure 3.

Conclusion

In the correlation analysis of financial assets, symmetric

Archimedes copula and elliptic copula functions are mostly

used for analysis, and the dependence indicators between

variables are also mostly symmetric, which does not conform

to the relationship characteristics between financial assets.

Based on this, this paper tries to conduct static and

dynamic analyses on the correlation of financial assets

based on the asymmetric copula. In the static analysis,

through the comparative analysis of the asymmetric copula

function and the Gumbel copula function, it is found that

the asymmetric copula function has more advantages in

depicting tail dependence between financial assets. Furthermore,

this paper also introduced the concept of the asymmetric

copulas correlation coefficient. For the asymmetric copula

function, copula correlation coefficients ρ1|2 and ρ2|1 are

not equal; and asymmetric dependence between variables can

be explained by the copula correlation coefficient, which

also shows the great advantages of the asymmetric copula.

In the dynamic analysis, the traditional dynamic evolution

equation is improved through the empirical analysis, which

shows that the improved dynamic evolution equation more

accurately portrays the tail-dependence dynamic evolution

process, since there is a one-to-one correspondence between

the upper-tail-dependence coefficient λu and the population

parameter; according to the dynamic evolution equations

of λu, the population parameter can be estimated. Thus,

the interdependence between financial assets is analyzed

asymmetrically and dynamically.

Through empirical analysis, it can be seen that asymmetric

copula has more advantages in describing the dependence
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FIGURE 2

A dynamic diagram of statistics and estimates of upper-tail-dependence coe�cients.

FIGURE 3

A dynamic diagram of the population parameters estimation.
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relationship between financial assets compared with the

commonly used Archimedean copula. The asymmetric copula

is more suitable for the dependence structure between financial

variables. However, for asymmetric copula function, it is

difficult to estimate the parameters due to the complex

form. In this paper, the Archimedean copula is first used

to analyze the correlation between the Shanghai Stock index

and the Shenzhen Stock index, and the empirical dependence

coefficient of the tail is used to estimate the parameters of

the asymmetric copula. Therefore, the asymmetric analysis is

developed on the basis of the symmetric analysis. Although

the asymmetric copula function is superior to the symmetric

copula in application, it is difficult to make further progress

in asymmetric copula analysis without some conclusions

obtained from symmetric copula analysis. The analysis of

asymmetric dependence between variables is one of the

advantages of the asymmetric copula, but the calculation

of the asymmetric dependence coefficient defined on the

basis of the asymmetric copula is more difficult. In this

paper, the method of Monte Carlo simulation is used to

estimate the dependence coefficient. Therefore, how to estimate

the parameters and calculate the dependence coefficient of

asymmetric copula more easily is the problem to be studied in

the following paper.
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