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Practical data assimilation algorithms often contain hyper-parameters, which

may arise due to, for instance, the use of certain auxiliary techniques like

covariance inflation and localization in an ensemble Kalman filter, the re-

parameterization of certain quantities such as model and/or observation

error covariance matrices, and so on. Given the richness of the established

assimilation algorithms, and the abundance of the approaches through which

hyper-parameters are introduced to the assimilation algorithms, one may ask

whether it is possible to develop a sound and generic method to e�ciently

choose various types of (sometimes high-dimensional) hyper-parameters. This

work aims to explore a feasible, although likely partial, answer to this question.

Our main idea is built upon the notion that a data assimilation algorithm with

hyper-parameters can be considered as a parametric mapping that links a

set of quantities of interest (e.g., model state variables and/or parameters) to

a corresponding set of predicted observations in the observation space. As

such, the choice of hyper-parameters can be recast as a parameter estimation

problem, in which our objective is to tune the hyper-parameters in such a

way that the resulted predicted observations can match the real observations

to a good extent. From this perspective, we propose a hyper-parameter

estimation workflow and investigate the performance of this workflow in

an ensemble Kalman filter. In a series of experiments, we observe that the

proposed workflow works e�ciently even in the presence of a relatively large

amount (up to 103) of hyper-parameters, and exhibits reasonably good and

consistent performance under various conditions.

KEYWORDS

ensemble data assimilation, ensemble Kalman filter, iterative ensemble smoother,

hyper-parameter optimization, correlation-based adaptive localization

1. Introduction

Data assimilation leverages the information contents of observational data to

improve our understanding of quantities of interest (QoI), which could be model state

variables and/or parameters, or their probability density functions (PDF) in a Bayesian

estimation framework. Various challenges encountered in data assimilation problems

lead to a rich list of assimilation algorithms developed from different perspectives,

including, for instance, Kalman filter [1], extended Kalman filter [2], unscented Kalman

filter [3], particle filter [4, 5], Gaussian sum filter [6], for sequential data assimilation
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problems; 3D- or 4-variational assimilation algorithms [7, 8];

and smoother algorithms for retrospective analysis [9].

To mitigate the computational costs in practical

data assimilation problems, Monte Carlo or low-rank

implementations of certain assimilation algorithms are

investigated. Examples in this regard include ensemble Kalman

filter (EnKF) and its variants [10–16], ensemble Kalman

smoother [17], ensemble smoother [18], and their iterative

versions [19–22], low-rank unscented Kalman filter [23, 24],

ensemble or low-rank Gaussian sum filter [25–27].

In their practical forms, many assimilation algorithms

may contain a certain number of hyper-parameters. Different

from model parameters, hyper-parameters are variables that

stem from assimilation algorithms and have influences on

the assimilation results. As examples, one may consider the

inflation factor and the length scale in covariance inflation and

localization methods [13, 28–38], respectively, or parameters

that are related to model error simulations or representations

[39–42].

Often, a proper choice of algorithmic hyper-parameters

is essential for obtaining a descent performance of data

assimilation. With the presence of various mechanisms through

which algorithmic hyper-parameters are introduced, in the

literature there is a vast list of methods that are proposed

to estimate hyper-parameters (while sometimes relying on

empirical tuning). To the best of our knowledge, it appears

that the current best practice is to focus on developing tailored

estimation/tuning methods for individual mechanisms. With

this observation, a natural question would be: Is it possible

to develop a common method that can be employed to

estimate different types of hyper-parameters associated with an

assimilation algorithm?

This work can be considered as an attempt to find an

affirmative answer to the above question. Our main idea here

is to treat a data assimilation algorithm with hyper-parameters

as a parametric mapping, which maps QoI (e.g., model state

variables and/or parameters) to predicted observations in the

observation space. From this perspective, it will be shown later

that the choice of hyper-parameters can be converted to a

nonlinear parameter estimation problem, which in turn can be

solved through an iterative ensemble assimilation algorithm,

similar to what have been done in the recent work of Luo [41]

and Scheffler et al. [42]. Since ensemble-based data assimilation

methods can be interpreted as some local gradient-based

optimization algorithms [16, 43], we impose a restriction on

the hyper-parameters under estimation, that is, they have to

admit continuous values. In other words, we focus on the

Continuous Hyper-parameter OPtimization (CHOP) problem,

whereas tuning discrete hyper-parameters is beyond the scope

of the current work.

It is worth mentioning that hyper-parameter optimization

is a topic also often encountered in other research areas. For

instance, in machine learning problems, there may exist various

hyper-parameters (e.g., learning rate and batch size used in a

training algorithm) that need to be optimized. Consequently,

there are many techniques and tools developed in machine

learning community to tackle hyper-parameter optimization

problems [44–46]. Given the fact that data assimilation and

machine learning problems bear certain differences [41], and

the consideration that the focus of the current work is on

developing an ensemble-based CHOP workflow for ensemble

data assimilation algorithms, we do not introduce or compare

hyper-parameter optimization techniques adopted in machine

learning problems, although we do expect that hyper-parameter

optimization techniques in machine learning community may

also be extended to data assimilation problems.

In terms of novelty in the current work, to the best of

our knowledge, CHOP appears to be the first ensemble-based

hyper-parameter optimization workflow in the data assimilation

community. As will be elaborated later, instead of producing

a point estimation of hyper-parameters, the CHOP workflow

generates an ensemble of such estimations. In doing so, a few

practical advantages (similar to those pertaining to ensemble-

based data assimilation algorithms) can be obtained, which

include the ability of conducting uncertainty quantification and

the derivative-free nature in the course of optimizing hyper-

parameters. In addition to these practical advantages, CHOP can

be seamlessly integrated into ensemble-based data assimilation

algorithms to form a more automated assimilation workflow,

which can automatically determine an ensemble of (near)

optimal hyper-parameters with minimal manual interference,

and possesses the capacity to simultaneously handle a large

amount of hyper-parameters (a challenging issue seemingly not

addressed by existing hyper-parameter optimization methods in

the data assimilation community).

This work is organized as follows: We first formulate

the CHOP problem, and propose a workflow (called CHOP

workflow hereafter) to tackle the CHOP problem, which

involves the use of an iterative ensemble smoother (IES) and

a correlation-based adaptive localization scheme. We then

investigate and report the performance of the CHOP workflow

in a series of experiments. Finally, we conclude this study with

some technical discussions and possible future works.

2. Problem statement and
methodology

2.1. The CHOP problem

We illustrate the main idea behind the CHOP workflow in

the setting of a sequential data assimilation problem, in which

an EnKF is adopted with a certain number of hyper-parameters.

Let m ∈ R
m be an m-dimensional vector, which contains a set

of model state variables and/or parameters. In the subsequent

derivation of the solution to the CHOP problem, the dynamical
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system is not involved. As a result, we exclude the forecast

step, and focus more on the analysis step, which applies an

EnKF to update a background estimation mb to the analysis

ma.

Essentially, the EnKF can be treated as a parameterized

vector mapping fθ :m
b → ma that transforms mb to ma,

where θ represents a set of algorithmic hyper-parameters to be

estimated. In the context of data assimilation, the information

contents of observational data, denoted by do ∈ R
d in this

work, are utilized for state and/or parameter update, whereas

the update process also involves an observation operator,

denoted by h here, which maps a background estimation

mb to some predicted data h
(

mb
)

in the observation space.

We assume that the observations do contain some Gaussian

white noise, which follows the normal distribution N
(

0,Cd

)

with mean 0 and covariance Cd. In addition, we denote

the background ensemble by Mb ≡ {mb
j }
Ne
j=1, and the

analysis ensemble by Ma ≡ {ma
j }
Ne
j=1, where j is the

index of ensemble member, and Ne represents the number of

ensemble members.

Under these settings, an analysis step of the EnKF can be

represented as follows:

ma
j = fθ

(

mb
j ,M

b, doj , h
)

≡ f
(

θ;mb
j ,M

b, doj , h
)

, for j = 1, 2, · · · ,Ne. (1)

In Equation (1), the concrete form of the mapping f will

depend on the specific EnKF algorithm of choice. The quantities

mb
j , M

b, doj and h are known, whereas the hyper-parameter

vector θ is to be estimated under a certain criterion, leading to a

CHOP problem.

As an example, one may consider the case that an EnKF with

perturbed observations is adopted, and covariance localization

is introduced to the EnKF, such that the update formula is given

as follows:

f
(

θ;mb
j ,M

b, doj , h
)

= mb
j +

(

Lθ ◦ Cm
)

hT
(

h
(

Lθ ◦ Cm
)

hT

+ Cd

)−1
(

doj − hmb
j

)

. (2)

In Equation (2), we have assumed that h is a linear

observation operator in this particular example, whereas Cm

is the sample covariance matrix induced by the background

ensemble Mb; Lθ the localization matrix, which depends on

some hyper-parameter(s) θ (e.g., the length scale); and Lθ ◦ Cm

stands for the Schur product of Lθ and Cm. One insight from

Equation (2) is that even f is a linear function ofmb
j , in general f

may have a nonlinear relation to the hyper-parameters θ .

2.2. Solution to the CHOP problem

In the current work, we treat CHOP as a parameter

estimation problem, which can be solved through an ensemble-

based, iterative assimilation algorithm, given the presence of

nonlinearity in the CHOP problem. Specifically, we follow the

idea in [22] to tackle the CHOP problem by minimizing the

average of an ensemble of Ne cost functions Cij

(

θ
i
j

)

at each

iteration step (indexed by i):

argmin

{θ ij}
Ne
j=1

1

Ne

Ne
∑

j=1

Cij

(

θ
i
j

)

, (3)

Cij

(

θ
i
j

)

≡ 1

2

{

(

doj − g
(

θ
i
j

))T
C−1
d

(

doj − g
(

θ
i
j

))

+ γ i−1
(

θ
i
j − θ

i−1
j

)T (

Ci−1
θ

)−1 (

θ
i
j − θ

i−1
j

)

}

, (4)

g
(

θ
i
j

)

≡ h
(

mi
j

)

= h
(

f
(

θ
i
j;m

b
j ,M

b, doj , h
))

. (5)

In Equation (5), g
(

θ
i
j

)

, equal to h
(

mi
j

)

, corresponds to

the predicted observations of mi
j, which in turn depends on the

hyper-parameters θ
i
j for a chosen assimilation algorithm f. At

the end of the iteration process, suppose that in total K iteration

steps are executed to obtain θ
K
j , then we take ma

j = mK
j =

f
(

θ
K
j ;m

b
j ,M

b, doj , h
)

, ∀j = 1, 2, · · · ,Ne.

As implied in Equations (3) and (4), the main idea behind

the proposed CHOP workflow is to find, at each iteration step,

an ensemble of hyper-parameters 2
i ≡

{

θ
i
j

}Ne

j=1
that renders

lower average data mismatch, in terms of

Ne
∑

j=1

(

doj − g
(

θ
i
j

))T
C−1
d

(

doj − g
(

θ
i
j

))

/Ne,

than the previous ensemble 2
i−1 does. However, as in many

ill-posed inverse problems, it is desirable to avoid over-fitting

the observations. To this end, a regularization term, in the form

of
(

θ
i
j − θ

i−1
j

)T (

Ci−1
θ

)−1 (

θ
i
j − θ

i−1
j

)

, is introduced into the

cost functionCij

(

θ
i
j

)

in Equation (4), whereasCi−1
θ

corresponds

to the sample covariance matrix induced by the ensemble of

hyper-parameters 2
i−1 =

{

θ
i−1
j

}Ne

j=1
, and can be expressed

as Ci−1
θ

= Si−1
θ

(Si−1
θ

)T , with Si−1
θ

being a square root matrix

defined in Equation (9) later. The positive scalar γ i−1 can

be considered a coefficient that determines the relative weight

between the data mismatch and the regularization terms at each

iteration step, and we will discuss its choice later.

Another implication from Equations (3) to (5) is that instead

of rendering a single estimation of the hyper-parameters, we

provide an ensemble of such estimates, and each of them (e.g.,

θ
i
j) is associated with a model state and/or parameter vector
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mi
j. The presence of multiple estimates θ

i
j not only provides the

possibility of uncertainty analysis in a CHOP problem, but also

avoids the need to explicitly evaluate the gradients of g with

respect to θ
i
j in the course of solving the minimization problem

in Equation (3).

Equation (3) can be approximately solved by an IES, given as

follows [22]:

θ
i
j = θ

i−1
j + Ki−1

(

doj − g
(

θ
i−1
j

))

, j = 1, 2, · · · ,Ne; (6)

Ki−1 ≡ Si−1
θ

(Si−1
g )T

(

Si−1
g (Si−1

g )T + γ i−1Cd

)−1
; (7)

θ̄
i−1 ≡ 1

Ne

Ne
∑

j=1

θ
i−1
j ; (8)

Si−1
θ

≡
1√

Ne − 1

[

θ
i−1
1 − θ̄

i−1
, θ i−1

2 − θ̄
i−1

, · · · , θ i−1
Ne

− θ̄
i−1
]

;(9)

Si−1
g ≡ 1√

Ne − 1

[

g
(

θ
i−1
1

)

− g
(

θ̄
i−1
)

, g
(

θ
i−1
2

)

− g
(

θ̄
i−1
)

, · · · , g
(

θ
i−1
Ne

)

− g
(

θ̄
i−1
)]

. (10)

As one of the attractive properties of various ensemble-based

assimilation algorithms, this iteration process does not explicitly

involve the gradients of g, h (the observation operator) or f (the

assimilation algorithm) with respect to the hyper-parameters θ ,

which helps to reduce the complexities of implementing the IES

algorithm.

In a practical implementation, the update formulas from

Equations (6) to (7) are re-written as follows:

θ
i
j = θ

i−1
j + Si−1

θ
(S̃i−1

g )T
(

S̃i−1
g (S̃i−1

g )T + γ i−1Id

)−1

(

d̃oj − g̃
(

θ
i−1
j

))

; (11)

S̃i−1
g ≡ C

−1/2
d

Si−1
g ; d̃oj ≡ C

−1/2
d

doj ; g̃
(

θ
i−1
j

)

≡ C
−1/2
d

g
(

θ
i−1
j

)

. (12)

In Equation (11), Id represents the d-dimensional identity

matrix. In Equation (12), the quantities Si−1
g , doj and g

(

θ
i−1
j

)

in the observation space are normalized by a square root

C
−1/2
d

of the observation error covariance matrix. After

this normalization, a singular value decomposition (SVD) is

applied to S̃i−1
g , while avoiding the potential issue of different

magnitudes of observations when forming the square root

matrix Si−1
g . Suppose that through the SVD, we have

S̃i−1
g = Ũi−1

6̃
i−1

(

Ṽi−1
)T

. (13)

To strengthen the numerical stability of the IES algorithm,

we discard a number of relatively small singular values, which

results in a truncated SVD such that

S̃i−1
g ≈ Ûi−1

6̂
i−1

(

V̂i−1
)T

. (14)

The truncation criterion adopted in the current work

is as follows: Suppose that the matrix 6̃
i−1

contains a

number of R singular values σ̃ i−1
1 , σ̃ i−1

2 , · · · , σ̃ i−1
R arranged

in the descending order, then we keep the first r leading

singular values such that
∑r

ℓ=1 σ̃ i−1
ℓ

/
∑R

ℓ=1 σ̃ i−1
ℓ

≤ 99% and
∑r+1

ℓ=1 σ̃ i−1
ℓ

/
∑R

ℓ=1 σ̃ i−1
ℓ

> 99%. In Equation (14), the matrix

6̂
i−1

takes the leading singular values σ̃ i−1
1 , σ̃ i−1

2 , · · · , σ̃ i−1
r as

its diagonal elements. Accordingly, the matrices Ûi−1 and V̂i−1

consist of eigen-vectors that correspond to these kept leading

singular values.

Inserting Equation (14) into Equation (11), one obtains a

modified update formula:

θ
i
j ≈ θ

i−1
j + Si−1

θ
V̂i−1

6̂
i−1

(

(

6̂
i−1
)2

+ γ i−1Ir

)−1

(

Ûi−1
)T (

d̃oj − g̃
(

θ
i−1
j

))

, (15)

which is used in all numerical experiments later. In Equation

(15),
(

6̂
i−1
)2

≡ 6̂
i−1

6̂
i−1

, and Ir stands for the r-

dimensional identity matrix.

As mentioned previously, γ i−1 can be considered as a

coefficient that determines the relative weight between the data

mismatch and regularization terms. In the update formula,

e.g., Equation (11) or (15), one can see that in effect, γ i−1

affects the change θ
i
j − θ

i−1
j of the hyper-parameters, which

is also referred to as the step size of the iteration hereafter.

Following the discussions in [22, 43], it can be shown that the

update formula, Equation (11) or (15), is derived by implicitly

linearizing g
(

θ
i
j

)

,∀j = 1, 2, · · · ,Ne, around the ensemble

mean θ̄
i−1

(through the first-order Taylor approximation) at

each iteration step1. In this regard, an implication is that the

step size cannot be too big in order to make the linearization

strategy approximately valid. On the other hand, a too small

step size will slow down the convergence of the iteration

process. As a result, in our implementation of the IES algorithm

(e.g., Equation 11), we choose γ i−1 in such a way that the

influences of the two terms, S̃i−1
g (S̃i−1

g )T and γ i−1Id are

comparable (in contrast to the choice that one term dominates

the other). Here, the influence is measured in terms of the

trace of the respective term. As a consequence of this notion,

we have γ i−1 = αi−1 trace
(

S̃i−1
g (S̃i−1

g )T
)

/ trace
(

Id
)

=

αi−1 trace
(

S̃i−1
g (S̃i−1

g )T
)

/d, where αi−1 > 0 is the actual

coefficient to be tuned.

When the truncated SVD is applied to S̃i−1
g ,

the choice of γ i−1 for Equation (15) boils

1 By “implicitly linearizing” we mean that the derivation of the update

formula adopts the concept of linearization, but there is no need to

actually evaluate the gradients of g with respect to θ̄
i−1

.
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down to

γ i−1= αi−1 trace

(

(

6̂
i−1
)2
)

/ trace (Ir)

= αi−1
r
∑

ℓ=1

(

σ̃ i−1
ℓ

)2
/r, (16)

At the beginning of the iteration, we let α0 = 1.

Subsequently, We use a backtrack line search strategy similar

to that in [21] to tune the coefficient value. Specifically, if the

average data mismatch at step i is lower than that at step (i− 1),

then we accept the estimated hyper-parameters θ
i
j, and move to

the next iteration step. To this end, we reduce the coefficient

value by setting αi = 0.9αi−1, which aims to help increase the

step size at the next iteration step, similar to the idea behind the

trust-region algorithm [47].

On the other hand, if the average data mismatch value at step

i becomes higher than that at step (i − 1), then the estimated

hyper-parameters θ
i
j are not used for the next iteration step.

Instead, a few attempts (say Ktrial) are conducted to search for

better estimations, leading to a so-called inner-loop iteration

(if any), which is adopted for a distinction from the upper-

level iteration process (called outer-loop iteration). These are

done by doubling the coefficient value αi−1
s = 2αi−1

s−1, s =
1, 2, · · · ,Ktrial, for each trial, with αi−1

0 = αi−1, and then re-

running the update formula (Equation 15) with a new γ i−1 value

calculated by Equation (16), wherein the modified αi−1
s value is

adopted for the calculation. This strategy is again similar to the

setting of the trust-region algorithm, and is also in line with the

analysis in [22], where it is shown that as long as the linearization

strategy is approximately valid, the data mismatch values tend to

decrease over the iteration steps. As such, it is sensible to increase

the coefficient value (hence shrink the step size), as this helps

to improve the accuracy of the first-order Taylor approximation

(hence the validity of the linearization strategy). The trial process

will be terminated if an average data mismatch value (obtained

by using an enlarged coefficient value αi−1
s ) is found lower than

that at the iteration step (i− 1), or if the maximum trial number

(set to 5) is reached. At the end of the trial process, we set

αi = αi−1
Ktrial

, and take θ
i
j as those obtained from the last trial step.

An additional aspect of the IES algorithm is the stopping

criteria. Three such criteria are adopted in the outer-loop

iteration process, which include: (1) the maximum iteration

step, which is set to be 10; (2) the threshold for the relative

change of the average data mismatch values at two consecutive

iteration steps, which is set to be 0.01%; (3) the threshold for

the average data mismatch value, which is set to be 4 × #(do)

(four times the number of observations, with #(do) being the

number of elements in do). In other words, the iteration process

will stop if the maximum iteration step is reached. Additionally,

the iteration process will also stop if the relative change of the

average data mismatch values at two consecutive iteration steps,

or the average data mismatch value itself at a certain iteration

step, is less than their respective threshold value.

In terms of computational cost, the original analysis scheme

(e.g., Equation 1), applies the update formula only once. In

contrast, in a CHOP problem, one needs to apply the update

formula multiple times during the iteration process. As such,

it becomes computationally more expensive to solve the CHOP

problem than a straightforward application of the EnKF analysis

scheme (if one ignores the potential cost of searching for

proper hyper-parameter values). In practical problems, however,

the computationally most expensive part of an assimilation

workflow often lies in running the dynamical system (i.e., at

the forecast step), whereas it is computationally much cheaper

to execute the analysis step. Within this context, it is expected

that solving the CHOP problem will only lead to a negligible

(hence affordable) overhead of computational cost to the whole

assimilation workflow.

2.3. Localization in the CHOP problem

In many data assimilation problems, the heavy cost of

running the dynamical system also puts a constraint on how

many ensemble members one can afford to use. Often, a trade-

off has to be made so that one employs an ensemble data

assimilation algorithm with a relatively small ensemble size for

runtime reduction. One consequence of this limited ensemble

size is that there could be substantial sampling errors when using

the statistics (e.g., covariance and correlation) estimated from

the small ensemble in the update formula. In addition, rank

deficiencies of estimated covariance matrices would also take

place. These noticed issues often lead to degraded performance

of data assimilation. To mitigate the impacts of sampling errors

and rank deficiency, localization techniques (e.g., [13, 30–32, 48,

49]), are often employed.

In the CHOP problem, we note that localization is

conducted with respect to hyper-parameters (e.g., in Equations

11 or 15), in spite of the possible presence of another localization

scheme adopted in the assimilation algorithm (e.g., as in

Equation 2).

Many localization methods are based on the distances

between the physical locations of certain pairs of quantities,

which can be either pairs of two model variables as in

model-space localization schemes (e.g., [13]), or pairs of one

model variable and one observation as in observation-space

localization schemes (se.g., [49]). In the CHOP problem,

however, in certain circumstances it may be challenging to apply

distance-based localization, as in the update formula, Equations

(11) or (15), certain hyper-parameters may not possess clearly

defined physical locations, so that the concept of physical

distance itself may not be valid.

To circumvent this difficulty, we adopt a correlation-based

adaptive localization scheme proposed in [50]. For illustration,
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without loss of generality, suppose that when localization is not

adopted, the update formula is in the form of

θ
i
j = θ

i−1
j + K̃i−1

(

d̃oj − g̃
(

θ
i−1
j

))

, (17)

where K̃i−1 is a Kalman-gain-like matrix and
(

d̃oj − g̃
(

θ
i−1
j

))

the corresponding innovation term. With the presence of

localization, then the update formula is modified as

θ
i
j = θ

i−1
j +

(

Li−1 ◦ K̃i−1
) (

d̃oj − g̃
(

θ
i−1
j

))

, (18)

where Li−1 is a h × d localization matrix to be constructed,

with h and d being the vector lengths of θ
i
j and g̃

(

θ
i−1
j

)

(or

d̃oj ), respectively. In Equation (18), the localization scheme is

similar to observation-space localization, but the localization

matrix Li−1 acts on the Kalman-gain-like matrix K̃i−1.

The construction of the localization matrix Li−1 is based on

the notion of causality detection between the hyper-parameters

θ
i
j and the predicted observations g̃

(

θ
i−1
j

)

[50]. To see the

rationale behind this notion, let d̃
i−1,pred
j ≡ g̃

(

θ
i−1
j

)

and

1d̃i−1
j ≡ d̃oj − d̃

i−1,pred
j , and re-write Equation (18) into an

equivalent, element-wise form

θ ij,s = θ i−1
j,s +

d
∑

t=1

(

Li−1
s,t K̃i−1

s,t

)

1d̃i−1
j,t , for s = 1, 2, · · · , h,

(19)

where θ ij,s, θ i−1
j,s and 1d̃i−1

j,t represent the s−th or the t−th

element of θ ij, θ
i−1
j and 1d̃i−1

j , respectively; while Li−1
s,t ∈ [0, 1]

and K̃i−1
s,t stand for the elements on the s−th row and the t−th

column of the matrices Li−1 and K̃i−1, respectively.

The implication of Equation (19) is that the innovation

elements 1d̃i−1
j,t (t = 1, 2, · · · , d) contribute to the change

θ ij,s − θ i−1
j,s of the s−th hyper-parameter, and the degree of the

contribution of each innovation element 1d̃i−1
j,t is determined

by the element K̃i−1
s,t (if no localization), together with the

tapering coefficient Li−1
s,t (if with localization).

In the notion of causality detection to choose the value of

Li−1
s,t , the main idea is that if there is a causality from the s−th

element of hyper-parameters to the t−th element of innovations,

then 1d̃i−1
j,t should be used for updating θ i−1

j,s to θ ij,s, meaning

that Li−1
s,t 6= 0. In contrast, if there is no causality therein, then it

is sensible to exclude 1d̃i−1
j,t so that it makes no contribution to

the update of θ i−1
j,s to θ ij,s, meaning that Li−1

s,t = 0.

Here, the statistics used to measure the causality is the

sample cross correlations (e.g., denoted by ρi−1
s,t ) between the

elements of an ensemble of hyper-parameters (e.g., θ i−1
j,s for j =

1, 2, · · · ,Ne) and the corresponding ensemble of innovations

(e.g., 1d̃i−1
j,t for j = 1, 2, · · · ,Ne). Intuitively, when the

magnitude of a sample correlation, say ρi−1
s,t , is relatively high

(e.g., close to 1), then one tends to believe that there is a true

causality from the s−th element of hyper-parameters to the

t−th element of innovations. On the other hand, when the

magnitude of ρi−1
s,t is relatively low (e.g., close, but not exactly

equal, to 0), then more caution is needed. This is because when

a limited ensemble size Ne is adopted, the induced sampling

errors can cause spurious correlations, such that even there is no

causality between a hyper-parameter and an innovation element,

the estimated sample correlation may not be identical to zero.

Taking into account the above consideration, we assign

values to Li−1
s,t following a method in [50]:

Li−1
s,t = fGC

(

1− |ρi−1
s,t |

1− 3/
√
Ne

)

,Ne > 9, (20)

where fGC is the Gaspari-Cohn (GC) function [51], which, for a

scalar input z ≥ 0, satisfies

fGC (z) =


















− 1

4
z5 + 1

2
z3 + 5

8
z3 − 5

3
z2 + 1 , if 0 ≤ z ≤ 1 ;

1

12
z5 − 1

2
z4 + 5

8
z3 + 5

3
z2 − 5z + 4− 2

3
z−1 , if 1 < z ≤ 2 ;

0 , if z > 2 .

(21)

Note that in general, choosing Equation (21) as the tapering

function may not be optimal, and other types of tapering

functions may also be considered, see, for instance, [52].

In Equation (20), the factor 3/
√
Ne is adopted for the

following reason: When the true correlation between the s-

th hyper-parameter and the t-th innovation is 0, but the

sample correlation is evaluated with a sample size of Ne, then

the sampling errors follow a Gaussian distribution N(0, 1/Ne)

asymptotically, see [50] and the reference therein. Therefore,

under the hypothesis (denoted by H0 hereafter) that the true

correlation is 0, we compare the magnitude of the sample

correlation ρi−1
s,t with three times the standard deviation (STD)

(3/
√
Ne). The larger |ρi−1

s,t | is, the more confident we are that

H0 should be rejected, meaning it is more likely that there is

a true (non-zero) correlation between the s-th hyper-parameter

and the t-th innovation. As such, Li−1
s,t will receive a larger value.

On the other hand, the value of Li−1
s,t becomes smaller as |ρi−1

s,t |
decreases.

In comparison to distance-based localization, a few

additional benefits of the above correlation-based localization

include: better abilities to hand non-local observations, time-

lapse effects of observations and big observation datasets; and

improved adaptivity to different types of model parameters/state

variables. For more details, readers are referred to [50].
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3. Numerical results

The L96 model [53] is taken as the testbed in the current

study. For a NL-dimensional L96 model, its dynamic behavior

is described by the following ordinary differential equations

(ODEs):

dxe

dt
=
(

xe+1 − xe−2
)

xe−1 − xe + F, e = 1, · · · ,NL. (22)

For consistency, x−1 = xNL−1, x0 = xNL and x1 = xNL+1

in Equation (22). The driving force term F is set to 8 throughout

this work. The L96 model is integrated forward in time by the

fourth-order Runge-Kutta method with a constant integration

step of 0.05 time units (dimensionless).

Similar to the idea of cross-validating the reliability and

performance of a machine learning model through certain

statistical tests [54], in the experiments below, a few statistics

are adopted to characterize the performance of data assimilation.

These include the root mean square error (RMSE) Em, ensemble

spread Sen and data mismatch Ed. As will be seen below,

RMSE computes a normalized Euclidean distance between an

estimate and the ground truth in the model space, whereas data

mismatch calculates a similar distance between predicted and

real observations in the observation space. On the other hand,

ensemble spread provides a measure of ensemble variability.

To compute these statistics, letm be am-dimensional vector

of estimated model state variables and/ or parameters that

are of interest, dpred ≡ h (m) the corresponding predicted

observation, with h being the observation operator, then given

the referencemref (ground truth), we define the RMSE ofm as

Em = ‖m−mref ‖2/
√
m, (23)

where the operator ‖ • ‖2 returns the Euclidean norm of its

operand •.
In addition, assume that the real observation is do, which is

contaminated by some zero-mean Gaussian white noise, and is

associated with an observation error covariance matrix Cd, then

we define the data mismatch ofm as

Ed =
(

do − dpred
)T

C−1
d

(

do − dpred
)

. (24)

For the definition of ensemble spread, let M =
{

mj ≡
[

mj,1,mj,2, · · ·mj,m
]T
}Ne

j=1
be an ensemble of estimated

model state variables/parameters, where mj,k denotes the k-th

element of mj (k = 1, 2, · · · ,m). Based on M, we construct

a vector S ≡ [σ1, σ2, · · · , σm]T , where σk denotes the sample

standard deviation with respect to the ensemble {mj,k}
Ne
j=1, and

compute the ensemble spread as

Sen = ‖S‖2/
√
m. (25)

3.1. Experiments in a 40-dimensional L96
system

3.1.1. Experiment settings

We start from the common choice of NL = 40 in the

literature, while considering a much largerNL value later on.We

run the L96model from time 0 to time 5,000 (which corresponds

to 100,000 integration steps in total), and compute the long-term

(lt) temporal mean m̂lt and covariance Ĉlt based on the model

variables at all integration steps.

In each of the experiments below, we draw a random sample

from the Gaussian distributionN
(

m̂lt , Ĉlt
)

, and use this sample

as the initial condition to start the simulation of the L96 model

in a transition time window of 250 time units (corresponding to

5,000 integration steps).

The model variables obtained at the end of the transition

time window is then taken as the initial values to simulate

reference model variables in an assimilation time window of

250 time units. Data assimilation is conducted within this

assimilation time window to estimate reference model variables

at different time steps, based on a background ensemble of

model variables and noisy observations that are related to

reference model variables through a certain observation system.

The initial background ensemble (at the first time instance

of the assimilation time window) is generated by drawing a

specified number Ne of samples from the Gaussian distribution

N
(

m̂lt , Ĉlt
)

. The ensemble size Ne may change with the

experiments, as will be specified later.

For a generic vector m of model state variables/parameters,

the observation system adopted in the experiments is linear and

in the form of

d = Hm

=
[

m1,m1+1n,m1+21n, · · · ,m1+M1n
]T

,
(26)

where H is a matrix extracting elements

m1,m1+1n,m1+21n, · · · from m, the integer 1n represents

an increment of model-variable index, and M is the largest

integer such that 1 + M1n ≤ NL. The value of 1n may also

vary in different experiments. As such, its concrete value will be

mentioned in individual experiments later. For convenience,

hereafter we may also use the shorthand notation {1 :1n :NL}
to denote the set {1, 1 + 1n, 1 + 21n, · · · } of indices. Similar

notations will also be used elsewhere later.

In the experiments, we assume that the observation operator

H is perfect and known to us. When applying Equation (26)

to reference model variables to generate real observations for

data assimilation, we add to the outputs of Equation (26) some

Gaussian white noise ǫ, which is assumed to follow the Gaussian

distribution N(0M+1, IM+1), with 0M+1 and IM+1 being the

(M + 1)-dimensional zero vector, and the (M + 1)-dimensional

identity matrix, respectively. The frequency for us to collect the
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measurements is every 1t integration steps, whose value will

also be specified in respective experiments.

The base assimilation algorithm adopted here is the EnKF

with perturbed observations [55], in which the update formula

reads:

ma
j = mb

j + CmH
T
(

HCmH
T + Cd

)−1 (

doj −Hmb
j

)

,

for j = 1, 2, · · · ,Ne, (27)

where Cm is the sample covariance matrix of the background

ensembleMb ≡ {mb
j }
Ne
j=1, and doj stands for perturbations with

respect to the real observation do.

Covariance inflation and localization are then introduced

to Equation (27) to strengthen the performance of the EnKF.

We note that our purpose here is to demonstrate how the

CHOP workflow can be implemented on top of certain chosen

inflation and localization techniques, yet the CHOP workflow

itself cannot be used to design new inflation or localization

techniques.

Specifically, in this study, covariance inflation is conducted

on the background ensemble, in such a way thatMb is replaced

by a modified background ensemble M̃b ≡ {m̃b
j }
Ne
j=1 with

m̃b
j = m̄b + (1+ δ)

(

mb
j − m̄b

)

, where m̄b is the ensemble

mean of the members in Mb, and δ ≥ 0 is the inflation factor

to be determined through a certain criterion. Accordingly, the

sample covariance Cm in Equation (27) should be replaced by

C̃m = (1+ δ)2 Cm, which is larger than Cm (hence the name

covariance inflation).

On the other hand, localization is implemented by replacing

the Kalman gain matrix K̃ = C̃mH
T
(

HC̃mH
T + Cd

)−1
by

the Schur product L ◦ K̃, where L is the localization matrix,

whose element, say, Ls,t on the s-th row and the t-th column

of L, is determined by the “physical” distance between the s-

th model variable ms and the t-th observation element dt . For

the observation system in Equation (26), dt corresponds to the

observation at the model-variable location o = (1+ (t − 1)1n)

(in terms of model-variable index). As such, the element Ls,t is

computed as follows:

Ls,t = fGC

(

dists,t

λ

)

, (28)

dists,t= min (|s− o|/NL, 1− |s− o|/NL) . (29)

In Equation (28), fGC is the Gaspari-Cohn function (see

Eq. 21), dists,t represents a normalized distance between the

s-th model variable and the t-th observation element (which

is located on the o-th model grid/index), and λ is the length

scale, whose value is chosen under a certain criterion. Equation

(29) computes the distance between the t-th and o-th model

grids/indices, which is normalized by the total number NL of

the model grids (equal to the dimension of the L96 model in

this case). Note that dists,t takes the minimum value between

|s − o|/NL and 1 − |s − o|/NL, due to the circular nature of the

L96 model. In the sequel, we re-write L as L (λ) to indicate the

dependence of L on λ.

Taking into account the presence of both covariance

inflation and localization, the base assimilation algorithm,

Equation (27), is modified as follows:

ma
j =

[

m̄b + (1+ δ)

(

mb
j − m̄b

)]

+
{

L (λ) ◦
[

CmH
T
(

HCmH
T + Cd/ (1+ δ)2

)−1
]}

(

doj −H
[

m̄b + (1+ δ)

(

mb
j − m̄b

)])

. (30)

The update formula in Equation (30) thus contains two

hyper-parameters, the inflation factor δ and the length scale λ.

With the known background ensembleMb (hencemb
j , m̄

b, and

Cm) and the quantities doj , Cd, and H, the relation between the

analysisma
j and the hyper-parameters is complex (and nonlinear

in general), even with a rather simple observation operatorH.

Equation (30) serves as the reference algorithm hereafter,

and we will compare its performance with that of the CHOP

workflow in a number of different experiments below. In the

comparison, we do not adopt any tailored methods proposed

in the literature to tune δ and/or λ. Instead, we use the

grid search method to find the optimal values of the pair

(δmin, λmin), whereas the optimality is meant in the sense that

the combination (δmin, λmin) results in the lowest value of an

average RMSE within some pre-defined search ranges of δ and

λ. In all the experiments related to the 40-dimensional L96

model, for the reference algorithm (Equation 30), the search

range of δ is set to {0 : 0.1 : 2}, and that of λ to {0.05 : 0.05 : 1}.
For a given experiment, the average RMSE is obtained by first

computing the RMSEs of all analysis ensemblemeans at different

time instances, then averaging these RMSEs over the whole

assimilation time window, and finally averaging the previous

(average) values again over a number of repetitions of the

assimilation run. These repetitions share identical experimental

settings, except that the random seeds used to generate certain

random variables (e.g., the initial background ensemble and

the observation noise) in each repetition of the experiment are

different. In each experiment with respect to the 40-dimensional

L96 model, the number of repetitions is set to 20.

In the CHOP workflow, instead of relying on the grid

search method to find an optimal combination of δ and λ, the

IES algorithm presented in Section 2 is applied to estimate an

ensemble of δ and λ values for the reference algorithm (Equation

30). Note that there are differences between the optimality

criterion used in the grid search method and that in the CHOP

workflow. In this regard, the grid search method aims to find

a single optimal pair (δmin, λmin) that leads to the globally

minimum average RMSE in the model space, within the whole

assimilation time window. In contrast, the CHOP workflow

searches for an ensemble of δ and λ values that help reduce

the average of an ensemble of data mismatch values in the
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observation space (cf. Equation 3) within a given number of

iteration steps, and at each data assimilation cycle (rather than

the whole assimilation time window). In this sense, the obtained

ensemble of δ and λ values represents, at best, locally optimal

estimates at a given time instance, with a prescribed maximum

number of iteration steps.

With these aforementioned differences, it is natural to expect

that the globally optimal criterion (global criterion for short)

used in the grid search method should result in better data

assimilation performance than the locally optimal one (local

criterion for short) adopted in the CHOP workflow. On the

other hand, it is important to notice that the superiority of

the global criterion is achieved on top of the assumption

that one has access to the ground truths of model state

variables and/or parameters during the whole data assimilation

window. As such, it is not a realistic criterion that can be

applied to practical data assimilation problems, where the

underlying ground truths are typically unknown. In contrast,

the local criterion is more realistic and can be implemented

in practice. In the experiments below, however, we still choose

to present the results with respect to the global criterion, as

this serves as a means to cross-validate the performance of the

CHOP workflow.

In the CHOP workflow, the configuration of the IES

algorithm is as follows: Equations (15) and (16) are employed

to estimate ensembles of hyper-parameters

{

θ
i
j ≡

[

δij , λ
i
j

]T
}Ne

j=1

at different iteration steps (indexed by i, for i = 1, 2, . . . ,K),

and correlation-based localization is applied to Equation

(15) (in addition to distance-based localization adopted in

the reference algorithm, Equation 30). We note that the

size of a hyper-parameter ensemble is the same as that of

a background ensemble Mb = {mb
j }
Ne
j=1 of model state

variables and/or parameters, so that each ensemble member

mb
j is associated with its respective hyper-parameter pair

(

δij , λ
i
j

)

, when using the reference algorithm (Equation 30)

to update mb
j . To start the iteration process of the CHOP

workflow, Latin hypercube sampling (LHS) is adopted

to generate an initial ensemble of hyper-parameters at

each assimilation cycle, whereas the hyper-parameter

ranges used for LHS are the same as those in the grid

search method.

Another remark is that the background ensemble Mb

already exists before the CHOP workflow starts, and is invariant

during the iteration process of the CHOP workflow. On the

other hand, the outputs of the reference algorithm (Equation

30) do depend on the values of
(

δij , λ
i
j

)

, and can change

as the iteration proceeds. The members ma
j of the analysis

ensemble are taken as the outputs of Equation (30) at the

last iteration step K, which is a number jointly determined

by the three stopping criteria mentioned previously (cf.

Section 2).

3.1.2. Results with di�erent ensemble sizes

We first present results in a set of four experiments to

illustrate the impacts of ensemble size. In each experiment,

all state variables are observed (called full observation

scenario hereafter), corresponding to the observation-index

increment 1n = 1, with an observation frequency of

every 4 integration steps (denoted by Nfreq = 4). These

four experiments use ensemble sizes Ne = 15, 20, 25, 30,

respectively, while the remaining experimental settings (e.g.,

real observations/perturbed observations, initial background

ensemble) are identical.

Figure 1 shows the average RMSEs in the full observation

scenario, obtained by applying the grid search method to the

reference algorithm (Equation 30), when different ensemble

sizes Ne are used in the experiments.

For a given ensemble size, the sub-plots of Figure 1 indicate

that in general, relatively low average RMSEs are reached

with suitable amounts of covariance inflation and localization,

whereas relatively high average RMSEs are obtained if there are

insufficient inflation (corresponding to relatively small δ values)

and localization (corresponding to relatively large λ values). On

the other hand, too strong inflation (corresponding to relatively

large δ values) and localization (corresponding to relatively small

λ values) may lead to filter divergence (represented by white

color in the sub-plots)2, which corresponds to the situation

where the RMSE values blow up with a potential issue of

numerical overflow.

On the other hand, comparing the sub-plots of Figure 1, it

can be observed that a larger ensemble size tends to result in a

larger area that is filled with relatively low average RMSEs, while

reducing the chance of filter divergence.

In company with Figure 1, Table 1 reports the minimum

average RMSEs that the grid search method can achieve in

the four sets of experiments, their associated STDs (to reflect

the degrees of fluctuations of the average RMSEs within 20

repetition runs), and the optimal combinations (δmin, λmin)

of the inflation factor and the length scale, with which the

minimum average RMSEs are achieved. As one can see therein,

when the ensemble size increases, the minimum average

RMSE obtained by the grid search method tends to decrease.

Meanwhile, less amounts of covariance inflation (in the sense

of smaller δmin) and localization (in the sense of larger λmin)

are required to achieve the minimum average RMSE, consistent

with the observations in Figure 1.

For comparison, Table 1 also lists the average RMSEs that

are obtained by the CHOP workflow in the full observation

scenario. Note that the CHOP workflow uses the IES to estimate

an ensemble of inflation factors and length scales at each

assimilation cycle. As such, unlike the grid search method, there

2 If filter divergence takes place in any repetition run, then we assign

NaN (not a number) to the average RMSE.
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FIGURE 1

Average RMSEs with respect to the reference algorithm (Equation 30) in the full observation scenario (1n = 1, Nfreq = 4), using an ensemble size

of 15, 20, 25, and 30, respectively. The RMSE values are obtained by searching all the possible combinations of the inflation factor δ ∈ {0 :0.1 :2}
(along the horizontal axis) and the length scale λ ∈ {0.05 :0.05 :1} (along the vertical axis). Note that for certain combinations of δ and λ values,

filter divergence may take place (represented by white color in respective sub-plots). (A) Ne = 15. (B) Ne = 20. (C) Ne = 25. (D) Ne = 30.

TABLE 1 Performance comparison between the grid search method and the CHOP workflow applied to the reference algorithm (Equation 30) in the

full observation scenario, with four di�erent ensemble sizes.

Ensemble size
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

Ne = 15 0.5235± 0.0104 (0.15, 0.15) 1.2212± 0.1832

Ne = 20 0.4845± 0.0112 (0.15, 0.25) 0.6180± 0.0353

Ne = 25 0.4711± 0.0059 (0.15, 0.30) 0.5080± 0.0167

Ne = 30 0.4560± 0.0100 (0.10, 0.20) 0.4766± 0.0096

For the grid search method, we report the minimum average RMSEs within the search ranges, and their associated STDs. In addition, we also present the combination of the inflation

factor and the length scale, (δmin , λmin), that results in the minimum average RMSE in each experiment. For the CHOP workflow, the inflation factor and the length scale are estimated at

each assimilation cycle, and thus vary with time. As such, we only report the average RMSEs and their associated STDs.

is no time-invariant, globally optimal inflation factor or length

scale obtained from the CHOP workflow.

A few observations can be obtained when comparing

the performance of the grid search method and the CHOP

workflow in Table 1. First of all, in terms of the minimum

average RMSE that one can achieve in each experiment, the

CHOP workflow systematically under-performs the grid search

method. This under-performance is not surprising, since, as

discussed previously, the grid search method gains the relative

superiority on top of the assumption that it has access to the

ground truths, which is typically infeasible in practical data

assimilation problems.

In comparison to the grid search method, the CHOP

workflow appears to be more sensitive to the change of ensemble

size. With Ne = 15, there is a relatively large gap (around

0.7) between the average RMSE of the CHOP workflow and

the minimum average RMSE that the grid search method can

achieve. As the ensemble size increases, the performance of the

CHOP workflow substantially improves, such that the gap drops

to only around 0.02 when Ne = 30. This indicates that in
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the full observation scenario, the CHOP workflow can perform

reasonably well with a sufficiently large ensemble size.

A number of factors, including model, data, and ensemble

sizes, observation frequency and density, the number of hyper-

parameters and the searching ranges of their values, would

have an influence on the computational time required to

deploy the grid search method and/or the CHOP workflow.

As such, instead of presenting the computational time in all

possible combinations of these different factors, we compare the

computational time with respect to a normal EnKF equipped

with a specific combination of the inflation factor δ = 0 and

the length scale λ = 0.1 (corresponding to a single grid point

in the grid search method), and that with respect to the EnKF

equipped with the CHOP workflow. In this comparison, the

ensemble size Ne = 30 (1n = 1 and Nfreq = 4), and our

computing system uses Intel(R) Core(TM) i9-10900K CPU @

3.70 GHz with 64 GB memory. Under these settings, the wall-

clock time for the normal EnKF is 15.9261 ± 0.4102 (mean ±
STD) seconds, while the wall-clock time for the EnKF equipped

with the CHOP workflow is 65.5915± 0.6852 s.

As mentioned in Section 2.2, for the EnKF with the CHOP

workflow, the maximum number of iteration steps in the

IES algorithm is set to 10, which means that the maximum

computational time at the analysis step of the EnKF equipped

with the CHOP workflow is around 10 times that at the analysis

step of the normal EnKF. From the above-reported results,

however, it appears that on average the computational time of

the EnKF equippedwith the CHOPworkflow is around 4.1 times

that of the normal EnKF, which is substantially lower than 10.

This difference may be attributed to the following two factors:

(1) The IES may stop before reaching the maximum number of

iteration steps, due to the other two stopping criteria specified

in Section 2.2; (2) The reported computational cost includes the

time at both the forecast and the analysis steps of the EnKF

during the whole assimilation time window. While the EnKF

with the CHOP workflow has a higher computational cost at an

analysis step than the normal EnKF, at a forecast step they would

have roughly the same computational cost instead.

Note that so far we have only compared the computational

time between the normal EnKF (at a single grid point) and

the EnKF equipped with the CHOP workflow. When the grid

search method is applied to find the optimal combination of

hyper-parameters, the total computational cost is roughly equal

to the number of grid points times the cost of a single normal

EnKF. In the current experiment setting, the grid search method

considers 21 values for the inflation factor, and 20 values for

the length scale. As such, it needs to compare the results at

21 × 20 grid points (hence 420 normal EnKF runs) in one

repetition of the experiment. Therefore, under this setting, the

grid search method will be roughly 100 times more expensive

than the EnKF with the CHOP workflow. It is expected that

similar conclusions would be obtained under other experiment

settings, but for brevity we do not present further comparison

results in this regard.

3.1.3. Results with di�erent observation
densities

We then examine the impact of observation density on

the performance of the grid search method and the CHOP

workflow. To this end, we conduct three more experiments with

the observation-index increment 1n = 2 (the half observation

scenario), 1n = 4 (the quarter observation scenario), 1n =
8 (the octantal observation scenario), respectively, while these

three experiments share the same ensemble size Ne = 30 and

observation frequency Nfreq = 4.

Figure 2 reports the average RMSEs with different

combinations of the inflation factor and length scale values,

obtained by the grid search method in the half, quarter and

octantal observation scenarios, respectively. For convenience of

comparison, the results of the full observation scenario (with

Ne = 30) in Figure 1D are re-plotted therein. Comparing the

results in Figure 2, it can be seen that, as the observation density

decreases (1n increases), the performance of the grid search

method degrades, in the sense that the resulted average RMSEs

arise, and filter divergence tends to have a higher chance to

take place, except that the quarter observation scenario seems

to have more instances of filter divergence than the octantal

observation scenario. The degraded performance is expected,

since reduced observation density means that less information

contents can be utilized for data assimilation.

Similar to Tables 1, 2 posts the minimum average RMSEs of

the grid search method, their associated STDs, and the optimal

values of the inflation factor and the length scale. Among the

full, half and quarter observation scenarios, as the observation

density decreases, the optimal inflation factor δmin does not

change, but the optimal length scale λmin shows a tendency of

increment, meaning that less localization is required. This trend,

however, is broken in the octantal observation scenario, in which

both δmin and λmin become smaller than those of the other three

scenarios, suggesting that it is better to have less inflation but

more localization.

For comparison, Table 2 also lists the average RMSEs with

respect to the CHOP workflow. As one can see therein, in

different observation scenarios, the average RMSEs of the CHOP

workflow stay in a relatively close vicinity of the minimum

values achieved by the grid search method. In addition, no

filter divergence is spotted in the repetition runs of the CHOP

workflow. As such, the CHOP workflow again appears to work

reasonably well with different observation densities.

3.1.4. Results with di�erent observation
frequencies

We investigate one more aspect, namely, the impact of

observation frequency on the performance of the grid search

method and the CHOP workflow. In line with this goal,

we conduct three additional experiments, with the following
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FIGURE 2

As in Figure 1, but for average RMSEs obtained by the grid search method in the half (1n = 2, Nfreq = 4), quarter (1n = 4, Nfreq = 4), and octantal

(1n = 8, Nfreq = 4) observation scenarios, respectively, with the ensemble sizes Ne = 30. For ease of comparison, the results of the full

observation scenario (1n = 1, Nfreq = 4, Ne = 30) in Figure 1 are re-plotted here. (A) Full observation scenario (1n = 1). (B) Half observation

scenario (1n = 2). (C) Quarter observation scenario (1n = 4). (D) Octantal observation scenario (1n = 8).

TABLE 2 As in Table 1, but for performance comparison between the grid search method and the CHOP workflow with full, half, quarter, and

octantal observations, respectively, whereas the ensemble size and the observation frequency are set to 30 and 4, respectively, in all experiments.

Observation density
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

Full (1n = 1) 0.4560± 0.0100 (0.10, 0.20) 0.4766± 0.0096

Half (1n = 2) 0.7975± 0.0257 (0.10, 0.20) 0.8763± 0.0418

Quarter (1n = 4) 2.0100± 0.0773 (0.10, 0.25) 2.3596± 0.1248

Octantal (1n = 8) 2.9129± 0.0353 (0.05, 0.10) 3.2437± 0.0419

settings: Ne = 30, 1n = 2 (the half observation scenario), and

Nfreq = 1, 2, 8, respectively.

Figure 3 shows the average RMSEs of the grid search

method, when the inflation factor and the length scale take

different values, and the observations arrive at different

frequencies. For convenience of comparison, the results with

Nfreq = 4 (Ne = 30, 1n = 2) in Figure 2 are also included

into Figure 3. It can be clearly seen that, as the observation

frequency decreases (corresponding to increasing Nfreq), the

average RMSE tends to increase. Filter divergence remains a

problem, but in this case, it appears that a lower observation

frequency does not necessarily lead to a higher chance of

filter divergence.

Following Tables 1–3 summarizes the minimum

average RMSEs of the grid search method at different

observation frequencies, their associated STDs and the

optimal inflation factor and length scale. As observed in

Table 3, when the observation frequency decreases (Nfreq

increases), the minimum average RMSE arises. In the

meantime, the corresponding optimal length scale λmin

tends to decline, while the optimal inflation factor δmin

remains unchanged.
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TABLE 3 As in Table 1, but for performance comparison between the grid search method and the CHOP workflow in the half observation scenario

(1n = 2), with the same ensemble size Ne = 30 yet di�erent observation frequencies.

Observation frequency
Grid search CHOP

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD)

N freq = 1 0.3948± 0.0124 (0.10, 0.45) 0.5409± 0.0117

N freq = 2 0.5015± 0.0123 (0.10, 0.30) 0.5471± 0.0193

N freq = 4 0.7975± 0.0257 (0.10, 0.20) 0.8763± 0.0418

N freq = 8 1.8369± 0.0557 (0.10, 0.20) 2.1022± 0.0473

In terms of the performance of the CHOPworkflow, one can

observe again that its average RMSEs stay relatively close to the

corresponding minimum values of the grid search method. On

the other hand, no filter divergence is found in the repetition

runs of the CHOP workflow. Altogether, the experiment results

confirm that the CHOP workflow also performs reasonably well

at different observation frequencies.

3.2. Experiments in a 1,000-dimensional
L96 system

In this subsection, we conduct an additional experiment in a

1,000-dimensional L96 model (NL =1,000). The main purpose

of the experiment is to demonstrate that the CHOP workflow

can be used to tune a large number of hyper-parameters. This

feature is a natural reflection of the capacity of the IES algorithm,

which has been shown to work well in, e.g., large-scale reservoir

data assimilation problems [20–22].

The experiment settings in this subsection is largely the same

as those of the experiments with respect to the 40-dimensional

L96 model. Therefore, for brevity, in the sequel we focus more

on explaining the places where different experiment settings

are adopted.

Since the dimensionality is significantly increased, the grid

search method becomes more time-consuming. To facilitate the

investigation, we reduce the assimilation time window from

250 time units to 100 time units (corresponding to 2,000

integration steps), and the number of repetition runs of a given

experiment from 20 to 10, while keeping the search ranges

of the inflation factor and the length scale unchanged. In

the meantime, we increase the ensemble size Ne to 100. The

observation system is the same as that in Equation (26), with

the same observation-noise variance. The increment of model-

variable index is set to 1n = 4 (quarter observation scenario),

and the observations are collected every four integration steps

(Nfreq = 4). Given the purpose of the current experiment,

no sensitivity study (e.g., with respect to Ne, 1n and Nfreq)

is conducted.

The base assimilation algorithm is the same as that in

Equation (27), and we introduce both covariance inflation

and localization to the base algorithm. We use the same

localization scheme as in the 40-dimensional case (with the

length scale λ as a hyper-parameter), while considering two

different ways of conducting covariance inflation. One inflation

method is again the same as that in the 40-dimensional

case, which applies a single inflation factor δ to all model

state variables of the background ensemble. This leads to a

reference algorithm identical to that in Equation (30), which

contains two hyper-parameters, δ and λ, and the grid search

method is then applied to find the optimal combination of

δ and λ for the reference algorithm. On the other hand,

the CHOP workflow is employed to estimate an ensemble

of Ne hyper-parameter pairs
{

(δj, λj)
}Ne

j=1
. For distinction

later, we call the application of the CHOP workflow to

estimate the ensemble
{

(δj, λj)
}Ne

j=1
the single-inflation-factor

(SIF) method.

The other inflation method introduces multiple

inflation factors to the base algorithm. Specifically,

each model state variable of the background ensemble

Mb = {mb
j }
Ne
j=1 receives its own inflation factor, in

such a way that after inflation, the modified background

ensemble M̃b ≡ {m̃b
j }
Ne
j=1 has its member m̃b

j in the

form of m̃b
j = m̄b + (1+ δ) ◦

(

mb
j − m̄b

)

, where 1 is

a NL-dimensional vector with all its elements equal to 1,

δ =
[

δ1, δ2, · · · , δNL

]T
contains NL inflation factors, and

◦ stands for the Schur product operator. Replacing the SIF

method in Equation (30) by the multiple-factor one (while

keeping the localization scheme unchanged), one obtains a new

reference algorithm.

ma
j = m̃b

j +
{

L (λ) ◦
[

C̃mH
T
(

HC̃mH
T + Cd

)−1
]}

(

doj −Hm̃b
j

)

; (31)

m̃b
j = m̄b + (1+ δ) ◦

(

mb
j − m̄b

)

, (32)

where C̃m is the sample covariance

matrix with respected to the inflated

ensemble M̃b.

Due to the high dimensionality (NL =1000), it is

computationally prohibitive to apply the grid search method

to optimize the set of hyper-parameters in Equation (31). On
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FIGURE 3

As in Figure 1, but for average RMSEs obtained by the grid search method in the half observation scenario, with the same ensemble sizes

Ne = 30 yet di�erent observation frequencies. For ease of comparison, the results of the half observation scenario (1n = 2, Nfreq = 4, Ne = 30)

in Figure 2 are re-plotted here. (A) Nfreq = 1. (B) Nfreq = 2. (C) Nfreq = 4. (D) Nfreq = 8.

the other hand, as will be shown later, it is still possible to

apply the CHOP workflow to estimate an ensemble of hyper-

parameters, denoted by
{

(δj, λj)
}Ne

j=1
. Such a workflow is called

the multiple-inflation-factor (MIF) method hereafter.

With these said, in the sequel, we compare the performance

of the grid search method applied to the reference algorithm in

Equation (30), the CHOP workflow with the SIF method, and

the CHOP workflow with the MIF method, respectively.

Figure 4 shows the average RMSEs obtained by the grid

search method with different combinations of δ and λ values.

Similar to what we have seen in the 40-dimensional L96 model,

filter divergence arises in a large portion of the searched region of

hyper-parameters. As reported in Table 4, the minimum average

RMSE of the grid search method is around 2.7667, achieved at

δmin = 0.10 and λmin = 0.05.

For comparison, Table 4 also presents the average RMSEs of

the CHOP workflow equipped with the SIF and MIF methods,

respectively. Again, no filter divergence takes place in the CHOP

workflow. Both the SIF and MIF methods result in RMSE values

that stay relatively close to the minimum RMSE value of the grid

search method. In comparison to the SIF method, however, the

MIF exhibits better performance, largely due to a higher degree

of freedom brought in by the larger number of inflation factors

used in the assimilation algorithm.

3.3. Behavior of the IES algorithm

Finally we take a glance at the behavior of the IES algorithm

that underpins the CHOP workflow. We do this in the 1,000-

dimensional L96 model with the MIF method, to illustrate the

efficacy of the IES algorithm in dealing with high-dimensional

problems. Note that in the CHOP workflow, the IES is adopted

to tune hyper-parameters at each assimilation cycle. For brevity,

we only use one of the assimilation cycles for illustration.

Figures 5, 6 disclose the data mismatch and RMSE values

at each iteration step, in the form of box plots. These

values are obtained as follows: At each iteration step, we first

insert the ensemble of hyper-parameters into the reference

algorithm (Equation 31) of the MIF method, in such a way

that each member of the background ensemble (of model

state variables) is associated with a member of the ensemble

of hyper-parameters. In this way, we obtain an ensemble
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FIGURE 4

Average RMSEs obtained by the grid search method (applied to Equation 30) in the 1,000-dimensional L96 model.

TABLE 4 Performance comparison between the grid search method and the CHOP workflow in the 1,000-dimensional L96 model.

Grid search CHOP (SIF) CHOP (MIF)

Minimum average RMSE (mean ± STD) (δmin,λmin) Average RMSE (mean ± STD) Average RMSE (mean ± STD)

2.7667± 0.0099 (0.10, 0.05) 3.4213± 0.0552 3.0264± 0.0116

FIGURE 5

Box plots of data mismatch at di�erent iteration steps at one of the data assimilation cycles of the 1,000-dimensional L96 model.

of updated model state variables at each iteration step. The

data mismatch and RMSE values are then calculated with

respect to the ensemble of updated model state variables.

Note that the ensemble of analysis state variables corresponds

to the ensemble of updated model state variables at the

last iteration step. Meanwhile, at iteration step 0, the data

mismatch and RMSE values are computed based on the

initial ensemble of hyper-parameters generated through the

LHS scheme.

In Figures 5, 6, both the data mismatch and RMSE

values tend to decrease as the iteration proceeds, while

maintaining substantial ensemble varieties in the box

plots (indicating that ensemble collapse does not take

place). The IES converges relatively fast, moving into the
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FIGURE 6

Box plots of RMSE at di�erent iteration steps at one of the data assimilation cycles of the 1,000-dimensional L96 model.

FIGURE 7

Mean RMSE (dashed red line) and ensemble spread (dash-dotted green line) vs. iteration step, at one of the data assimilation cycles of the

1,000-dimensional L96 model.

vicinity of a certain local minimum after only several

iteration steps, which is a behavior also noticed in other

studies [20–22].

Corresponding to Figures 5–7 presents the values of mean

RMSE and ensemble spread at each iteration step. Here, a

mean RMSE is the average of the RMSEs over ensemble

members of the updated model state variables (i.e., the average

of the box-plot values) at a given iteration step, whereas

ensemble spread is evaluated according to Equation (25). In

consistency with Figure 6, the mean RMSE and the ensemble

spread tend to decrease along with the iterations. The overall

change of ensemble spread from the beginning to the end

of the iteration process appears to be less significant than

that of the mean RMSE. In fact, the final ensemble spread

appears to stay close to the initial value, which also suggests

that ensemble collapse does not appear to be a problem.

On the other hand, there are substantial gaps between the

values of mean RMSE and ensemble spread at all iteration

steps, which means that ensemble spread does not match the

estimation errors of the updated model state variables. This

tendency of under-estimation seems to be largely related to

the fact that the ensemble spread at the beginning of the

iteration is already considerably smaller than the mean RMSE,

which could be due to the insufficient ensemble spread in
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FIGURE 8

Histograms of (A) the reference model state (truth), (B) the background ensemble mean, and (C) the analysis ensemble mean at one of the

assimilation cycles in the 1,000-dimensional L96 model. Both the reference model state and the background ensemble do not change over the

IES iteration process, whereas the analysis ensemble is obtained by inserting the ensemble of estimated hyper-parameters at the last iteration

step into the reference algorithm (Equation 31), of the MIF method.

the background ensemble, or the initial ensemble of hyper-

parameters, or both.

Figure 8 shows the histograms with respect to the reference

model state variables (the truth), the background-ensemble

mean, and the analysis-ensemble mean, respectively. It is clear

that neither the histogram of the background-ensemble mean,

nor that of the analysis-ensemble mean, resemble the histogram

of the truth well, suggesting that there are substantial estimation

errors in the estimated model state variables.

On the other hand, the results with respect to the

estimated hyper-parameters appears to be more interesting. For

illustration, Figure 9 plots the histograms of the initial (left)

and final (right) ensembles of the inflation factors associated

with model state variable 1 (top) and 500 (middle), and the

histograms of the initial and final ensembles of the length scale

(bottom). Since we use LHS to generate the initial ensemble,

it can be observed that the histograms with respect to three

initial ensembles of hyper-parameters roughly follow certain

uniform distributions. Through the iteration process of the

IES algorithm, the shapes and supports of the histograms are

modified. This is particularly noticeable for the estimated values

of length scale in the final ensemble (Figure 9F). Initially, the

range of the length scale in the initial ensemble is [0.05, 1], at

the end of the iteration, around 80% of the values of estimated

length scale locate at 0.05 (which is the optimal value found

by the grid search method), while the rest of the estimated

values are less than 0.1. On the other hand, for the estimated

inflation factors, one may notice that their values are less

concentrated than the length scale. In comparison to the initial

ensembles of the inflation factors, their final ensembles receive

somewhat narrower supports, but still maintain sufficient

spreads, in consistency with the results in Figure 7. The values

of estimated inflation factors are substantially larger than the

optimal inflation factor (0.10) found by the grid search method.

The main reason behind this is that the original EnKF updates

model state variables only once, whereas the CHOP workflow

does the update multiple times, each time with a smaller step

size (hence larger inflation factors).

4. Discussion and conclusion

This study aims to develop a Continuous Hyper-parameter

OPtimization (CHOP) workflow that helps to tune hyper-

parameters in ensemble data assimilation algorithms. The main

idea is to treat a data assimilation algorithm with certain

hyper-parameters as a parametric mapping that transforms an

ensemble of initial model state variables and/or parameters

to a corresponding ensemble of updated quantities, which in
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FIGURE 9

Histograms of the initial (left) and final (right) ensembles, with respect to the inflation factors associated with model state variables 1 (A,B) and

500 (C,D), and the length scale (E,F), respectively.

turn are related to the predicted observations through the

observation operator.

Following this perspective, the hyper-parameters can be

tuned in such a way that the corresponding updated model state

variables and/or parameters result in lower data mismatch than

their initial values. In doing so, the CHOP problem is recast as a

parameter estimation problem. We adopt an iterative ensemble

smoother (IES) to solve the CHOP problem, as its derive-free

nature allows one to implement the algorithm without explicitly

knowing the relevant gradients. To mitigate the adverse effects

of using a relatively small ensemble size in the IES, we also

equip the IES with a correlation-based adaptive localization

scheme, which helps to handle the issue that hyper-parameters

may not possess physical locations needed for distance-based

localization schemes.

We investigate the performance of the CHOP workflow

in the Lorentz 96 (L96) model with two different dimensions.

Experiments in the 40-dimensional L96 model aim to inspect

the impacts of a few factors on the performance of the

CHOP workflow, whereas those in the 1,000-dimensional L96

model focus on demonstrating the capacity of the CHOP

workflow to deal with a high-dimensional set of hyper-

parameters, which may not be computationally feasible for

the grid search method. Such a capacity would help enable

the developments of more sophisticated auxiliary techniques

(e.g., inflation or localization) that introduce a large number

of hyper-parameters to an assimilation algorithm for further

performance improvements.

In most of the experiments, the CHOP workflow is able to

achieve reasonably good performance, which is relatively close
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to the best performance obtained by the grid search method (an

unverifiable case occurs in the experiments with respect to the

multiple-inflation-factor method in the 1,000-dimensional L96

model, where we are not able to adopt the grid search method

due to its prohibitively expensive cost). Meanwhile, unlike the

grid search method, the optimality criterion in the CHOP

workflow is based on data mismatch between real and predicted

observations, which is realistic and can be implemented in

practical data assimilation problems.

So far, we have only implemented the CHOP workflow in

the ensemble Kalman filter (EnKF) with perturbed observations.

Given the varieties of different assimilation algorithms (some

of them may not even be ensemble-based), the way of

implementing a CHOP workflow may have to adapt to the

particular assimilation algorithm in choice, which is an issue to

be further studied in the future. On the other hand, though, we

expect that the notion of treating an assimilation algorithm with

hyper-parameters as a parametric mapping may still be valid. As

such, it appears sensible that one converts a generic assimilation

problem (being state estimation, parameter estimation or both)

with hyper-parameters into a parameter estimation problem,

and solve it through a certain iterative assimilation algorithm.
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