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Hybrid Fourier series and
smoothing spline path
non-parametrics estimation
model

Atiek Iriany* and Adji Achmad Rinaldo Fernandes

Department of Statistics, University of Brawijaya, Malang, Indonesia

Pathway analysis is one way to determine whether there is a causal relationship

between extrinsic and intrinsic factors. The linearity assumption is something

that can change the model. The shape of the model is subject to linearity

assumptions. Path analysis is parametric when the linearity assumption is true,

whereas non-parametric path analysis is used when the non-linear shape is

unknown and there is no knowledge of the data pattern. Non-linear path

analysis is used when the non-linear shape and data pattern are unknown.

This work aimed to combine the smoothing spline method and the Fourier

series method to compute non-parametric path function and it is believed

that they would be able to produce more flexible function estimations for data

patterns since both have the benefit of being accurate or close to the real data

pattern. As a result, we found that Fourier series and smoothing splines can be

used in non-parametric path analysis only if the linearity assumption is violated.

Non-parametric regression-based path analysis estimators were then obtained

using the ordinary least squares (OLS) approach. It uses a non-parametric

approach and therefore gives non-unique estimation results.

KEYWORDS

Fourier series, non-parametric path analysis, regression analysis, ensemble models,

smoothing spline

1. Introduction

In 1934, Wright first developed route analysis [1]. Path analysis is used to evaluate

models of relationships between variables in the form of cause and effect [2]. Pathway

analysis is a method of determining whether there is a causal relationship between

extrinsic and intrinsic components [3]. In addition to determining the direct influence

of extrinsic factors on intrinsic variables, path analysis is used to determine the indirect

influence of extrinsic variables on intrinsic variables by mediating them [4]. A mediation

model is a model in which the effect of a leading or independent variable (X) on the

dependent variable (Y) is transmitted through a third mediating or mediating variable

(M) [5].

Non-parametric path analysis, a method for applying regression, assumes that the

shape of the regression function’s curve is unknown. Non-parametric route analysis

curves only consider a smooth curve [6]. It is assumed that the function curve is present

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.1045098
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.1045098&domain=pdf&date_stamp=2023-01-13
mailto:atiekiriany@ub.ac.id
https://doi.org/10.3389/fams.2022.1045098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2022.1045098/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Iriany and Fernandes 10.3389/fams.2022.1045098

in the function space [7]. The distinction between parametric

and non-parametric techniques is that the former attempts to

compel the data to follow a specific pattern, whilst the latter gives

the data the flexibility to discover its regression curve pattern,

making the latter more adaptable and objective [8].

Smoothing parameters are necessary for non-parametric

path analysis to establish the size of the curve’s smoothness or

roughness in characterizing the data [9]. A very rough estimate

of the regression curve is provided by the smoothing parameter’s

relatively modest value. On the other hand, a very smooth

non-parametric regression curve estimator will be generated

if the smoothing parameter value is quite large. To achieve

the best estimate for the data, it is required to select the

best smoothing parameter when estimating the non-parametric

regression function. The GCV and CV approaches were applied

by Dani and Adrianingsih [10] as smoothing parameters in

non-parametric regression analysis with Fourier series.

The foundation of non-parametric path analysis is non-

parametric regression, which examines the relationships

between exogenous, endogenous dependent, and endogenous

mediating factors [11]. Non-parametric path analysis employs a

variety of methods, including moving averages, Fourier series,

splines, kernels, local polynomials, and wavelets [12, 13].

Splines have special characteristics, namely their ability to

adjust to changes in data behavior very well. The approaches

for estimating non-parametric regression functions include the

penalized spline approach and the smoothing spline approach

[14]. For smoothing splines, no knot selection is required,

because the estimation function is based on the criteria of

model accuracy and curve smoothness that has been set by

the smoothing parameter. The non-parametric regressionmodel

using the Fourier series estimator has been shown in research

by Dani and Adrianingsih [10] to tend to mimic the real data

pattern. When the two techniques are combined, it is believed

that they would be able to produce more flexible function

estimations for data patterns since both have the benefit of

being accurate or close to the real data pattern. Based on the

foregoing context, we will use Fourier series and smoothing

spline techniques in this work to estimate a function estimator

for a non-parametric route function.

2. Literature review

2.1. Non-parametric regression analysis

Non-parametric regression modeling is incredibly flexible

and reduces the researcher’s subjectivity [15]. Non-parametric

regression analysis was used if the parametric regression

analysis’s conditions of normality, non-multicollinearity, and

homoscedasticity were not fulfilled [16]. This strategy works

effectively for concluding when there is little to no prior

knowledge about the regression curve or data pattern [7].

There is a chance that using parametric regression on

unknown data will result in an unrepresentative regression

model, which will cause hypothesis testing to yield incorrect

results. When the form of the curve for the response variable

(Y), whose pattern of association with the predictor variable

(X), is unknown, it can be determined using a non-parametric

regression model:

Yi = f̂ (xi) + εi (1)

If the linearity assumption is correct, parametric route

analysis is used to conduct the investigation [17]. However, if the

linearity presumption is broken, the analysis employs non-linear

and/or non-parametric paths.

Where:

yi: The response variable’s value.

xi: The predictor variable’s value.

f̂ : Regression curve.

i: 1, 2, . . . , n.

n: The abundance of observations.

εi: Errors in the i-th observation.

2.2. Non-parametric path analysis based
on Fourier series

One technique for non-parametric path analysis is Fourier

series route analysis. The Fourier series may quickly adapt

to the local character of the data since it is a versatile

trigonometric polynomial [18]. The Fourier series has the

benefit of being able to overcome data with a trigonometric

distribution (sine and cosine) [12]. According to the Non-

parametric Regression model in Equation 1, the Fourier series

approximates f (xi) as follows:

Minimize εi
2

Min
{

∑n

i=1
ε2i

}

= Min
{

∑n

i=1

(

yi − f (xi)
)2
}

(2)

Depending on how smooth the function f is, the following

penalty is also applied in addition to minimizing Equation 2:

∫ π

0

2

π

(

f (2) (x)
)2

dx (3)

This means that by using Penalized Least Squares (PLS) to

finish the optimization, the estimator for the regression curve f

can be obtained.

Min

{

n−1
∑n

i=1

(

yi − f (xi)
)2

+ λ

∫ π

0

2

π

(

f (2) (x)
)2

dx

}

(4)
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To resolve Equation 4, start by determining the value of P(a):

qualP (a) =

∫ π

0

2

π

(

f (2) (x)
)2

dxP (a)

=
2

π

∫ π

0

(

∑K

k=1

(

k2akcoskx
)2

+ 2
∑K

k<j

∑K

k<j

(

k2akcoskx
) (

j2ajcosjx
)

)

dx

P (a) =
∑K

k=1
k4a2k (5)

Which is a smoothing parameter that controls between the

goodness of fit and smoothness of the function. For a very

large, a very smooth solution function will be obtained, while

for a very small, a very coarse solution will be obtained. f can

be approximated by the function x because it is a continuous

function, with:

f (x) = bx+
1

2
a0 +

∑K

k=1
akcoskx (6)

Using Equation 6, it is possible to write

Min

{

n−1
∑n

i=1

(

yi − f (xi)
)2

+ λ

∫ p

0

2

p

(

f (2) (x)
)2

dt

}

Min

{

n−1
∑n

i=1

[

yi − bx−
1

2
a0 −

∑K

k=1
akcoskx

]2

+λ
∑K

k=1
k4a2k

}

Min
{

n−1 (y− Xa
)′(y−Xa)

+ λa′Da
}

= Min

{

n−1y
′
y− n−1a

′
X

′
y− n−1

(

a
′
X

′
y
)′

+a′
(

n−1X
′
X + λD

)

a
}

(7)

where:

D = diag(0, 0, 14, 24, . . . ,K4) (8)

If Equation 7 is known as Q(a), then we can obtain it by

partially subtracting Q(a) from a and equating it to zero:

∂Q(a)

∂a
= 0− 2n−1X

′
y+ 2

(

n−1X
′
X + λD

)

as

â (λ) =
(

n−1X′X + λD
)−1

n−1X′y (9)

It can be expressed as a matrix based on the characteristics

of the Fourier series estimator in Equation 9.

f
∼

= Xa
∼
+ e

∼
(10)

f̂
∼

= Xa
∼

(11)

where:

a
∼

=

(

b,
1

2
a0, a1, . . . , aK

)

(12)

X =

















x1 1 cos x1 cos 2 x1 · · · cosKx1
x2 1 cos x2 cos 2 x2 · · · cosKx2
x3 1 cos x3 cos 2 x3 · · · cosKx3
...

xn

...

1

...

cos xn

...

cos 2 xn

· · ·

· · ·

...

cosKxn

















(13)

If Equation 11 is translated it will look as follows

















y1
y2
y1
...

yM

















=

















x1 1 cos x1 cos 2 x1 · · · cosKx1
x2 1 cos x2 cos 2 x2 · · · cosKx2
x3 1 cos x3 cos 2 x3 · · · cosKx3
...

xn

...

1

...

cos xn

...

cos 2 xn

· · ·

· · ·

...

cosKxn

































b
1
2 a0
a1
...

aK

















+

















e1
e2
e3
...

eK

















Consequently, the following is how the estimator for the

Fourier series’ non-parametric path function is obtained:

f̂λ(xi) = b̂(λ)xi +
1

2
â0(λ)+

K
∑

k=1

âk(λ) cos kxi (14)

2.3. Smoothing spline non-parametric
path analysis

Regression analysis includes spline, more precisely non-

parametric and semiparametric regression [19]. Spline research,

which is independent and has personality, necessitates a

thorough procedure with many steps that takes a very long

time [20]. Non-parametric spline regression offers the following

benefits for modeling data patterns: (a) Splines have very

unique and excellent statistical interpretations. The Penalized

Least Square (PLS) approach was optimized to produce the

spline model. (b) Smooth data or functions can be handled

by the spline. (c) The spline handles data whose behavior

varies at particular sub-intervals quite well. (d) Spline excels at

generalizing large and detailed statistical modeling. One of the

spline models that can estimate the non-parametric regression

curve is the Smoothing Spline [21].

The form of the relationship pattern between the response

variable and the variable predictors can be estimated using the
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Smoothing Spline function. The Estimator of Smoothing Spline

can be obtained in the following way to minimize the Penalized

Least Squares (PLS) in the regression function. A roughness

penaltymultiplied by the positive smoothing parameter added to

the sum of the squares of the residuals in the Smoothing Spline

regression. Therefore, the estimation of the function depends on

the smoothing parameter.

The non-parametric path function based on the Smoothing

Spline according to Budiantara [22] can be presented like the

matrix in Equation 15.

. f̂
∼
= T d̂

∼
+ V ĉ

∼
(15)

Matrix T in Equation 15 is n × m in size with the

following description.

T =













〈

ηk1,φk1
〉 〈

ηk1,φk2
〉

. . .
〈

ηk1,φkm
〉

〈

ηk2,φk1
〉 〈

ηk2,φk2
〉

. . .
〈

ηk2,φkm
〉

...
...

. . .
...

〈

ηkn,φk1
〉 〈

ηkn,φk2
〉

. . .
〈

ηkn,φkm
〉













n×m

Then, the element
〈

ηki,φkj

〉

is obtained from the

Equation 16.

〈

ηki,φkj

〉

=
x
j−1
i

(

j− 1
)

!
; i = 1, 2, . . . , n; j = 1, 2, . . . , m (16)

Meanwhile, the n × nmatrix B is described as follows.

V =













〈

ξk1, ξk1
〉 〈

ξk1, ξk2
〉

. . .
〈

ξk1, ξkn
〉

〈

ξk2, ξk1
〉 〈

ξk2, ξk2
〉

. . .
〈

ξk2, ξkn
〉

...
...

. . .
...

〈

ξkn, ξk1
〉 〈

ξkn, ξk2
〉

. . .
〈

ξkn, ξkn
〉













n×n

With element
〈

ξki, ξks
〉

obtained from Equation 17.

〈

ξki, ξks
〉

=

∫ b

a

(xi − u)m−1
+ (xs − u)m−1

+

((m− 1)!)2
du (17)

With:

(xi − u)m−1
+ =

{

(xi − u)m−1
+ , xi ≥ u

0, xi < u

a = min (xi) dan b = max (xi)

For x ∈ [0, 1] the results of calculations in Equation 18 are

obtained as follows.

〈

ξki, ξks
〉

= xixs −
1

2
(xi + xs) +

1

3
(18)

then d∼ and c∼ vectors are obtained from Equations 19, 20.

d̂
∼

= T(T’M−1T)
−1

T’M−1 y
∼

(19)

ĉ
∼

= M−1[I - T
(

T’M−1T
)- 1

T’M−1]y
∼

(20)

3. Method

Regression modeling in particular was the focus of this

project, which aimed to develop statistical modeling theory. The

lemma theorem from non-parametric route analysis was derived

in this paper by combining the Smoothing Spline and Fourier

series techniques. The Fourier series function’s non-parametric

path analysis was calculated using the Ordinary Least Square

(OLS) approach.

4. Result and discussion

The Fourier series is a polynomial with flexibility that may

effectively adapt to the local nature of the data. It is based on a

cosine function. Periodic curves like sine and cosine waves may

be accurately described by the Fourier series. The polynomial

functions with a shortened function are added to create the

smoothing spline. The function or data when there is a change in

the behavior pattern of the curve that varies at various intervals

is represented by the smoothing spline.

Lemma 4.1. Forms of a simple Fourier series and smoothing

spline non-parametric path analysis model.

If given paired data (X1i,X2i,Y1i,Y2i), the relationship

between (X1i,X2i,Y1i,Y2i) them is modeled by additive non-

parametric path analysis. Equation 21 shows a combined non-

parametric path analysis model of the Fourier series and

smoothing spline.

y1i = f (x1i)+ ĝ(x2i)+ εi

y2i = f (x1i, y1i)+ ĝ(x2i, y1i)+ εi
(21)

Where y1i and y2i are response variables, f (x1i), ĝ(x2i),

f (x1i, y1i), and ĝ(x2i, y1i) are path curves of unknown shape and

εi is a random error, with a mean of zero and a variance σ 2

of assumed to have an independent normal distribution. Let

f (x1i) be approximated by a Fourier series function and ĝ(x2i) be

modeled by a short spline function. The model of Fourier series

can be seen in Equation 22.

f̂1i =
1

2
a01 +

∑p

j=1
b1jX1i +

∑p

j=1
b1jX2i

+
∑K

k=1
γ1(2×k)cosKY1i

f̂2i =
1

2
a02 +

∑p

j=1
b2jX1i +

∑p

j=1
b2jX2i

+
∑K

k=1
γ1(2×k)cosKY1i +

∑K

k=1
γ1(k)cosKY1i (22)

When translated, equation Fourier series and smoothing

spline is shown in the equation below:
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If K = 2 andm= 2

f̂1i =
1

2
a01 + b11jX1i + γ11 cosX1i + γ21 cos 2X1i + b21

+ b31 (X2i) +

n
∑

s=1

c1s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

f̂2i =
1

2
a02 + b12jX1i + γ12 cosX1i + γ22 cos 2X1i + b22

+ b32 (X2i + Y1i) +

n
∑

s=1

c2s

(

X2iX2s −
1

2
(X2i + X2s)

+
1

3

)(

Y1iY1s −
1

2
(Y1i + Y1s) +

1

3

)

(23)

If K = 3 andm= 2

f̂1i =
1

2
a01 + b11jX1i + γ11 cosX1i + γ21 cos 2X1i

+ γ31 cos 3X1i + b21 + b31 (X2i)

+

n
∑

s=1

c1s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

f̂2i =
1

2
a02 + b12jX1i + γ12 cosX1i + γ22 cos 2X1i

+ γ32 cos 3X1i + b22 + b32 (X2i + Y1i)

+

n
∑

s=1

c2s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

(Y1iY1s

−
1

2
(Y1i + Y1s) +

1

3

)

(24)

Jika K = 4 andm= 2

f̂1i =
1

2
a01 + b11jX1i + γ11 cosX1i + γ21 cos 2X1i

+ γ31 cos 3X1i + γ41 cos 4X1i + b21 + b31 (X2i)

+

n
∑

s=1

c1s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

f̂2i =
1

2
a02 + b12jX1i + γ12 cosX1i + γ22 cos 2X1i

+ γ32 cos 3X1i + γ42 cos 4X1i + b22 + b32 (X2i + Y1i)

+

n
∑

s=1

c2s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

(Y1iY1s

−
1

2
(Y1i + Y1s) +

1

3

)

(25)

Jika K = 5 andm= 2

f̂1i =
1

2
a01 + b11jX1i + γ11 cosX1i + γ21 cos 2X1i

+ γ31 cos 3X1i + γ41 cos 4X1i + γ51 cos 5X1i ++b21

+ b31 (X2i) +

n
∑

s=1

c1s

(

X2iX2s −
1

2
(X2i + X2s) +

1

3

)

f̂2i =
1

2
a02 + b12jX1i + γ12 cosX1i + γ22 cos 2X1i

+ γ32 cos 3X1i + γ42 cos 4X1i + γ52 cos 5X1i + b22

+ b32 (X2i + Y1i) +

n
∑

s=1

c2s

(

X2iX2s −
1

2
(X2i + X2s)

+
1

3

)(

Y1iY1s −
1

2
(Y1i + Y1s) +

1

3

)

(26)

Proof

To create the model for non-parametric path analysis

of the Fourier series and smoothing spline, multiple linear

regression analysis, simple linear path analysis, and non-

parametric regression analysis were used.

First part:

The following is how the simple linear regression model can

be expressed:

Yi = β0 + βiXi + εi (27)

where:

Yi: The response variable’s value for observation i.

β0: Intercept parameters.

β1: Parameter slope.

Xi: The predictor variable’s value for observation i.

εi: Remainder in i-th observation.

Multiple linear regression analysis is used when there are

multiple predictor variables. The equation can be used to express

the multiple linear regression model (Equation 28).

Yi = β0 + β1Xi1 + β2Xi2 + εi (28)

The equation can be used to represent the general linear

regression model (29).

Yi = β0 + β1Xi1 + β2Xi2 + . . . + βpXi(p−1) + εi (29)

In multiple linear regression analysis with more than

two predictor variables, the matrix technique can be utilized

to address the parameter estimation problem. Equation 24

is a generic equation for a population multiple linear

regression model with p-1 predictor variables. If there are n

observations and p predictor variables, the regression equation is

as follows:

Y1 = β0 + β1X11 + β2X12 + · · · + βpX1p−1 + ε1

Y2 = β0 + β1X21 + β2X22 + · · · + βpX2p−1 + ε2

Y3 = β0 + β1X31 + β2X32 + · · · + βpX3p−1 + ε3
...
...
...
...
...
...

Yn = β0 + β1Xn1 + β2Xn2 + · · · + βpXnp−1 + εn

(30)
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From the equation above, the following can be written in

matrix form:

















Y1

Y2

Y3
...

Yn

















=



















1 X11 X12 · · · X1p−1

1 X21 X22 · · · X2p−1

1 X31 X32 · · · X3p−1

...
...
...
. . .

...

1 Xn1 Xn2 . . . Xnp−1



















+

















ε1

ε2

ε3
...

εn

















(31)

Second part:

It is well-known that the model in Equation 32 and the

simple path analysis model are (Equation 33),

Y1i = f1(X1i,X2i)+ ε1i

Y2i = f2(X1i,X2i,Y1i)+ ε2i
(32)

Y1i = β10 + β11X1 + β12X2 + ε1i

Y2i = β20 + β21X1 + β22X2 + β23Y1 + ε2i
(33)

With matrix form:

Y
∼

2nx1
= X2nx7β

∼

7x1
+ ε

∼

2nx1
(34)

































Y11

Y12
...

Y1n

Y21

Y22
...

Y2n

































=





XX 0
∼

nx4
0
∼

nx3
XXY





























β10

β11

β12

β20

β21

β22

β23

























+

































ε11

ε12
...

ε1n

ε21

ε22
...

ε2n

































where

XX =













1 X11 X21

1 X12 X22
...

1 X1n X2n













; XXY =













1 X11 X21 Y11

1 X12 X22 Y12
...

1 X1n X2n Y1n













With:

Yhi: Endogenous variable h-th, observation i-th.

Xi: Exogenous variable observation i-th.

β : Parameters for predictor variables.

εhi: Random error endogenous variable h-th, observation i-

th.

Third Part:

Equations 35, 36 present non-parametric regression models

that can be created after understanding the equations and

multiple linear regression models (Equation 36).

Y1i = f1 (X1i,X2i) + ε1i (35)

f̂λ(xi) = b̂(λ)xi +
1

2
â0(λ)+

2
∑

k=1

âk(λ) cos kxi (36)

With the equation and matrix form like the

following equation:

f
∼

2nx1
= X2nx7α7x1 (37)

















y1
y2
y3
.
.
.

yn

















=



















x11 1 cosx11 cos 2x11 x21 cosx21 cos 2x21
x12 1 cosx12 cos 2x12 x22 cosx22 cos 2x22
x13 1 cosx13 cos 2x13 x23 cosx23 cos 2x23

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.
.
.
.

x1n 1 cosx1n cos 2x1n x2n cosx2n cos 2x2n



































b
1
2 a0
a1
.
.
.

a7

















(38)

From the equations in the basic linear regression analysis

model, simple path analysis, and non-parametric regression

analysis that have been explained, a function constructed as

in Equation 21 may be obtained, resulting in the matrix

shown below:

f
∼

2nx1
= X2nx17α17x1 (39)

X =































1
2 x11 cos x11 · · · cos 2x21 0 0 0 · · · 0
1
2 x12 cos x12 · · · cos 2x22 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
1
2 x1n cos x1n · · · cos 2x2n 0 0 0 · · · 0

0 0 0 · · · 0 1
2 x11 cos x11 · · · cos 2y11

0 0 0 · · · 0 1
2 x12 cos x12 · · · cos 2y12

...
...

...
. . .

...
...

...
...

. . .
...

0 0 0 · · · 0 1
2 x1n cos x1n · · · cos 2y1n































(40)

Where:

f
∼

(

Xij
)

: The i-th observation’s non-parametric j-th

exogenous variable’s vector non-parametric regression function.

Xij: The i-th observation’s j-th exogenous variable matrix.

α
∼

ij
: The j-th observation’s parameter vector for the i-th

exogenous variable.

Theorem 4.1. Ordinary least square.

Given the data from the non-parametric path analysis model

on cross-section data stated in Lemma 4.1, the least square

approach is the way of estimating parameters that may reduce

the number of squares of errors (ordinary least square). As a

result, the minimizing estimator of the Fourier and smoothing
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spline series is:

MinβǫR

(

ε
∼

′ ε
∼

)

=
{

n−1
∑n

i=1

(

yi − f1 (x1i)
)2

+ λ

∫ π

0

2

π

(

f
(2)
1 (x1i)

)2
∂x1i

}

MinβǫR

(

ε
∼

′ ε
∼

)

=
{

n−1 (y−Wa− Xβ
)′ (

y−Wa− Xβ
)

+ λa′Da
}

MinβǫR

(

ε
∼

′ ε
∼

)

= {Q (a, β)} (41)

Equation 42 needs to be described to obtain an estimate of

its function. The decomposition of Equation 42 is as follows:

Q (a, β) = n−1 (y−Wa− Xβ
)′ (

y−Wa− Xβ
)

+ λa
′
Da

= n−1 (y′ − a′W′ − β ′X′
) (

y−Wa− Xβ
)

+ λa′Da

= n−1

(

y
′
y− a

′
W

′
y− β

′
X

′
y− y

′
Wa+a

′
W

′
Wa+

β
′
X

′
Wa−y

′
Xβ + a

′
W

′
Xβ + β

′
X

′
Xβ

)

+ λa′Da

= n−1y
′
y− 2n−1a

′
W

′
y− n−1β

′
X

′
y+ 2n−1a

′
W

′
Xβ

− n−1y
′
Xβ + n−1β

′
X

′
Xβ + a′

(

n−1W
′
W + λD

)

a

(42)

Estimates of a and β can be obtained using the ordinary least

squares method, by reducing the total squares of error as follows:

∂Q (a, β)

∂a
=

(

1

∂a

)

∂

(

n−1y
′
y− 2n−1a

′
W

′
y− n−1β

′
X

′
y+ 2n−1a

′
W

′
Xβ

−n−1y
′
Xβ + n−1β

′
X

′
Xβ + a

′
(

n−1W
′
W+λD

)

a

)

= −2n−1W
′

y+ 2n−1W
′

Xβ + 2
(

n−1W
′

W + λD
)

a

= 2(−n−1W
′

y+ n−1W
′

Xβ + n−1W
′

W + λD)a

0 =
(

−n−1W
′

y+ n−1W
′

Xβ̂
) (

n−1W
′

W + λD
)

â
(

n−1W
′

y− n−1W
′

Xβ̂
)

=
(

n−1W
′

W + λD
)

â

â =
(

n−1W
′

W + λD
)−1 (

n−1W
′

y− n−1W
′

Xβ̂
)

â =
(

W
′

W + nλD
)−1

W
′
(

y− Xβ̂
)

â = S (K, λ)W
′
(

y− Xβ̂
)

(43)

Equation 44 can be minimized by partially deriving Q (a,β)

relating to and equaling zero.

∂Q (a, β)

∂β
= −2n−1X

′
y+ 2n−1X

′
Wa+ 2n−1X′Xβ

= 2n−1
(

−X
′
y+ X

′
Wa+ X′Xβ

)

0 = 2n−1
(

−X
′
y+ X

′
Wâ+ X′Xβ̂

)

X
′
Xβ̂ = X

′
y − X

′
Wâ

β̂ =
(

X
′
X
)−1 (

X
′
y − X

′
Wâ

)

β̂ =
(

X
′
X
)−1

X′
(

y −Wâ
)

(44)

By substituting Equation 43 into Equation 44, the estimator

of the function is obtained as follows:

β̂ =
(

X
′
X
)−1

X
′
(

y −W
(

S (K, λ)W′
(

y− Xβ̂
)))

=
(

X
′
X
)−1

X
′
(

y −WS (K, λ)W′
(

y− Xβ̂
))

=
(

X
′
X
)−1

X
′
y −

(

X
′
X
)−1

X
′
WS (K, λ)W

′
y

+
(

X
′
X
)−1

X
′
WS (K, λ)W

′
Xβ̂ (45)

To obtain the result of the function estimator, it is necessary

to subtract both sides
(

X’X
)−1

X’WS (K, λ)W
′
Xβ̂ in Equation

46 as follows:

β̂−
(

X
′
X
)−1

X
′
WS (K, λ)W

′
Xβ̂ =

(

X
′
X
)−1

X
′
y

−
(

X
′
X
)−1

X
′
WS (K, λ)W

′
y

(

I−
(

X
′
X
)−1

X
′
WS (K, λ)W

′
X

)

β̂ =
(

X
′
X
)−1

X
′
(

y −WS (K, λ)W
′
y
)

(

I−
(

X
′
X
)−1

X
′
WS (K, λ)W

′
X

)

β̂ =
(

X
′
X
)−1

X
′
(

I −WS (K, λ)W
′
)

y
(

I−
(

X
′
X
)−1

X
′
WS (K, λ)W

′
X

)

β̂ =
(

X
′
X
)−1

X
′
(

I −WS (K, λ)W
′
)

y (46)

5. Conclusion

The use of non-parametric route analysis leads to the

following that the Fourier series and smoothing spline can only

be used when the linearity presumption is broken. The estimator

of the Non-parametric Regression-Based Path Analysis, which

coupled Fourier series and smoothing spline using the Ordinary

Least Square (OLS) technique, then delivers a nonsingular

estimate result since it applies a non-parametric methodology.

Different combinations of lambdas, oscillations, orders, and

knots will provide different results. This non-unique conclusion,

on the other hand, will provide a graphical depiction that is more

similar to the initial data distribution.
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