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Unearned premium risk and
machine learning techniques

Vajira Manathunga* and Danlei Zhu

Program of Actuarial Science, Department of Mathematical Sciences, Middle Tennessee State

University, Murfreesboro, TN, United States

Insurance companies typically divide premiums into earned and unearned

premiums. Unearned premium is the portion of premium that is allocated for

the remaining period of a policy or premium that still needs to be earned.

The unearned premium risk arises when an unearned premium is insu�cient

to cover future losses. Reserves allocated for the unearned premium risk are

called premium deficiency reserves (PDRs). PDR received less attention from

the actuarial community compared to other reserves such as reserves for

reported but not fully settled (RBNS) claims, and incurred but not reported

(IBNR) claims. Existing research on PDR mainly focused on utilizing statistical

models. In this article, we apply machine learning models to calculate PDR.

We use an extended warranty dataset, which comes under long-duration P &

C insurance contracts to demonstrate our models. Using two statistical and

two machine learning models, we show that machine learning models predict

reservesmore accurately than the traditional statistical model. Thus, this article

encourages actuaries to consider machine learning models when calculating

PDRs for the unearned premium risk.

KEYWORDS

unearned premium risk, random e�ect models, XGBoost method, random forest,
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1. Introduction

Insurance premiums are collected in advance by the insurance company for

coverage that has not yet been provided. This premium is called a written premium,

the amount customers are required to pay at the beginning of the policy contract.

Once the insurance company receives the premium, they divide the received premium

payment into two components: earned premium vs. unearned premium. Earned

premium is defined as “the portion of an insurance premium that paid for a portion

of time in which the insurance policy was in effect, but has now passed and expired.

Since the insurance company covered the risk during that time, it can now consider

the associated premium payments it took from the insured as earned" [1]. The

unearned premium is defined as the portion of premium which is not earned yet or

more precisely, “The amount of premium for which payment has been made by the

policyholder but coverage has not yet been provided. The unearned premium is premium

corresponding to the time period remaining on an insurance policy" [2]. This article

focuses on the role of unearned premiums and the corresponding premium deficiency

reserves.
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It is essential for insurance companies to correctly model

and project claim liabilities and premium liabilities. Claims can

be divided into closed claims, reported but not fully settled

(RBNS) claims, and incurred but not reported (IBNR) claims.

There are many actuarial approaches used to forecast the

amount of reserves that must be established to cover these

types of future claims. The Bornhuetter–Ferguson [3] method

and the chain ladder [4] (known as loss development triangle)

method are the two most popular methods used by actuaries

in this direction. Other than these two methods, there are

a number of stochastic loss reserving methods developed for

predicting RBNS and IBNR claims. A detailed list of literature

on these reserves is given by Schmidt [5]. In general, we regard

claim liability as an earned premium and premium liability as

an unearned premium. In other words, we assume that claim

liability must be covered through the earned premium portion

and reserves must be established to cover any differences.

The unearned premium portion is for future losses where an

insurance event has not been incurred as of the evaluation

date. Even though much research has been done on reserves

related to the claim liability, less research is available for

reserves related to premium liability, specifically to unearned

premiums. Several approaches which can be used to estimate

premium liability were discussed by Cantin and Trahan [6].

This article defined premium liability as “the cost of running

off the unexpired portion of an insurer’s policies and reinsurance

contracts" [6]. They divided premium liability into several

categories which included unearned premium and premium

deficiency. The connection between unearned premium and

auto warranty insurances has been studied in a few articles.

Vaughan mentioned that the unearned premium reserve is the

largest liability reserve for writers of auto warranty insurances

[7]. Generally, auto warranties are of long duration and paid by

a single premium [7]. According to Vaughan, this generates a

significant liability to the insurance company, since losses are

already paid for by the insured using a single premium but not

yet incurred. In another article, Cheng [8] took into account the

fact that the premium income is not proportional to the contract

expiration time. For auto warranty insurance, the risk exposure

varies in different years. He proposed adjusting the exposure

to obtain a more appropriate method to estimate the unearned

premium and test whether it is adequate. More recently,

Jessup et al. [9] concluded that there are four main drivers of

the unearned premium risk: seasonality, loss distribution, the

premium acquisition pattern, and the subscription pattern of

the insured.

Traditionally, actuaries have heavily relied on the

probabilistic and statistical models for loss reserving [10].

However, recent advances in machine learning (ML)

techniques, the emergence of big data and the increased

computational power of modern computers have increased

actuaries’ interest in ML techniques. A review of the use

of artificial intelligence in actuarial science was done by

Richman [11, 12]. In these articles, the author reviewed

several articles that applied deep learning techniques in

pricing non-life insurance, IBNR reserving, analysis of

telematic data, and mortality forecasting. Another interesting

type of data set found in actuarial science is text data. For

example, accident notes or doctor notes may contain hidden

information regarding loss severity or the number of claims.

This type of data could not be used in traditional predictive

models. Recently, several researchers tried using natural

language processing (NLP) techniques to read text data and

incorporated those into loss models. Ly conducted a survey

of NLP techniques and their applications in insurance [13].

A Bidirectional Encoder Representations from Transformers

(BERT)-based NLP technique approach to loss models

were investigated by Xu et al. [14]. In this article, we tried

to extend ML techniques to the unearned premium risk

reserve calculation.

So why do we use ML techniques in actuarial science?

In today’s world, companies are collecting more and more

customer information through digital platforms, smartphones,

and smart sensors. This data can be used to price insurance

products in a personalized way and calculate risk at the

individual level. However, given how big these data sets are,

actuaries cannot rely on traditional statistical models for analysis

but need ML techniques. The reluctance among actuaries to use

ML techniques may stem from regulatory requirements such

as the interpretablity. ML techniques such as deep learning

methods may result in hard to interpret “black box” type

models, which regulators may declare do not comply with

current laws and regulations [15]. However, we hypothesize

that actuaries should complement their results using ML

techniques to have a better understanding. The motivation

for this research is the lack of ML technique utilization in

premium deficiency reserves for an unearned premium risk.

Thus, we aim to employ several ML techniques to calculate

unearned premium reserves. Our choices are XGboost and the

random forest model. In order to benchmark our results, we also

developed two statistical models. One is a random effect model,

which can incorporate heterogeneity among policyholders.

The second model is a two-part model developed by Frees

et al. [16]. We apply our models to a set of extended auto

warranty policies written in 2011 for 60 months. The models

are trained from 2011 to 2013, predict the year 2014 and

are then compared with the actual 2014 premium deficient

reserve for an unearned premium risk. We use the mean,

value at risk, and tail value at risk as our risk measures

for premium deficiency reserves for an unearned premium

risk. The result shows that ML models outperform predictive

wise traditional statistical models, thus encouraging actuaries

to consider ML techniques when calculating reserves for the

unearned premium risk.
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2. Background and definitions

In this section, we discuss the unearned premium risk and

related terms.

2.1. Unearned premium

An unearned premium is the portion of the written premium

that is not yet earned by the insurer for the unexpired contracts

as of the valuation date [2].

2.2. Unearned premium reserve

This is the portion of the premium that is reserved for

unexpired risk [17]. Therefore, UPR is different from the PDRs

we calculated in this article. PDRs are required when UPR is

not sufficient to cover future losses. The calculation of UPR

depends on the length of an insurance contract and the type.

If an insurance contract is a short term (less than 13 months),

then generally UPR is calculated using a pro rata method. This is

justified by section 48 of the Statement of Statutory Accounting

Principles 65 (SSAP 65) set by the National Association of

Insurance Commissioners (NAIC), which states “Premiums

from a short-duration contract ordinarily should be recognized

as revenue over the period of the contract in proportion to the

amount of insurance protection provided. This generally results

in premiums being recognized as revenue evenly over the contract

period" [18].

The National Association of Insurance Commissioners

defines a long-duration property and casualty insurance contract

as follows : “‘Property and Casualty (P&C) Long Duration

Contracts’ refers to contracts (excluding financial guaranty

contracts, mortgage guaranty contracts, and surety contracts) that

fulfill both of the following conditions: (1) the contract term is

greater than or equal to 13 months and (2) the insurer can

neither cancel the contract nor increase the premium during

the contract term” [19]. In this article, we use an extended

auto warranty contract data set to calculate reserves, which

come under the long-duration contract category. For these long-

duration contracts, the UPR amount must be the greater of the

following three tests [7, 20].

1. Test 1: UPR must be greater than the total refund amount, if

all in-force policy holders surrender their policy for a refund

on the valuation date. This is the amount the insurer would

return to policy holders in the event of every policy holder

canceling their policies.

2. Test 2: UPR must be greater than the gross premium time

ratio of potential future losses and expenses from in-force

policies not yet incurred to the total gross loss and expenses

over the entire coverage term. Test 2 does not assume future

cancelation of policies in-force at the valuation date.

3. Test 3: UPR must be greater than the expected present value

of future losses to be incurred from in-force policies as of the

valuation date. Test 3 does consider the effect of cancelation

on future losses but not the refund payable [7] due to the

cancelation.

When an insurance company writes a cohort of contracts,

the UPR is equal to the sum of written premiums since no

premium is earned yet. As time passes by, the UPR decreases.

When all contracts expire, UPR becomes zero and the sum of

earned premium will be equal to the total written premium.

2.3. Unearned premium risk and premium
deficiency reserves

Assume there is a cohort of n insurance contracts written by

an insurance company. For a given valuation date, the unearned

premium risk for this cohort denoted by Z can be defined as

Jessup et al. [9]

Z = S∗ −

n
∑

k=1

P
(UE)
k

, (1)

where S∗ is the total future loss from in-force policies in

the cohort at the valuation date and P
(UE)
k

is the unearned

premium for the kth contract at the valuation date. Therefore,

the risk to the insurance company would be that the total

unearned premium from in-force policies is not sufficient to

cover the potential future losses arising from these policies after

the valuation date, hence the reserve requirement. Potential

future losses on valuation data can be modeled as an aggregate

sum or using the information at an individual level. Given the

computational power and flexibility of modern ML techniques,

we plan to model future losses at the individual level. Our

main target is modeling S∗ in this article. According to Section

11 of Statement of Statutory Accounting Principles 53 (SSAP

53), “When the anticipated losses, loss adjustment expenses

commissions and other acquisition costs, and maintenance costs

exceed the recorded unearned premium reserve, a premium

deficiency reserve shall be recognized by recording an additional

liability for the deficiency with a corresponding charge to

operations" [21]. Hence, we call the reserve required to cover the

unearned premium risk Z as PDRs for an unearned premium

risk and it can be taken as either, the expected value E[Z], the

value at risk VaRp(Z), or the tail value at risk TVaRp(Z) where p

denotes the corresponding percentile such as 95%. The selection

of the reserving method depends on the regulatory requirement

as well as the company’s appetite for taking risks.
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2.4. Extended auto warranty contracts

We used a cohort of extended auto warranty contracts to

demonstrate ML techniques in calculating PDR for an unearned

premium risk. Therefore, some properties of extended warranty

contracts are discussed here. Compared to other insurance

contracts, many auto warranty contracts are written for the

coverage of more than 13 months and bought with a single

premium [7]. Even when premiums are paid on an installment

basis, these are fixed premium policies with less possibility

of cancelation or premium modification [18]. An extended

warranty is a contractual obligation that gives coverage against

the cost of parts and services in the event of failure. Extended

warranties are usually purchased before the expiry of the

manufacturer warranty, which comes as the default for many

products. Once the manufacture warranty expires, the extended

warranty picks up the costs associated with a repair under the

deductible.

3. Modeling approach

We used a cohort of extended auto warranty policies written

in 2011 and expiring in 2016. We observe the number of claims

and severity of each claim arising from these policies until

expiry (or canceled), thus giving rise to a longitudinal data

structure. Even though the data set contains information for

years 2011–2016 inclusive, year 2016 was not complete. For the

year 2016, all records indicated zero claims. For the year 2015,

about 32.79% of policies expired before the end of the year.

Thus, we fitted models using years 2011–2013 inclusive and

reserved year 2014 for the out-of-sample validation. We used

31 December 2013 as our valuation date and predicted the PDR

for the unearned premium risk for the year 2014. For simplicity,

we assumed a uniform acquisition pattern for the unearned

premium, the most popular method among actuaries calculating

an unearned premium [9]. Annual reserve calculation is justified

since we calculate PDR for the unearned premium risk. A

different approach would be calculating the reserve amount

for the entire coverage period on the valuation date. But that

would either overestimate or underestimate the reserve since

many assumptions are needed to be made for this approach.

For example, assumptions regarding the number of policy

cancelations in future, premium acquisition patterns for a long

period, seasonality of risk, etc. should be made. We define the

observational unit as it where i denotes the ith policy in the

cohort and t denotes the calendar year.

3.1. Statistical model

Consider a cohort of insurance policies written in the year

2011. From these initial sets of policies, assume there is a cohort

of n insurance policies in-force at the valuation date for the

tth calendar year. Let Nit be the total number of claims for

the ith policy for the tth calendar year and define yit,j where

j = 1, 2, · · · ,Nit to be the severity of the jth claim for { it}

observational unit. We are interested in the annual claim size

for the ith policy for the tth year, Sit =
∑Nit

j=1 yit,j, and the total

claim amount for the entire cohort for the tth calendar year,

S∗t =
∑n

i=1 Sit . Then, we can calculate the unearned premium

risk for year t based on the Equation (1). In order to calculate Sit ,

we need frequency Nit and corresponding severities yit,j. Define

yit = (yit,1, yit,2, · · · , yit,Nit )
T , the annual claim size vector for

{ it} observational unit. Then the joint distribution for annual

claim frequency Nit and claim size vector yit suppressing the

subscript { it} can be written as

f (y,N) = f (N)f (y|N). (2)

Not every contract is written for the full year. Some contracts

may have been written in the middle of the year 2011 and

some may have canceled the warranty contracts before expiry.

Therefore, we use eit to denote the exposure of ith contract in

the tth calendar year. We assume uniform risk exposure for any

given calendar year. Thus, eit is simply the length of time (as

a fraction) in which the ith policy had the coverage for the tth

calendar year.

3.1.1. Frequency component: Random e�ect
model

We use the standard random effect Poisson count model for

frequency [22–24]. For a given policy i, we use all past historical

data up to year t to predict frequency for (t + 1)th year. The

model is defined as

λit = eit exp(αi + xTitβ), (3)

where αi is time constant random variable to incorporate

individual heterogeneity, xit = (1, x1it , x2it , · · · , xkit) be a vector

of k independent variables for the { it} observational unit and

β corresponding regression coefficients. We assumed random

effect αi ∼ N(0, σ 2). We also assumed that (Ni1,Ni2, · · ·NiTi )

are independent of each other given αi. With this model,

P(Nit = nit|αi) =
λ
nit
it e−λit

nit!
. (4)

3.1.2. Severity component: Random e�ect
model

The conditional severity distribution f (y|N) is modeled

using a linear regression model [16] with the log-transformed

dependent variable. The model is defined as

ln(yit,j|zit ,Nit > 0) = zTitγ + ǫit,j. (5)
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Here zit = (1, z1it , z2it , · · · , zmit) is a set of m explanatory

variables for severity yit,j. We assume that ǫit,j is distributed

normally with mean zero and variance σ 2. For this model,

E(ln(yij)|zit ,Nit > 0) = zTitγ . (6)

We used the median as the predictor of yit,j. Thus, for the

{ it} observational unit, the predicted jth loss given the number

of claims Nit is given by

ŷit,j = exp(zTit γ̂ ), (7)

where γ̂ is the estimated regression coefficient.

3.1.3. Prediction of the annual claim amount

For a given observational unit { it} , conditional on Nit >

0, we assume loss amounts yit,j where j = 1, 2, · · · ,Nit are

independent and identically distributed. Hence the prediction

of the annual aggregate claim amount for the ith policy holder

given Nit is

Ŝit =

Nit
∑

j=1

ŷit,j. (8)

The expected value of this predictor is

E[Ŝit] = E[E[Ŝit|Nit]] (9)

= exp(zTit γ̂ )E[Nit]. (10)

Observe that regression coefficient γ̂ is known from the

training data set. From the frequency model (random effect

Poisson),

E[Nit|αi] = λit , (11)

with αi ∼ N(0, σ 2). Hence,

E[Nit] = Eαi [E[Nit|αi]]

= Eαi [λit]

= Eαi [eit exp(αi + xTitβ)]

= eite
xTitβEαi [e

αi ]

= eite
xTitβeσ

2/2.

The true value of σ 2 is unknown. Hence, we use sample

variance of random effects, ŝ2, from the training data set. Thus,

E[Ŝit] = eite
zTit γ̂+xTitβeŝ

2/2. (12)

3.1.4. Alternative model

Instead of treating data as longitudinal data, one can use only

the previous year’s data to predict for the next year. We call this

the alternative model. We modify two-part model given in Frees

et al. [16] to predict future total losses for the (t + 1)th calendar

year based on the t th calendar year data. Under this approach,

our goal is to predict Ni,t+1 and yi,t+1 given Ni,t and yi,t .

3.1.5. Frequency component: Alternative model

We use the negative binomial regression model (NB-2) as

our frequency model. The tth year data are used to caliber

the model. Let xit = (1, x1it , x2it , · · · , xuit) be a vector of

u independent variables for the { it} observational unit. The

frequency model is defined as follows Frees et al. [16]:

ln(E[Nit|xit]) = ln(eit)+ β0 + β1x1it + β2x2it + · · · + βuxuit

+ ǫit = ln(eit)+ xTitβ + ǫit , (13)

and the distribution of the error term ǫit assumed to be gamma

distributed. Now,

µit = E[Nit|xit] = eit exp(x
T
itβ), (14)

and

Var(Nit|xit) = µit(1+ αµit).

The probability, conditional on xit is given by

Pr(Nit = nit|xit) =
Ŵ(nit + ν)

nit!Ŵ(ν)

(

ν

ν + µit

)ν(

µit

ν + µit

)nit
,

(15)

where ν = 1
α and Ŵ(·) denote the gamma function.

3.1.6. Severity component: Alternative model

The conditional severity distribution, f (y|N), is modeled

using a linear regression model [16] with a log-transformed

dependent variable. We used only the tth year data to predict

for the (t + 1)th year. The severity model is defined as

ln(yit,j|zit ,Nit) = zTitγ + NitβN + ǫit,j. (16)

Here zit = (1, z1it , z2it , · · · , zvit) is a set of v explanatory

variables for severity yit,j and the Nit is the number of claims

for the ith policy holder in the calendar year t. Since we already

have a random effect model, we did not add a random effect to

this alternative model. However, this model takes the number of

claims, Nit , as a predictor for the severity. For this model,

E(ln(yit,j)|zit ,Nit > 0) = zTitγ + NitβN . (17)

Under this model, we use the median as the predicted

loss severity instead of the expected value. Thus, for the { it}

observational unit, the predicted jth loss given the number of

claims Nit , is given by

ŷit,j = exp(zTit γ̂ + Nitβ̂N ). (18)

3.1.7. Prediction of annual claim amount:
Alternative model

For a given observational unit { it} , conditional on Nit , we

assume that loss amounts yit,j, j = 1, 2, · · · ,Nit are independent
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and identically distributed. Hence the prediction of the annual

aggregate claim amount for the ith policy holder given the Nit is

Ŝit =

Nit
∑

j=1

ŷit,j. (19)

The expected value of this predictor is

E[Ŝit] = E[E[ŷit,j|Nit]] (20)

= exp(zTit γ̂ )E[e
Nit β̂N ] (21)

= exp(zTit γ̂ )

∞
∑

nit=1

nit exp(nitβ̂N )Pr(Nit = nit) (22)

= exp(zTit γ̂ )M
′
Nit

(β̂N ). (23)

Here M′
Nit

(β̂N ) is the first derivative of the moment

generation function of Nit evaluated at β̂N . However, this

predictor is not useful since the number of claims for ith policy,

Nit for the coming year is not known at the evaluation date.

Thus, we used the fitted frequency model. In particular,

M′
Nit

(t) =

∞
∑

k=1

k exp(kt)P̂ri(Nit = k). (24)

The probability term, P̂ri(Nit = k), is the predicted

probability from the fitted alternative frequency model using

negative binomial regression for { it} observational unit. If β̂N

is zero, then the predictor reduces to E[Ŝit] = exp(zTit γ̂ )Ê[Nit],

where Ê[Nit] is the expected frequency from the fitted

frequency model.

3.2. XGboost model

In addition to the statistical models, we also considered

machine learning models. First, we use the XGboost model

[25], a supervised learning method. Boosting is an iterative

algorithm. In each iteration, samples are weighted according to

the prediction results of the previous iteration, so as iterations

continues, the error will get smaller and smaller. Thus, the bias

of the model will continue to decrease. XGboost is a tool for

massively parallel Boosting Tree. It takes a gradient boost as the

framework and fastest, best open-source boosting tree toolkit

at present.

During the model building phase, XGboost uses distributed

weighted quantile sketch algorithm to efficiently find the best

split point from the weighted data set. This method will produce

k base models. The first base model is obtained by building the

tree for the first time, and the predicted value is generated. Then

the difference between the predicted value and the observed

value is used as the target value for the second tree construction.

After repeating this procedure several times, we can get the

prediction:

ŷi =

k
∑

t=1

ft(xi), (25)

where ft(xi) is the kth basis tree model and ŷi is the predicted

value of the ith sample.

The loss function L used in the model can be written as

L =

n
∑

i=1

l(yi, ŷi), (26)

where l can be the mean square error (MSE), the cross entropy,

the Gini index, etc. XGboost approach uses more complex

models as penalty terms (to prune the tree) when compared with

LASSO regularization and Ridge regularization. The objective

function under XGboost is

obj =

n
∑

i=1

l(yi, ŷi)+

K
∑

k=1

�(fk). (27)

The second term is the regularization term to control the

complexity of the model which prevents over-fitting. When we

fit the XGboost model, k trees are generated. At each time,

XGboost uses distributed weighted quantile sketch algorithm

to find the best split point and prune the leave nodes through

the penalty. With k iterations in the XGboost model, our

observation object Ni is classified in different nodes in k trees,

and each base model has a different predicted value. Hence, for

Ni, the predicted value is the sum of the corresponding predicted

values of each tree given by

ŷ(Ni) = X1i + X2i + · · · + Xki, (28)

where Xki is the predicted value of the kth iteration. Thus, each

tree construction is an iteration and the difference becomes

smaller and smaller until XGboost produces the relatively

optimal model under a certain parameter set. After k iterations,

we can use the final model for the prediction of our test data.

3.3. Random forest

In machine learning, random forest is a part of the bagging

method of ensemble learning [26]. Random forest builds a forest

of many de-correlated decision trees randomly and then average

those trees. Let S be our training data set with N observations.

For each observation, assume that there are p variables and the

number ofm decision trees will be generated when constructing

the random forest. For each decision tree i, we draw a bootstrap

sample of sizeN from the training data set. Then for this sample,

we select k variables at random from the available p variables.

Then split the node into two by calculating best split points.
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Each node performs feature selection by comparing values such

as the Gini index, mean squared error, or information entropy.

The final leaf node stores the category for the decision result.

Once we grow the random forest, we can use terminal nodes for

regression or classification purposes. The final outcome would

be either an average or majority vote depending on the problem

type. We used random forest for the regression in our data set.

4. Data set

The data set comprises a set of extended warranty contracts

from an insurance company based on North America. We chose

the coverage option listed as “60 months/10,000 h” and written

in the year 2011 for our study. This resulted in 2224 extended

warranty policies as our cohort of policies for the unearned

premium risk study. Table 1 shows the frequency distribution for

the year 2011 written contracts by claim count and claim year.

According to the table, the majority of policies had no claims

for the duration of the coverage. The data set also shows an

extreme number of claims such as 13 claims in the year 2013.

However, we did not do any outlier treatment to our data set.

Summary statistics for severity per claim for a given year are

given in Table 2. It should be noted that the deductible amount

was not recorded for almost 99% of policies. Therefore, severities

are actually paymentsmade by the insurance company instead of

actual losses. However, we do not think that this would impact

our findings in this article. The data set is not complete for the

year 2016, since there are no claims recorded for the year 2016.

We do not believe that there were no claims in the year 2016

but rather the data set does not contain complete information

for the year 2016. Thus, we do not plan to use the year 2016

data in our model. Also, the year 2015 excluded about 32.79%

of the policies expired before the end of the year. Thus, we used

years 2011–2013 for training purposes and year 2014 for testing

our models. Our valuation date is 31 December 2013. On the

valuation date, we have several previous years’ data to train our

model. One approach would be to use all previous years’ data

to train the model. Another approach would be just to use the

last year (year 2013) data to train the model. For the random

effect model, XGboost model, and random forest model, we used

2011–2013 as the training data set. For the alternative statistical

model, we used only 2013 data as the training data. The test data

set is always the year 2014.

The data set contains other information such as brand,

model, generation, vehicle build date, warranty start date,

warranty end date, vehicle failure date, and many other

characteristics. We also engineered a few features such as

exposure, age of the vehicle, and annual losses as of the valuation

date. Summary statistics for the age of vehicles in the year 2011

cohort as of 31 December 2011 are given in Table 3.

The age is calculated using the build date variable and is used

as one of the covariates instead of the build date. The average

age of vehicles in the portfolio is around 1 year along with a

maximum age of 3.95 years as of the 31 December 2011. The

summary statistics for exposure by year are given in Figure 1.

For 2011, the average exposure is about 0.53. Then, for years

2012–2014, many vehicles had full exposure for the entire year.

After that, some coverage expired either due to the cancelation

or reaching the 10,000 mileage restriction.

5. Premium calculation

The data set does not contain the premium related to

extended warranty policies. It should be noted that most

extended auto warranty policies have a single premium [7].

There are several methods we can employ to get the missing

premium for extended warranty policies.

1. Calculate the premium using a past data set.

2. Use a sample of the current data set and calculate the

premium based on claims and severities in that sample.

3. Use the premium from another academic research study on

extended auto warranty policies.

4. Use online quoted premiums from companies that provide

extended warranties.

5. Use the sale price of the vehicle and assume the premium of

the extended warranty policy should be equal to a percentage

of the sale price.

From these options, we do not have a second data set to

calculate the premium. Using the same data set (even with

sampling) for calculating the premium may result in premium

learning the future severities, thus showing no premium

deficiency for the unearned premium risk at the end. We

tried to find past research references for the premium on

extended auto warranty policies, but could not find a good

reference. From the last two options, we decided to use the

sale price of the vehicle to calculate the single premium

of the extended warranty policy. This approach would give

us different premiums for each vehicle. The percentage we

used was 2%, which is an ad hoc number. It should be

noted that knowledge of the premium is required to calculate

PDR but not to evaluate the models itself. We can rewrite

observed vs. predicted unearned premium risk models as below

:

Zobserved = Sobserved −

n
∑

k=1

P
(UE)
k

, (29)

and

Zpredicted = Spredicted −

n
∑

k=1

P
(UE)
k

(30)

An unearned premium for the kth contract is usually

known by the evaluation date. Thus, we think premium itself
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TABLE 1 Number and percentage of claims, by count and year for the 2011 cohort.

# of claims 2011 2012 2013 2014 2015 2016 Total % of total

0 2187.00 1943.00 1618.00 1570.00 1958.00 1488.00 10764.00 85.47

1 27.00 158.00 323.00 357.00 178.00 0.00 1043.00 8.28

2 7.00 62.00 153.00 156.00 48.00 0.00 426.00 3.38

3 1.00 30.00 68.00 60.00 19.00 0.00 178.00 1.41

4 1.00 11.00 31.00 23.00 7.00 0.00 73.00 0.58

5 1.00 11.00 14.00 25.00 3.00 0.00 54.00 0.43

6 0.00 4.00 7.00 10.00 0.00 0.00 21.00 0.17

7 0.00 2.00 7.00 6.00 0.00 0.00 15.00 0.12

8 0.00 1.00 0.00 4.00 1.00 0.00 6.00 0.05

9 0.00 0.00 1.00 3.00 0.00 0.00 4.00 0.03

10 0.00 1.00 0.00 1.00 1.00 0.00 3.00 0.02

11 0.00 1.00 1.00 3.00 0.00 0.00 5.00 0.04

12 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.01

13 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.01

Total 2224.00 2224.00 2224.00 2219.00 2215.00 1488.00 12594.00 100.00

TABLE 2 Summary statistics of severities per claim for 2011–2014 for the 2011 cohort.

Year 2011 2012 2013 2014 2015

Min 28.49 11.39 0.45 1.5 7.75

Q1 198.46 243.29 189.26 145.8 174.72

Median 422.33 419.91 404.87 348.00 364.96

Mean 809.22 586.75 631.27 640.70 609.27

Q3 707.14 766.97 789.05 764.20 654.24

Max 11891.52 4247.47 12130.98 15164.30 6012.95

TABLE 3 Summary of vehicles age as of 31 December 2011 for the 2011 cohort.

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.06023 0.46829 0.94730 1.00543 1.40737 3.95346

plays a very little role in the conclusion. The models can

be used with different premium amounts, since they do not

play any role in the modeling phase. The premium acquisition

pattern used in this article is uniform. Under this method, the

unearned premium for ith contract on evaluation date E is

calculated as

PUEi,E = (1− ti,E)Pi. (31)

Here ti,E is calculated as the number of days from the

warranty start date to the evaluation date E divided by the

number of days between the warranty start date and the

warranty end date and Pi denotes the single premium paid at

the beginning of the ith contract, which is 2% of the sale price of

the ith vehicle.

6. Model implementation and results

6.1. Variable description

We considered the following covariates in our analysis:

ID, BRAND, MODEL, GENID, TYPE, M, SALE_PRICE,

PLANT_ID, CID, STATE, DEDUCTIBLE, USAGE, TOTALPD,

AGE, EXPO, and COUNT. The variable ID is the unique

identification number of the vehicle/policy. BRAND and

MODEL refer to the brand and model of the vehicle. There

were three brands and 252 models in the data set. GENID

refers to the generation of the vehicle with 28 generations.

TYPE is the type of vehicle for license/certification requirement

which constitutes five categories. M is a classification of vehicle

by a technical component with 18 categories. SALE_PRICE

refers to the sale price of the vehicle. PLANT_ID refers
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FIGURE 1

Box plot for coverage exposure by the year.

to where the vehicle was built with seven categories. CID

lists the customer identification number. Some customers

may have bought more than one vehicle. There are 1,504

different categories for this variable. STATE refers to the state

where the vehicle is located. Each state in North America

is given a unique state number with 54 categories in the

data set. The DEDUCTIBLE variable refers to the deductible

amount. USAGE categorizes vehicles according to industrial

classifications. There were 326 categories for this variable in

the data set. TOTALPD is the total payment after deductible

under the extended warranty contracts. AGE refers to the age

of the vehicle, EXPO refers to the exposure of the vehicle for

that year, and COUNT refers to the number of claims for

that year.

Our intention is to predict PDR for the unearned

premium risk for the year 2014. For each model, a

subset of variables is used as appropriate. Note that many

variables are constant over years such as BRAND, MODEL,

GENID, etc. The variable DEDUCTIBLE was not used

in the analysis since it was missing in more than 99% of

policy records.

6.2. Statistical model

For statistical models, multicollinearity among predictors

results in hard to interpret, less stable, and over-fitting models.

Therefore, we tested multicollinearity among predictors using

R2, Cramer V statistics and the generalized variance inflation

factor [27]. Since many variables are the same across years in our

data set, auto-correlation is present. The correlation matrix for

quantitative variables in training data sets is shown in Table 4.

6.2.1. Frequency model fitting

We used the HPGENSELECT procedure in SAS 9.4

[28] software with backward selection method and AIC

as the criteria to select the best model for the frequency

component of the alternative model (negative binomial).

Initially, we used the following independent variables in the full

model: AGE, SALE_PRICE, BRAND, MODEL, GENID, TYPE,

M,PLANT_ID, STATE, CNTRY, and USAGE. The dependent

variable is COUNT. The selectedmodel contains AGE,MODEL,

and STATE as independent variables. Next we check the
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TABLE 4 Correlation matrix for SALE_PRICE, EXPO, and AGE for training data sets.

Training data 2013 2011–2013

SALE_PRICE EXPO AGE SALE_PRICE EXPO AGE

SALE_PRICE 1.00 –0.01 –0.16 1.00 –0.05 –0.10

EXPO –0.01 1.00 –0.14 –0.05 1.00 0.70

AGE –0.16 –0.14 1.000 –0.10 0.70 1.00

collinearity between the MODEL and the BRAND variables

using Cramer V statistics and generalized variance inflation

factor. The Cramer V Statistic is 1 and the generalized variance

inflation factor could not be calculated since BRAND and

MODEL are perfectly correlated. Hence strong collinearity exists

among the two variables. Given that the Model contains 252

levels and BRAND contains only three levels, we decided to

replace MODEL with BRAND to ease interpretation. This

results in selected covariates for the frequency model as AGE,

BRAND, and STATE. We used the same variables as fixed effects

along with ID as a random effect in a random effect Poisson

model. Models were implemented in R Core Team [29] using the

gamlss, lme4, and glmmTMB packages. Observe that BRAND

and STATE variables are constant over the years for each policy,

and only age and exposure change over the time. Predictions for

each model with Pearson chi-square goodness of fit statistics are

shown in Table 5.

The fitted models for the year 2014 are given in Figure 2.

Surprisingly, a random effect Poisson model did not perform

better than the traditional negative binomial model. According

to Figure 2, when the 2011–2013 data were used for training, the

random effect model predicted more zero claims than observed.

Also observe that the main difference between each model

occurred when predicting zero and one claim. Prediction for

other numbers of claims looks close enough.

6.2.2. Severity model fitting

For severity modeling without random effect, we used the

glm function in R and a stepwise selection method to choose

the best model. Initially, we used COUNT, AGE, SALE_PRICE,

BRAND, MODEL, GENID, TYPE, M, PLANT_ID, STATE,

CNTRY, and USAGE as independent variables. The dependent

variable was log(TOTALPD). Then using AIC information

criteria, forward and backward step-wise regression methods,

we chose COUNT, MODEL, USAGE, and AGE variables for

severity modeling. We replaced MODEL with BRAND due

to the strong correlation between BRAND and MODEL as

well as fewer levels in the BRAND variable. This resulted in

COUNT, BRAND, USAGE, and AGE as covariates for severity

modeling. The same variables, except COUNT, were used for the

severity component of the random effect model. The correlation

between COUNT and AGE was negligible. When fitted, the

coefficient of the COUNT variable in the severity component

of the alternative model is −0.000745. Thus, frequency is not

an important predictor for severity prediction in the alternative

model. The predicted annual loss for the year 2014 is given by

Ŝ2014 =

n
∑

i=1

Ŝi,2014,

for the policies in-force as of the evaluation date under each

model given in Table 6.

The average loss size and the standard deviation per policy

are given in Table 7.

Mean squared error(MSE), rootmean squared error(RMSE),

normalized root mean squared error by mean (NRMSE by

mean), mean absolute error (MAE), and R2 for the predicted

annual losses vs. actual losses are given in Table 8.

Finally, we predict the PDR for the unearned premium

risk for the year 2014 under each model. The deficiency is

indicated by the positive values and a surplus is denoted by

the negative values. The reserves are calculated under three

metrics: mean, value at risk, and conditional tail expectation.

Table 9 summarizes these result. The 95% confidence intervals

for the difference between true annual losses against predicted

annual losses from the alternative model and the random effect

model are given by (205.8386, 302.9774), (73.29819, 181.78059),

respectively. Even though none of the statistical models come

close to the actual values (or contains zero in confidence interval

for differences), we can see that the random effect model is

better than the alternative model. This is validated by values in

Tables 6, 7, 9.

6.3. XGboost model

The XGboost model can be used for regression and

classification. Instead of modeling frequency and severity

separately, we used the annual loss for each policy in the training

data set to predict the annual loss for each policy in the test

data set. We created a new feature named ANNUAL_LOSS by

summing up all claim severities for that particular year. Then,

we used years 2011–2013 annual losses for training purposes

and the year 2014 annual losses for testing purposes. The model

was implemented in R using the xgboost package. The hyper-

parameters used in the model are given in Table 10.
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TABLE 5 Expected frequency for the year 2014 based on two frequency models for training data sets.

Random effect Alternative model

Counts Observed in 2014 2011–2013 2013 2013

0 1569 1887.93 1642.41 1605.97

1 357 233.42 381.56 355.67

2 156 56.42 106.75 132.35

3 60 20.39 42.75 58.66

4 23 9.09 20.44 28.76

5 25 4.57 10.53 15.12

6 10 2.49 5.67 8.38

7 6 1.43 3.15 4.85

8 4 0.85 1.80 2.90

9 3 0.52 1.06 1.79

10 1 0.32 0.66 1.14

11 3 0.20 0.42 0.74

12 1 0.13 0.28 0.49

χ2 goodness of fit 592.013 84.45 22.02

χ2 GOF p value 0.00 0.00 0.03729

FIGURE 2

Fitted frequency models for the year 2014 based on two training data sets (2013 vs. 2011–2013) and two models (alternative model vs. random

e�ect Poisson model).

For XGboost, we choose to consider the BRAND, MODEL,

GENID, TYPE, M, SALE_PRICE, STATE, USAGE, EXPO, and

AGE. The target variable is ANNUAL_LOSS. The model is

evaluated by referring to MSE, RMSE, NRMSE by mean, MAE,

R2, and the calculated values are given in Table 8. The predicted

annual total loss for the entire cohort, average total loss per

policy, and standard deviation of average total loss per policy

is shown in Tables 6, 7. Risk metrics for the unearned premium
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TABLE 6 Actual and predicted annual total losses for the year 2014 for all policies in-force at 31 December 2013 evaluation date under each model.

Actual(2014) Random effect Alternative XGboost Random forest

821,399.90 538,517.5 257,122.90 796,230.80 780,327.4

TABLE 7 Actual and predicted average total annual losses per policy as of the evaluation date.

Actual(2014) Random effect Alternative XGboost Random forest

Year Mean SD Mean SD Mean SD Mean SD Mean SD

2014 370.34 1162.36 242.79 596.02 115.93 141.23 358.99 575.09 351.82 338.33

TABLE 8 Fit statistics for each model.

Year Model MSE RMSE NRMSE(by mean) MAE R
2

2014 Random Effect 1712375 1308.578 3.53351 512.3623 4.649356e− 05

Alternative 1424666 1193.594 3.223023 422.4653 0.001017831

XGboost 1579532 1256.794 3.393682 563.0019 0.005786537

Random Forest 1330938 1153.663 3.115199 520.4769 0.02918126

TABLE 9 Premium deficiency for unearned premium risk under each model.

Risk metric Mean SD VaR (95%) CTE (95%)

Actual $136.16 $1150.46 $1901.61 $4020.26

Random Effect $8.42 $635.04 $793.73 $1634.62

Alternative –$118.25 $210.52 $207.75 $341.46

XGboost $124.81 $605.38 $1154.89 $2050.04

Random Forest $119.12 $380.94 $865.64 $1167.68

risk under the XGboost model are calculated and are shown in

Table 9. The residual plot for the XGboost model on the test data

set is shown in Figure 3.

6.4. Random forest model

As an important machine learning method, the random

forest can also be used to fit classification and regression models.

We used the same variable set we used in the XGboost model

and the model was implemented in R Core Team [29] using

RandomForest package. The number of trees used in modeling

was 500 and the best number of random variables used in

each tree, mtry was 42. It should be noted that XGboost and

random forest both have common variables for the first 20 most

important variables as shown in Table 11. The model fit statistics

is shown in Table 8. Predicted total annual losses for year 2014,

as well as the average loss per policy and the standard deviation

of loss per policy, are shown in Tables 6, 7. The prediction for

policies in-force as of the evaluation date: 31 December 2013.

TABLE 10 Parameters used in the XGboost model.

Parameters Value

Program R, XGboost

seed 123

nrounds 2000

objective reg:squarederror

early_stopping_rounds 3

max_depth 10

eta 0.2

7. Discussion and conclusion

The purpose of this article is to demonstrate machine

learning approaches to calculate premium deficiency risk for

an unearned premium. Based on the number of available

research articles, we think that the unearned premium risk

has attracted less attention from the actuarial community
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FIGURE 3

Residual plot for predicted value on test data set under XGboost.

compared to classical claim liability reserves such as IBNR and

RBNS. However, the unearned premium risk comprises a major

component of premium liability. Therefore, there exist specific

guidelines by regulators to monitor the risk everywhere around

the world. The existing few research articles on an unearned

premium risk mainly utilize traditional statistical models. Also,

many make major assumptions regarding the number of claims

and the severity. For example, Jessup et al. [9] assumed that

the policy can incur only one future loss per given year in

their non-homogeneous loss model for unearned premium risk.

Another traditional assumption many used in loss modeling is

independence between the number of losses and the severity of

the loss.

In this article, we were allowed more than one loss per year

and dependence between the number of losses and the severity of

losses. To benchmark our work, we first developed two statistical

models. One was constructed using a random effect model and

the other was using a model described by Frees et al. [16]. Both

models allowed severity to be conditional on the number of

claims. The random effect model took the heterogeneity among

policy holders as the random effect. Once we developed these

models, we turned our attention to machine learning models.

We used two popular machine learning models: XGboost and

random forest in this article.

The data set we used in this article is a cohort of extended

warranty contracts written in the year 2011. The contracts were

written for 60 months. However, we used only years 2011–2013

for training and the year 2014 for testing. We used the only

year 2013 as the training data set for the alternative statistical

model. The data set contained the number of claims as well as

the severity per claim. However, the data set did not contain

the actual single premium paid by the policy holder for the

warranty contracts. Therefore, we used 2% of the sale price of

the vehicle as the single premium of the warranty contract. We

acknowledge this is an ad hoc number; however, the premium

obtained this way was applied in calculating actual reserve

as well as predicted reserve, thus minimizing the effect. We

assumed the premium acquisition pattern to be uniform, which

can be relaxed very easily without major modification to the

models used in the article. According to Table 8, the mean

squared error is highest for the random effect model and the

lowest for the random forest model. Mean absolute error was the

lowest for the alternative statistical model and the highest for the

XGboost model. However, when compared with the predicted

annual losses for the entire cohort against actual losses for the

year 2014, XGboost and random forest models perform very well

compared to statistical models. Also, the average loss per policy

is more closely predicted by the XGboost model and the random

forest model. However, it should be noted that all models under-

evaluate actual losses. The same phenomenon happenedwith the

dependent models developed in Jessup et al. [9].

We observed the average actual loss reserve is $136.16 per

policy for the year 2014, thus indicating premium deficiency.

When we tried to predict using the statistical model, the

alternative model predicted –$118.25 per policy or surplus and

random effect model predicted a shortage of mere $8.42 per
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TABLE 11 Variable importance for the XGboost model.

Feature Gain Cover Frequency Importance

1 AGE 0.43 0.29 0.44 0.43

2 MODEL97 0.06 0.00 0.00 0.06

3 MODEL25 0.03 0.00 0.01 0.03

4 USAGE271 0.03 0.00 0.00 0.03

5 MODEL4 0.02 0.00 0.00 0.02

6 STATE15 0.02 0.00 0.01 0.02

7 MODEL186 0.02 0.00 0.00 0.02

8 SALE_PRICE 0.02 0.02 0.02 0.02

9 USAGE5 0.02 0.00 0.01 0.02

10 STATE19 0.02 0.00 0.02 0.02

11 EXPO 0.02 0.02 0.08 0.02

12 MODEL164 0.02 0.00 0.00 0.02

13 MODEL7 0.01 0.00 0.00 0.01

14 USAGE56 0.01 0.00 0.00 0.01

15 MODEL83 0.01 0.01 0.01 0.01

16 STATE43 0.01 0.00 0.00 0.01

17 STATE31 0.01 0.00 0.00 0.01

18 STATE33 0.01 0.00 0.00 0.01

19 MODEL63 0.01 0.00 0.00 0.01

20 STATE24 0.01 0.00 0.00 0.01

FIGURE 4

Reserve amount for the unearned premium risk under each model for test data set.

policy. Thus, the difference of $127.74 per policy if the random

effect model is used for reserving. Machine learning models

predicted $124.81 and $119.12, respectively, which is close to

the actual shortage per policy. However, we acknowledge that all

model predictions are undervalued compared to real deficiency.

Since the sample size (2, 219) for the year 2014 is large, we
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conducted a simple two-sample t-tests to see whether predicted

means for premium deficiencies are different from the true

mean. Test statistics for this test can be calculated from values

given in Table 9. The test shows that under 0.001, XGboost

and random forest models predicted that average premium

deficiency is same as the true premium deficiency. Also, both

statistical models were rejected under a 0.001 significance level.

The average as a risk measure may not be suitable for

reserving purposes. Many use value at risk (VaR) or tail value at

risk (TVaR) as the risk measure for this purpose. Under VaR and

TVaR, for a 95% confidence, the XGboost model predictions are

the closest to actual values. When we used statistical models, the

difference was much larger. The same phenomena can be seen in

previous research. For example, Table 5 in the article [9] showed

that the observed reserve is –8,247,000 and the predicted mean

reserve of –4,302,000 and –2,284,000 for independent models.

For the year 2014, the distribution of the unearned premium risk

is given in Figure 4.

According to the density plot, the alternative statistical

model density curve closely follows the actual reserve density

curve when the required reserve amount is zero or negative

(surplus). The density curve shows a lighter tail to the right for

the alternative model compared with the actual curve. However,

XGboost and Random forest models show thick tails to the right,

thus capturing extreme values and hence predicting reserves

more correctly.

We have shown that ML techniques can be used in place of

the statistical model or at least supplement results on calculating

unearned premium risk and required deficiency reserves. Our

calculations show that ML models predict deficiency reserves

more closely than the two statistical models we used in this

article. We should consider using more ML techniques. For

example, deep learning techniques should be considered and

compared with traditional models for unearned premium risks.

We assumed a uniform acquisition pattern for premium.

This can be relaxed since companies need to decide how to

divide premiums as earned vs. unearned at the beginning for

bookkeeping purposes. Once the rule is available, the unearned

premium at each valuation date is known in advance. We did

not consider seasonality and the time of loss in our analysis.

In statistical models, for the given observational unit { it} ,

the intensity function only vary with covariates xit . However,

relaxing this assumption and allowing the intensity function to

depend on the time of the year as well as covariates can bring

seasonality to the model. Further research should be carried out

in this aspect.
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