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Bayesian optimization (BO) provides an e�ective method to optimize

expensive-to-evaluate black box functions. It has been widely applied to

problems in many fields, including notably in computer science, e.g., in

machine learning to optimize hyperparameters of neural networks, and in

engineering, e.g., in fluid dynamics to optimize control strategies thatmaximize

drag reduction. This paper empirically studies and compares the performance

and the robustness of common BO algorithms on a range of synthetic test

functions to provide general guidance on the design of BO algorithms for

specific problems. It investigates the choice of acquisition function, the e�ect

of di�erent numbers of training samples, the exact and Monte Carlo (MC)

based calculation of acquisition functions, and both single-point and multi-

point optimization. The test functions considered cover a wide selection

of challenges and therefore serve as an ideal test bed to understand the

performance of BO to specific challenges, and in general. To illustrate how

these findings can be used to inform a Bayesian optimization setup tailored

to a specific problem, two simulations in the area of computational fluid

dynamics (CFD) are optimized, giving evidence that suitable solutions can

be found in a small number of evaluations of the objective function for

complex, real problems. The results of our investigation can similarly be

applied to other areas, such as machine learning and physical experiments,

where objective functions are expensive to evaluate and their mathematical

expressions are unknown.

KEYWORDS

Bayesian optimization, Gaussian Process, black box function, computer simulation,

fluid dynamics, turbulent drag reduction
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1. Introduction

Expensive black box functions are functions characterized

by high evaluation costs and unknown or non-existent

mathematical expressions. These functions cannot be optimized

with conventional methods as they often require gradient

information and large numbers of function evaluations.

Bayesian optimization (BO), however, is a specialized

optimization strategy developed for this specific scenario.

It can be used to locate global optima of objective functions that

are expensive to evaluate and whose mathematical expressions

are unknown [1, 2].

Recently, it has been applied successfully in the data-

intensive field of computational fluid dynamics (CFD).

Most notably, Talnikar et al. [3] developed a Bayesian

optimization framework for the parallel optimization of

large eddy simulations. They used this framework (i) on a

one-dimensional problem to determine the wave speed of a

traveling wave that maximizes the skin-friction drag reduction

in a turbulent channel flow and (ii) on a four-dimensional

problem to find an efficient design for the trailing edge of

a turbine blade that minimizes the turbulent heat transfer

and pressure loss. For the former, Bayesian optimization was

able to locate a wave speed to generate a skin-friction drag

reduction of 60%, while for the latter within 35 objective

function evaluations a design was found that reduced the

heat transfer by 17% and the pressure loss by 21%. Mahfoze

et al. [4] utilized Bayesian optimization on a four-dimensional

problem to locate optimal low-amplitude wall-normal blowing

strategies to reduce the skin-friction drag of a turbulent

boundary-layer with a net power saving of up to 5%, within

20 optimization evaluations. Morita et al. [5] considered

three CFD problems: the first two problems concerned the

shape optimization of a cavity and a channel flow. The third

problem optimized the hyperparameters of a spoiler-ice model.

Lastly, Nabae and Fukagata [6] maximized the skin-friction

drag reduction in a turbulent channel flow by optimizing the

velocity amplitude and the phase speed of a traveling wave-like

wall deformation. They achieved a maximum drag reduction

of 60.5%.

Abbreviations: AUC, area under the curve; BO, Bayesian optimization;

BUCB, Batched Upper Confidence Bound; CDF, cumulative distribution

function; CFD, computational fluid dynamics; CL, Constant Liar; EI,

Expected Improvement; ES, Entropy Search; GDR, global drag reduction;

GP, Gaussian process; GP-UCB, Gaussian Process Upper Confidence

Bound; MC, Monte Carlo; MES, Max-value Entropy Search; MEMS, Micro-

Electro-Mechanical-Systems; MLE, maximum likelihood estimation; NES,

net-energy savings; NUBO, Newcastle University Bayesian Optimization;

PDF, probability density function; PES, Predictive Entropy Search; PI,

Probability of Improvement; UCB, Upper Confidence Bound.

Apart from these experiments, Bayesian optimization has

also been used to tune hyperparameters of statistical models.

For example, Wu et al. [7] optimized the hyperparameters of

a selection of models, such as random forests, convolutional

neural networks, recurrent neural networks, and multi-grained

cascade forests. In these low-dimensional cases (two or three

parameters) the model performance increased and the time to

find the solutions was reduced compared to manual search for

each model.

While these examples show that Bayesian optimization

performs well on a wide selection of problems, such as computer

simulations and hyperparameter tuning of machine learning

models, there is no extensive study on the many different

types of Bayesian optimization algorithms in the literature. In

particular, there is a research gap regarding the performance

and the robustness of Bayesian optimization when applied to

distinct challenges. This paper aims to address this gap by

considering a wide range of algorithms and a wide range

of problems with increasing levels of complexity that are,

consequently, increasingly difficult to solve. The comparison

and the thorough analysis of these algorithms can inform the

design of Bayesian optimization algorithms and allows them

to be tailored to the unique problem at hand. To show how

the findings can guide the setup of Bayesian optimization,

two novel simulations in the area of CFD are optimized,

demonstrating that Bayesian optimization can find suitable

solutions to complex problems in a small number of function

evaluations. The results of these experiments show that Bayesian

optimization is indeed capable of finding promising solutions

for expensive-to-evaluate black box functions. In these specific

cases, solutions were found that (a) maximize the drag reduction

over a flat plate and (b) achieve drag reduction and net-

energy savings (NES) simultaneously. For these experiments,

the Newcastle University Bayesian Optimization (NUBO)

framework, currently being developed to optimize fluid flow

problems, is utilized.

The paper is structured as follows. In Section 2, the

Bayesian optimization algorithm, in particular the underlying

Gaussian Process (GP) and the different classes of acquisition

functions, are reviewed. Section 3.1 discusses the synthetic

benchmark functions and their advantages over other types

of common benchmarking methods. In Section 3.2, four

different sets of simulations are presented. These experiments

study—Section 3.2.1 multiple analytical single-point acquisition

functions, Section 3.2.2 varying numbers of initial training

points, Section 3.2.3 acquisition functions utilizing Monte Carlo

sampling, and Section 3.2.4 various multi-point acquisition

functions. Finally, Section 3.3 discusses the main findings and

relates them back to the problems presented in the introduction

and in general. These findings are then used to inform the

algorithm used to optimize the setup of two CFD experiments

in Section 4. Lastly, a brief conclusion is drawn in Section 5.

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2022.1076296
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Diessner et al. 10.3389/fams.2022.1076296

2. Bayesian optimization

Bayesian optimization aims to find the global optimum of an

expensive-to-evaluate objective function, whose mathematical

expression is unknown or does not exist, in a minimum number

of evaluations. It first fits a surrogate model, most commonly

a GP, to some initial training data. The GP reflects the current

belief about the objective function and is used to compute

heuristics, called acquisition functions. When optimized, these

functions suggest the candidate point that should be evaluated

next from the objective function. After the response for the new

candidate point is computed from the objective function, it is

added to the training data and the process is repeated until a

satisfying solution is found or a predefined evaluation budget is

exhausted [1]. The following sections provide an overview of the

two main components of Bayesian optimization, the GP and the

acquisition functions.

2.1. Gaussian Process

Consider an objective function f :X → R, where X ⊂ R
d

is a d-dimensional design space, that allows the evaluation of

one d-dimensional point xi or multiple d-dimensional points X

within the design space X yielding one or multiple observations

f(xi) = yi and f(X) = y, respectively. A popular choice for the

surrogate model to represent such an objective function is a GP.

A GP is a stochastic process for which any finite set of points

can be represented by a multivariate Normal distribution. This

so called prior is defined by a mean function µ0 :X → R and a

positive definite covariance function or kernel k :X × X → R.

These induce a mean vector mi := µ0(xi) and a covariance

matrix Ki,j := k(xi, xj) that define the prior distribution of the

GP as

f | X ∼ N (m,K) (1)

where f | X are the unknown responses from the objective

function given a collection of points x1 : n. Given a set of

observed design points Dn = {(xi, yi)}
n
i=1 and a new point also

called a candidate point x, the posterior predictive distribution

of x can be computed:

Y | Dn ∼ N (µn(x), σ
2
n (x)) (2)

with the posterior mean and variance

µn(x) = µ0(x)+ k(x)T(K+ σ 2I)−1(y−m) (3)

σ 2
n (x) = k(x, x)− k(x)T(K+ σ 2I)−1k(x) (4)

where K = k(x1 : n, x1 : n) is a square matrix and k(x) =

k(x, x1 : n) is a vector containing the covariances between the

new point x and all design points x1 : n [1, 2, 8].

For the experiments presented in this paper, the zero

mean function is implemented as it fulfills the theoretical

properties required to compute the variable hyperparameter β

for the Gaussian Process Upper Confidence Bound (GP-UCB)

algorithm as derived in Srinivas et al. [9] (see Section II.B.).

While there are many covariance kernels used in the literature,

this paper implements the Matérn kernel with ν = 5/2 with an

individual length scale parameter for each input dimension as

proposed by Snoek et al. [8] for practical optimization problems,

as other kernels such as the squared-exponential kernel also

known as the radial basis function kernel can be too smooth

for applied problems such as physical experiments. This kernel

requires an additional parameter, the output scale τ2, to allow

the kernel to be scaled above a certain threshold by multiplying

the output scale with the posterior variance τ2σ 2
n (x) [2]. A

nugget term v is added to the diagonal of the covariance matrix

Ki,j : = k(xi, xj) + vI to take possible errors, measurement

and other, into consideration where I is the identity matrix.

Nuggets have been shown to improve the computational stability

and the performance of the algorithm such as the coverage

and robustness of the results when using sparse data [10].

Additionally, Gramacy and Lee [11] give a detailed reasoning

why nuggets should be added to deterministic problems that

exceeds solely technical advantages. For example, while there

might not be a measurement error in a deterministic simulation,

the simulation itself is biased as it only approximates reality. In

such cases, it makes sense to include a model to take possible

biases into account. The hyperparameters of the GP, in this case

the nugget, the output scale and the length scales of the Matérn

kernel, can be estimated directly from the data, for example

using maximum likelihood estimation (MLE) or maximum a

posteriori (MAP) estimation [1, 12]. Algorithm 1 in Section 2

of the Supplementary material shows how the hyperparameters

can be estimated via MLE by maximizing the log marginal

likelihood of the GP.

2.2. Acquisition functions

Acquisition functions utilize the posterior distribution of

the GP, that is the surrogate model representing the objective

function, to propose the next point to sample from the objective

function. Shahriari et al. [1] group acquisition functions into

four categories: improvement-based policies, optimistic policies,

information-based policies, and portfolios. This section presents

some popular representatives of each group, which we shall

focus on in this paper. Pseudocode for all acquisition functions

can be found in Section 2 of the Supplementary material.

Improvement-based policies such as probability of

improvement (PI) and expected improvement (EI) propose

points that are better than a specified target, for example the

best point evaluated so far, with a high probability. Given the
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best point so far x∗ and its response value y∗ = f (x∗), PI (5),

and EI (6) can be computed as:

αPI(x;Dn) = 8

(

z

σn(x)

)

(5)

αEI(x;Dn) = z8

(

z

σn(x)

)

+ σn(x)φ

(

z

σn(x)

)

(6)

respectively, where z = µn(x) − y∗ and 8 and φ are the

cumulative distribution function (CDF) and the PDF of the

standard Normal distribution.

The Upper Confidence Bound (UCB) acquisition function

is an optimistic policy. It is optimistic with regards to the

uncertainty (variance) of the GP, that is UCB assumes the

uncertainty to be true. In contrast to the improvement-based

methods, UCB (7) has a tuneable hyperparameter βn that

balances the exploration-exploitation trade-off. This trade-off

describes the decision the Bayesian optimization algorithm has

tomake at each iteration. The algorithm could either explore and

select new points in an area with high uncertainty or it could

exploit and select points in areas where the GP makes a high

prediction [1]. Thus, choosing how to set the trade-off parameter

βn is an important decision. Common strategies for setting βn

include fixing it to a particular value or varying it, as in the

GP-UCB algorithm [9].

αUCB(x;Dn) = µn(x)+
√

βnσn(x) (7)

Portfolios consider multiple acquisition functions at each

step and choose the best-performing one. The Hedge algorithm

outlined by Brochu et al. [13] is used in this research article.

It requires the computation and optimization of all acquisition

functions in the portfolio at each Bayesian optimization iteration

and the assessment of their proposed new point compared to

the posterior of the updated GP in retrospect. This means

that portfolios are computationally costly. However, because

the performance of different acquisition functions varies for

each iteration, i.e., for some iterations, one acquisition function

would be optimal, while another function would be preferred in

a different iteration, the Hedge algorithm should in theory select

the best acquisition function at each iteration, yielding a better

solution than when just considering one individual acquisition

function.

In addition to these analytical acquisition functions, Monte

Carlo (MC) sampling can be implemented. While this is

an approximation of the analytical functions, Monte Carlo

sampling does not require the oftentimes strenuous explicit

computations involved with the analytical functions, especially

when considering multi-point approaches. Information-based

policies, in particular those using entropy, aim to find a

candidate point x that reduces the entropy of the posterior

distribution p(x|Dn). While Entropy Search (ES) and Predictive

Entropy Search (PES) are computationally expensive, Wang

and Jegelka [14] and Takeno et al. [15] introduce Max-value

Entropy Search (MES), a method that uses information about

simple to compute maximal response values instead of costly to

compute entropies.

Furthermore, the analytical acquisition functions can be

used with Monte Carlo sampling by reparameterizing Equations

(5)–(7) [16]. Then, they can be computed by sampling from

the posterior distribution of the GP instead of computing the

acquisition functions directly:

αMC PI(x;Dn) = σ

(

max(µn(x)+ Lz)− y∗

τ

)

(8)

αMC EI(x;Dn) = max
(

0, max
(

µn(x)+ Lz
)

− y∗
)

(9)

αMC UCB(x;Dn) = max
(

µn(x)+
√

βπ/2|Lz|
)

(10)

where z is a vector containing samples from a Standard

Normal distribution z ∼ N (0, I), and L is the lower triangular

matrix of the Cholesky decomposition of the covariance matrix

K = LLT . The softmax function σ with the so-called

temperature parameter τ enables the reparameterization of PI

by approximating necessary gradients that are otherwise almost

entirely equal to 0. As τ → 0, this approximation turns precise

as described in Section 2 of Wilson et al. [16].

It is straightforward to extend the reparameterizations of

the analytical acquisition functions to multi-point methods

that propose more than one point at each iteration of the

Bayesian optimization algorithm. In this case, samples are

taken from a joint distribution (including training points and

new candidate points) that is optimized with respect to the

new candidate points. This optimization can be performed

jointly, i.e., optimizing the full batch of points simultaneously,

or in a sequential manner where a new joint distribution is

computed for each point in the batch including the previously

computed batch points, but only optimizing it with respect

to the newest candidate point [17]. While analytical functions

cannot be extended naturally to the multi-point case, there exist

some frameworks that allow the computation of batches. The

Constant Liar (CL) framework uses EI in combination with a

proxy target, usually the minimal or maximal response value

encountered so far. After one iteration of optimizing EI, the lie

is taken as the true response for the newly computed candidate

point and the process is repeated until all points in the batch

are computed. At this point, the true responses of the candidate

points are evaluated via the objective function and the next

batch is computed [18]. Similarly, the Gaussian Process Batched

Upper Confidence Bound (GP-BUCB) approach leverages the

fact that the variance of the multivariate Normal distribution

can be updated based solely on the inputs of a new candidate

point. However, to update the posterior mean, the response

value is required. Gaussian Process Batched Upper Confidence

Bound updates the posterior variance after each new candidate
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point, while the posterior mean stays the same for the full batch.

After all points of a batch are computed, the response values

are gathered from the objective function and the next batch is

computed [19].

3. Synthetic test functions

3.1. Functions

While there are various methods of benchmarking the

performance of optimization algorithms, such as sampling

objective functions from Gaussian Processes or optimizing

parameters of models [8, 13, 14], this paper focuses on using

synthetic test functions. Synthetic test functions have the main

advantages that their global optima and their underlying shape

are known. Thus, when testing the algorithms outlined in

Section 2.2 on these functions, the distance from their results

to the true optimum can be evaluated. For other benchmarking

methods, this might not be possible as, for example, in the

case of optimizing the hyperparameters of a model, the true

optimum, i.e., the solution optimizing the performance of the

model, is rarely known. Hence, results can only be discussed

relative to other methods, ignorant of the knowledge of how

close any method actually is to the true optimum. Furthermore,

knowing the shape of the test function is advantageous as it

provides information on how challenging the test function is.

For example, knowing that a test function is smooth and has

a single optimum indicates that it is less complex and thus

less challenging than a test function that possesses multiple

local optima, in each of which the algorithm potentially could

get stuck.

This paper assesses the Bayesian optimization algorithms

on eight different synthetic test functions spanning a wide

range of challenges. Table 1 presents the test functions and gives

details on the number of input dimensions, the shape, and

the number of optima to give an idea about the complexity

of the individual functions, while Figure 1 shows some of the

functions that can be presented in three-dimensional space and

indicates the increasing complexity of the functions. Detailed

mathematical definitions for all test functions can be found

in Section 3 of the Supplementary material. The number of

input dimensions for the test functions was chosen to be

equal to or slightly greater than the number in the simulations

recently published in the fluid dynamics community, which

is typically three to eight [3–6]. The 10D Sphere and 10D

Dixon-Price functions are less challenging problems with a

high degree of smoothness and only one optimum. They are

therefore considered for a higher number of input dimensions.

The 8D Griewank function adds a layer of complexity by

introducing oscillatory properties. The 6D Hartmann function

increases the level of difficulty further through its multi-

modality. It has six optima with only one global optimum.

TABLE 1 Overview of the seven synthetic test functions.

Test function Number of

input

dimensions D

Shape Number of optima

Sphere 10 Bowl-shaped 1

Dixon-Price 10 Valley-shaped 1

Griewank 8 Oscillatory 1

Hartmann 6 Multi-modal 6

Noisy Hartmann 6 Noisy 6

Michalewicz 5 Steep edges 120

Ackley 6 Mostly flat 1

FIGURE 1

Di�erent challenges and levels of complexity of the simulations

represented by the shapes of four test functions.

This function is also considered in two noisy variants to

simulate typical measurement uncertainty encountered during

experiments in fluid dynamics. In particular, the standard

deviation of the added Gaussian noise is calculated so that it

represents the measurement errors of state-of-the-art Micro-

Electro-Mechanical-Systems (MEMS) sensors which directly

measure time-resolved skin-friction drag in turbulent air flows

(e.g., the flow over an aircraft); that is, 1.4–2.4% in an

experimental setting [20]. Factoring in the range of the 6D

Hartmann function, the corresponding standard deviations for

the Gaussian noise, taken as a 99% confidence interval, are

therefore 0.0155 and 0.0266, respectively. The most complex test

functions are the 5D Michalewicz and the 6D Ackley functions

(this paper considers a modified Ackley function with a = 20.0,

b = 0.5, and c = 0.0). While the former has 120 optima

and steep ridges, the latter is mostly flat with a single global

minimum in the center of the space. The gradient of the function
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close to the optimum and the large flat areas represent a great

level of difficulty, as illustrated in the bottom row of Figure 1.

3.2. Results

This section focuses on the results for four of the eight

test functions that were considered in this paper. The results

for the other four test functions, as well as more extensive

tables, can be found in the Supplementary material. The 8D

Griewank function, the 6D Hartmann function in variations

without noise and with the high noise level and the 6D Ackley

function are examined here, as they represent increasing levels

of complexity and come with unique challenges as illustrated in

Section 3.1. Mirroring real world applications, a budget for the

number of evaluations was imposed on the test functions: 200

evaluations for the Griewank and Hartmann functions and 500

for the more complex Ackley function. If not otherwise stated,

the number of initial training points is equivalent to five points

per input dimension of the given test function, i.e., 40 training

points for the Griewank function and 30 training points for

the Hartmann and Ackley functions. For each of the methods

in the following sections, 50 different optimization runs were

computed to investigate how robust and sensitive the methods

are to varying initial training points. Each run was initialized

with a different set of initial training points sampled from a

Maximin Latin Hypercube Design [21]. However, the points

were identical for all methods for a specific test function. All

experiments were run on container instances on the cloud with

the same specifications (two CPU cores and 8 GB of memory) to

make runs comparable.

Overall, four different sets of experiments are considered.

First, analytical single-point acquisition functions are compared.

Second, the effects of a varying number of initial training

points are investigated. Third, analytical methods are compared

with Monte Carlo methods and, lastly, multi-point or batched

methods are compared to the single-point results. As a

baseline of performance, space filling designs exhausting

the full evaluation budgets were sampled from a Maximin

Latin Hypercube.

3.2.1. Analytical single-point acquisition
functions

Section 2.2 describes four different groups of acquisition

functions: improvement-based, optimistic, portfolios, and

entropy-based. In this section, representative functions from

the first three groups are tested on the synthetic test functions

outlined above. The entropy-based approach is considered

in Section 3.2.3. The focus lies on analytical single-point

acquisition functions as they are widely used and thus present

a natural starting point. Overall, seven different methods are

considered: PI, EI, UCB with a variable and fixed β (5.0 and 1.0)

and a Hedge portfolio that combines the PI, EI, and variable

UCB acquisition functions. For a detailed discussion of these

functions see Section 2.2.

Figure 2 presents the best solutions, defined by the output

value closest to the global optimum, found so far at each

evaluation. The outputs are normalized to the unit range where

1.0 represents the global optimum. Most methods perform

very well on the Griewank function, all reaching 1.00, and

both variations of the Hartmann function with and without

added noise (all reaching 1.00 and >0.97, respectively). The

acquisition functions all find the optimum or a solution

fairly close to the optimum within the allocated evaluation

budget. However, PI and variable UCB typically take more

evaluations to find a solution close to the optimum. All

acquisition functions perform noticeably better than the Latin

Hypercube benchmark and also exhibit much less variation

over the 50 runs, as indicated by the 95% confidence

intervals. There is little difference between the Hartmann

function with and without added noise, indeed the results

are almost identical. The Ackley function on the other hand

is more challenging. While the UCB methods still perform

very well (all > 0.96) the performance of the portfolio

and PI decrease slightly (0.91 and 0.88, respectively) and EI

performs considerably worse (0.63) with much more variability

between runs.

Similar conclusions can be drawn from Table 2, which

presents the area under the curve (AUC) of each method.

The AUC indicates how quickly the individual methods find

solutions near the optimum. A perfect score (1.0) would indicate

that the algorithm finds the optimum perfectly at the first

iteration. The lower the score (a) the further the algorithm

is away from the optimum and (b) the more evaluations are

required for the algorithm to find promising solutions. While

all methods score at least 0.98 for the Griewank function with

a standard error of at most 0.01, the scores worsen slightly

for the Hartmann function and significantly for the Ackley

function. In particular, the AUC of EI for the Ackley function

is very poor (0.59) and exhibits a high degree of variability

between the 50 runs (standard error: 0.15). At the opposite

end of the performance spectrum lie the optimistic methods,

i.e., the UCB with variable and fixed β , that perform very well

on all test functions with low standard errors. These results

suggest that while the choice of acquisition function is less

relevant for simple and moderately complex objective functions

such as the Griewank or Hartmann functions, it is instrumental

for solving challenging problems such as the Ackley function,

especially if they are characterized by large flat areas. Here, the

optimistic acquisition functions are advantageous and should

be preferred over the Hedge portfolio and improvement-based

approaches. It should be noted that this may only be true

for the specific portfolio defined previously. Implementing

a different collection of acquisition functions could yield

different results.
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FIGURE 2

Performance plots for analytical single-point acquisition functions with five initial starting points per input dimension. Solid lines represent the

mean over the 50 runs while the shaded area represents the 95% confidence intervals.

3.2.2. Varying number of initial training points

The training points used to initialize the Bayesian

optimization algorithm directly effect the surrogate model, i.e.,

the GP, that in turn is a representation of the objective function.

A larger number of training points yields a GP that will typically

represent the objective function more closely as it incorporates

more points and thus more information. However, the more

evaluations of the total budget are allocated for these initial

training points, the fewer points can be evaluated as part of the

Bayesian optimization algorithm. This trade-off indicates that

the number of training points (and by extension their selection)

is an important choice in Bayesian optimization and should be

considered thoroughly. This section explores this trade-off by

taking the same experimental setup as the previous section but

varying the number of initial training points. Overall, setups

with one, five, and ten initial points per input dimension of the

objective function are considered.

Figures 3, 4 depict the performance plots for the case with

one and ten training points per dimension, respectively. If the

number of points is reduced to one point per dimension, the

individual methods find solutions that are virtually identical

to the results with five training points per dimension (see

Supplementary material). Expected improvement still performs

much worse than other methods for the Ackley function.

Furthermore, most methods seem to find their best solution

in a comparable or just slightly higher number of evaluations

than before, as the AUC values in Table 3 show. This is

expected, as using fewer initial training points means that the

Bayesian optimization algorithm has less information at the

earlier iterations than when using more initial training points.

However, the difference in mean AUC is small and the results

suggest that Bayesian optimization makes up for this lack of

information quickly. PI and the Hedge portfolio have the highest

decrease in performance on average for the Hartmann function

with the mean AUC decreasing by 0.09 and 0.06, respectively.

The variability between runs of the Hedge algorithm also rises, as

indicated by a AUC standard error that is 0.08 higher. PI and the

portfolio also perform worse for the Noisy Hartmann function,

where the mean AUC decreased by 0.05 for both methods.

Intuitively, this make sense as the surrogate model includes less

information than before and thus it takes more evaluations to

find a good solution. In early iterations, the individual methods
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TABLE 2 Averaged area under the curve with standard error for

analytical single-point acquisition functions with five initial training

points per input dimension.

Method Griewank Hartmann Noisy

Hartmann

Ackley

PI
0.99

(± 0.00)

0.91

(± 0.04)

0.95

(± 0.02)

0.76

(± 0.08)

EI
1.00

(± 0.00)

0.97

(± 0.02)

0.97

(± 0.02)

0.59

(± 0.15)

UCB (variable)
0.98

(± 0.01)

0.94

(± 0.03)

0.95

(± 0.03)

0.85

(± 0.01)

UCB (β = 5)
1.00

(± 0.00)

0.97

(± 0.02)

0.98

(± 0.02)

0.90

(± 0.02)

UCB (β = 1)
1.00

(± 0.00)

0.95

(± 0.04)

0.97

(± 0.02)

0.88

(± 0.05)

Hedge
1.00

(± 0.00)

0.95

(± 0.03)

0.97

(± 0.02)

0.77

(± 0.11)

deviate from one-another more than when five training points

per dimension are used.

If the number of starting points is increased to 10 points

per dimension, there is essentially no change to the case with

just five starting points per dimension for the Griewank and

the two Hartmann functions. For the Ackley function, however,

the performance in terms of both the best solution found

and the AUC worsen (Table 4) for EI and, most significantly,

for PI. The average best solution for the latter decreases

by 0.37 to only 0.51 while EI decreases by 0.10–0.53. Both

policies struggle with the large area of the test function

that gives the same response value and is hence flat (see

Section 3.1). The optimistic policies and the portfolio perform

much better and no real change is noticeable to results of

Section 3.2.1.

These results suggest that choosing a larger number of

training points to initialize the Bayesian optimization algorithm

cannot necessarily be equated with better performance and

solutions. This is particularly true considering that there

was no improved performance when increasing from five

to ten points per input dimension. On the other hand,

reducing the number of training points did not yield

results that were much worse. Overall, a similar picture

as in the previous section emerges: While all methods

perform well on simpler problems, optimistic policies

achieve the best results on the more challenging problems

independent of the number of starting points. For the

test functions we considered, five training points per

dimension appeared to be sufficient, with no discernible

improvement when moving to 10 training points, and a small

loss of performance when reducing to one training point

per dimension.

3.2.3. Monte Carlo single-point acquisition
functions

The previous experiments considered analytical acquisition

functions. This section goes one step further and assesses the

Monte Carlo approach outlined in Section 2.2. As not all

acquisition functions can be rewritten to suit such an approach,

the experiments are restricted to PI, EI, and UCB with variable

and fixed β . Additionally, MES is introduced as a new method.

For the Griewank and both Hartmann functions all results

are almost identical to the analytical case except for the

variability between runs which increased slightly for some

of the methods. However, Figure 5 clearly shows that the

performance for PI and EI tested on the Ackley function

decreased significantly. The average best solutions decreased

by 0.68 and 0.56 and the average AUC (Table 5) decreased by

0.59 and 0.54, respectively. Table 5 shows that MES performs

well on the Griewank and Hartmann functions, all reaching an

AUC of above 0.97 with low standard errors. When it comes

to the more complex Ackley function, however, MES performs

much worse. With a mean AUC of 0.49 its performance

ranks below the optimistic acquisition functions but still above

the improvement-based methods. Earlier sections showed that

improvement-based policies (in particular EI) perform poorly

on the Ackley function when using analytical acquisition

functions, but the results from this comparison show that their

performance suffers even more severely when using the Monte

Carlo approach. One reason for this could be that the Monte

Carlo variants are essentially an approximation of the analytical

acquisition functions as discussed in Section 2.2. However, there

seems to be little to no change when using optimistic policies.

This suggests that, similar to previous sections, optimistic

policies should be preferred when optimizing complex and

challenging objective functions with large flat areas using Monte

Carlo acquisition functions.

3.2.4. Multi-point acquisition functions

The previous sections focused on single-point approaches,

where each iteration of the Bayesian optimization algorithm

yields one new point that is sampled from the objective function

before the next iteration is started. While this makes sense for

objective functions that can be evaluated quickly or do not

allow parallel evaluations, it might slow down the optimization

process needlessly when objective functions take a long time

to evaluate and allow parallel evaluations. Thus, this section

implements multi-point acquisition functions that propose a

batch of points at each iteration, which are then evaluated

simultaneously before the next iteration.

Section 2.2 outlined how Monte Carlo approaches using

the reparameterization trick can be extended to compute

batches naturally. Max-value Entropy Search does not use

reparameterization and is thus not naturally extendable to the

multi-point setting. Hence, we considered the same acquisition
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FIGURE 3

Performance plots for analytical single-point acquisition functions with one initial starting point per input dimension. Solid lines represent the

mean over the 50 runs while the shaded area represents the 95% confidence intervals.

functions as in the previous section but this time for a batch

size of five points. Each of the acquisition functions is optimized

with two different methods, sequentially and jointly. The latter

optimizes the acquisition function based on a joint distribution

that includes training points and new points and optimizes all

new points in a single step. The former recomputes the joint

distribution each time a new point is found and only optimizes

with respect to the newest point. For example, for a batch of five

points this process is repeated five times [17]. This approach,

also known as greedy optimization, might be preferable and

can yield better results [22]. While analytical functions cannot

be extended to the multi-point case as easily as the Monte

Carlo evaluations, there are some frameworks that allow the

computation of batches. This section considers the Constant

Liar approach with a lie equivalent to the minimal (CL min)

and maximal (CL max) value so far [18] and the GP-BUCB

algorithm, an extension of the UCB function [19]. For more

details see Section 2.2.

Figure 6 shows the results of some multi-point acquisition

functions. They essentially find identical solutions, on average,

to the single-point approach for the Griewank function and

Hartmann function with and without noise. Only selected

methods are shown in the plot. Particularly, two variations of

the UCB approach are not included as they are almost identical

to the UCB with β = 1 (see Supplementary material for results

of all methods). While there are no changes to the AUC for the

Griewank function, there are some differences for the Hartmann

functions that suggest that methods require a different number

of evaluations to find the best value, as Table 6 shows. Although

the joint Monte Carlo approach for PI and UCB (variable and

β = 5) have a lower mean AUC, the decrease is less severe

than for the GP-BUCB methods that all decrease by 0.08–

0.10. The other methods perform comparably to the single-

point case and the variability between the runs of the sequential

and joint Monte Carlo UCB with β = 1 even decreases. For

the noisy Hartmann test function, the results are very similar

to the Hartmann function without noise. In general, over all

experiments there was no real drop in performance that can be

declared as a result of adding noise up to 2.4% of the overall

objective function range.

Most methods find similar best solutions to the Ackley test

function as their single-point counterparts. However, there are

some changes in the improvement-based policies: the sequential

Monte Carlo EI and PI, and CL max, find solutions that are
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FIGURE 4

Performance plots for analytical single-point acquisition functions with 10 initial starting points per input dimension. Solid lines represent the

mean over the 50 runs while the shaded area represents the 95% confidence intervals.

TABLE 3 Averaged area under the curve with standard error for

analytical single-point acquisition functions with one initial training

point per input dimension.

Method Griewank Hartmann Noisy

Hartmann

Ackley

PI
0.97

(± 0.01)

0.82

(± 0.09)

0.90

(± 0.06)

0.73

(± 0.11)

EI
0.99

(± 0.00)

0.95

(± 0.03)

0.95

(± 0.03)

0.58

(± 0.13)

UCB (variable)
0.97

(± 0.01)

0.91

(± 0.04)

0.91

(± 0.03)

0.82

(± 0.01)

UCB (β = 5)
0.98

(± 0.00)

0.94

(± 0.03)

0.95

(± 0.03)

0.87

(± 0.02)

UCB (β = 1)
0.99

(± 0.00)

0.93

(± 0.08)

0.93

(± 0.09)

0.85

(± 0.06)

Hedge
0.98

(± 0.01)

0.89

(± 0.11)

0.92

(± 0.05)

0.76

(± 0.09)

better than before (by 0.33, 0.04, and 0.11, respectively). At the

opposite end, CL min and joint Monte Carlo PI provide inferior

solutions in the batched case (0.13 and 0.08, respectively).

TABLE 4 Averaged area under the curve with standard error for

analytical single-point acquisition functions with 10 initial training

points per input dimension.

Method Griewank Hartmann Noisy

Hartmann

Ackley

PI
1.00

(± 0.00)

0.93

(± 0.05)

0.96

(± 0.02)

0.43

(± 0.25)

EI
1.00

(± 0.00)

0.97

(± 0.02)

0.97

(± 0.02)

0.41

(± 0.07)

UCB (variable)
1.00

(± 0.00)

0.95

(± 0.03)

0.96

(± 0.03)

0.87

(± 0.01)

UCB (β = 5)
1.00

(± 0.00)

0.97

(± 0.02)

0.98

(± 0.02)

0.91

(± 0.03)

UCB (β = 1)
1.00

(± 0.00)

0.96

(± 0.03)

0.98

(± 0.03)

0.86

(± 0.08)

Hedge
1.00

(± 0.00)

0.96

(± 0.03)

0.97

(± 0.02)

0.78

(± 0.13)

Looking at how quickly the individual methods find good values

on average, i.e., the AUC, it is clear that the analytical multi-

point and joint Monte Carlo methods perform worse than
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FIGURE 5

Performance plots for Monte Carlo single-point acquisition functions with five initial starting points per input dimension. Solid lines represent

the mean over the 50 runs while the shaded areas represent the 95% confidence intervals.

TABLE 5 Averaged area under the curve with standard error for Monte

Carlo single-point acquisition functions with five initial training points

per input dimension.

Method Griewank Hartmann Noisy

Hartmann

Ackley

MC PI
0.99

(± 0.00)

0.92

(± 0.06)

0.95

(± 0.04)

0.17

(± 0.12)

MC EI
1.00

(± 0.00)

0.97

(± 0.02)

0.97

(± 0.04)

0.05

(± 0.03)

MC UCB (variable)
0.98

(± 0.01)

0.95

(± 0.02)

0.95

(± 0.04)

0.86

(± 0.01)

MC UCB (β = 5)
1.00

(± 0.00)

0.97

(± 0.02)

0.98

(± 0.03)

0.91

(± 0.01)

MC UCB (β = 1)
1.00

(± 0.00)

0.96

(± 0.07)

0.97

(± 0.07)

0.89

(± 0.03)

MES
0.99

(± 0.00)

0.97

(± 0.02)

0.97

(± 0.03)

0.49

(± 0.12)

the single-point implementations for the Ackley function: the

AUC of all analytical multi-point methods worsen by 0.19–0.24,

except for CL max that improved by 0.08. Similarly, all joint

methods provide poorer performance than in the sequential

single-point optimization where UCB with β = 1 sees the

largest drop of 0.11. Expected improvement is the exception

and stays about the same. The biggest improvement is provided

by the sequential Monte Carlo EI with an increase of 0.32.

However, this improvement is mainly caused by the very poor

performance of the single-point Monte Carlo EI acquisition

function. Furthermore, this approach comes with a higher

variability, as the standard error of the AUC rises by 0.19.

In terms of the best solutions found, multi-point methods

present a good alternative to single-point acquisition functions.

They generally find best solutions comparable to the single-point

approach, but for a slightly larger number of objective function

evaluations. However, while it requires more evaluations, the

multi-point approach would still be faster when computing

batches in parallel. Multi-point acquisition functions will,

therefore, be most beneficial for expensive to evaluate objective

functions that can be evaluated in parallel. With some

exceptions, this benefit requires a higher number of evaluations

until solutions comparable to single-point methods are found.

Overall, the optimistic methods, combined with sequential

optimization, appear to be favorable over the rest, as the red lines

in Figure 6 clearly show.
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FIGURE 6

Performance plots for multi-point acquisition functions with five initial training points per input dimension. Solid lines represent the mean over

the 50 runs while shaded areas represent the 95% confidence intervals. PI in blue, EI in orange, UCB in red.

3.3. Discussion

Six main conclusions can be drawn from the simulation

results presented in detail above. This section discusses these

findings and relates them back to the applied problems that

motivated this work, i.e., optimizing experiments in engineering,

particularly in fluid dynamics, and tuning hyperparameters of

neural networks and other statistical models.

The first findings concern the choice of acquisition functions

related to the complexity of the problem. The results show that

this choice is less important when optimizing simpler objective

functions. Improvement-based, optimistic, and information-

based acquisition functions, as well as portfolios, performed

well on a wide range of synthetic test functions with up to

10 input dimensions (see Supplementary material online for

more examples to reinforce this result.). However, for more

complex functions, such as the Ackley function, the optimistic

methods performed significantly better than the rest and thus

should be favored. For the Bayesian optimization algorithm, this

means that all acquisition functions considered in this paper

can yield good results. But the choice of acquisition function

must be considered more carefully with increasing complexity

of the objective function. This indicates the importance of

expert knowledge when applying Bayesian optimization to a

specific problem, such as a drag reduction problem in fluid

dynamics. Basing the choice of acquisition function on specific

knowledge about the suspected complexity of the objective

function could potentially increase the performance of the

Bayesian optimization algorithm significantly. In cases where

no expert knowledge or other information about the objective

function is accessible, results suggest that the optimistic methods

are a good starting point.

Secondly, the results suggest that the number of initial

training points is not critical in achieving good performance

from the algorithm. In fact, there is only a little difference

when increasing the number of starting points from one point

per input dimension to 10 points per dimension. While the

performance of the acquisition functions differs initially for the

former case, they still find comparable results to the runs with

five or ten points per input dimension over all iterations. This

means that Bayesian optimization explores the space efficiently

even when provided with only a few training points. Deciding

on the number of starting points is an important decision in

problems where evaluating a point is expensive. For example,
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TABLE 6 Averaged area under the curve with standard error for multi-point acquisition functions with five initial training points per input dimension.

Type Method Griewank Hartmann Noisy

Hartmann

Ackley

PI
0.99

(± 0.00)

0.92

(± 0.03)

0.94

(± 0.02)

0.22

(± 0.08)

Se
qu

en
ti
al
M
on

te
C
ar
lo

EI
1.00

(± 0.00)

0.95

(± 0.03)

0.97

(± 0.02)

0.37

(± 0.22)

UCB (variable)
0.98

(± 0.01)

0.94

(± 0.03)

0.94

(± 0.03)

0.84

(± 0.01)

UCB (β = 5)
0.99

(± 0.00)

0.95

(± 0.02)

0.96

(± 0.02)

0.88

(± 0.02)

UCB (β = 1)
1.00

(± 0.00)

0.96

(± 0.02)

0.97

(± 0.02)

0.86

(± 0.02)

PI
0.99

(± 0.00)

0.86

(± 0.05)

0.89

(± 0.04)

0.09

(± 0.06)

Jo
in
t
M
on

te
C
ar
lo

EI
1.00

(± 0.00)

0.95

(± 0.03)

0.96

(± 0.02)

0.06

(± 0.03)

UCB (variable)
0.97

(± 0.02)

0.89

(± 0.04)

0.90

(± 0.04)

0.81

(± 0.02)

UCB (β = 5)
0.99

(± 0.00)

0.94

(± 0.03)

0.95

(± 0.03)

0.87

(± 0.02)

UCB (β = 1)
1.00

(± 0.00)

0.96

(± 0.02)

0.97

(± 0.02)

0.78

(± 0.06)

CL min
0.99

(± 0.00)

0.94

(± 0.02)

0.95

(± 0.02)

0.40

(± 0.08)

A
n
al
yt
ic
al

CL max
1.00

(± 0.00)

0.95

(± 0.03)

0.96

(± 0.03)

0.67

(± 0.09)

BUCB (variable)
0.98

(± 0.02)

0.85

(± 0.05)

0.85

(± 0.05)

0.65

(± 0.03)

BUCB (β = 5)
0.98

(± 0.00)

0.88

(± 0.05)

0.90

(± 0.05)

0.66

(± 0.05)

BUCB (β = 1)
0.99

(± 0.00)

0.88

(± 0.06)

0.90

(± 0.06)

0.65

(± 0.05)

when evaluating a set of hyperparameters for a complex model

such as a deep neural network, the model has to be trained anew

for each set of hyperparameters, racking up costs in time and

computing resources. In most cases, the problem boils down

to dividing a predefined budget into two parts: evaluations to

initialize the algorithm and evaluations for points proposed by

the Bayesian optimization algorithm. The decision of how many

points to allocate for the training data is important as using too

many couldmean that the Bayesian optimization algorithm does

not have sufficient evaluations available to find a good solution,

i.e., the budget is exhausted before a promising solution is found.

The simulations in this paper suggest that this decision might

not be as complex as it initially seems, as only a few training

points are necessary for the algorithm to achieve good results.

Taking this approach of using only a small number of evaluations

for training points saves more evaluations for the optimization

itself, thus increasing the chances of finding a good solution.

The third finding regards the information-based acquisition

functions. Through the range of different simulations, PI and

EI failed to find good results for the Ackley function. The

reason for this is the large area of the parameter space where

all response values are identical and thus the response surface is

flat. As discussed in Section 2.2, improvement-based acquisition

functions propose a point that is most likely to improve upon

the previous best point. With a flat function like the Ackley

function it is likely that all of the initial starting points fall into

the flat area (especially in higher dimensions where the flat area

grows even quicker). The posterior mean of the GP will then be

very flat, and will in turn predict that the underlying objective

function is flat as well. This leads to a very flat acquisition
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function, as most input points will have a small likelihood of

improving upon the previous best points. Gramacy [2] mentions

problems when optimizing a flat EI acquisition function that

result in the evaluation of points that are not optimal, which is

especially problematic when the shape of the objective function

is not known and flat regions cannot be ruled out a priori. If

such properties are possible in a particular applied problem,

the results suggest that using a different acquisition function,

such as an optimistic policy, achieves better results. This again

highlights the importance of expert knowledge for applications

to specific problems.

Fourthly, the simulations show that Monte Carlo acquisition

functions yield comparable results to analytical functions.

These functions use Monte Carlo sampling to compute

the acquisition functions, instead of analytically solving

them. Utilizing sampling to compute a function that can

also be solved analytically might not appear useful at

first glance as it is essentially just an approximation of

the analytical results. However, this approach makes it

straightforward to compute batches of candidate points (as

outlined in Section 2.2), which presents the foundation for the

next finding.

The fifth finding suggests that multi-point acquisition

functions perform comparably to single-point approaches.

All methods found good solutions across the range of

considered problems, with the exception of improvement-

based methods for the Ackley function, as discussed

previously. Multi-point approaches are particularly beneficial

for cases in which the objective function is expensive to

evaluate and allows parallel evaluations [e.g., in high-fidelity

turbulence resolving simulations [4]]. For these problems,

the total time required to conclude the full experiment

can be reduced as multiple points are evaluated in parallel

each time. However, more evaluations in total might be

required to achieve results comparable to the single-point

approach. This method is particularly advantageous for

applications involving simulations that can be evaluated

in parallel, e.g., the CFD simulations mentioned in

the introduction.

Lastly, the results showed no decrease in performance

when adding noise to the objective function, in this case,

the 6D Hartmann function. When optimizing the function

with low and high noise (corresponding to the measurement

error range of MEMS sensors to mirror the circumstances

of an applied example in fluid dynamics) the same solutions

were found, in a comparable number of evaluations, as for

the deterministic case. This result can be attributed to the

nugget that is added to the deterministic and noisy cases,

as discussed in Section 2.1. These results are promising,

as they show that Bayesian optimization can handle noisy

objective functions just as efficiently as deterministic functions.

This enables the use of Bayesian optimization for physical

experiments where measurements cannot be taken without

noise, but also for simulations where other noise can be

introduced unknowingly. Consider, for example, a physical

experiment in which the drag created by air blowing over a

surface can be reduced by blowing air upwards orthogonally

to the same surface using multiple actuators (for further

details refer to the application Section 4). As each actuator

has a high, if not infinite, number of settings, finding the

optimal overall blowing strategy is a complex problem that

is a prime candidate for the use of Bayesian optimization.

However, the drag cannot be measured without noise as

the measurement errors associated with the MEMS sensors

introduced in Section 3 show. As it is impossible to

collect noise-free data in such circumstances, and taking the

same measurement twice would yield different results, it is

critical that Bayesian optimization performs equally well on

these problems.

While these findings show that the use of Bayesian

optimization to optimize expensive black box functions is

promising, some limitations should be noted. Firstly, the

acquisition functions considered in this paper represent only

a subset of those available in the literature. The general

results inferred from this selection might not extend to all

acquisition functions. Secondly, the dimensionality of the test

functions was selected to be no greater than 10. While Bayesian

optimization is generally considered to work best in this

range, and even up to 20 input parameters, it would appear

unlikely that these results would hold in a much higher-

dimensional space [23]. While this is an ongoing area of

research, there are multiple algorithms that attempt to make

Bayesian optimization viable for higher dimensions. A popular

approach is to find a low-dimensional embedding of the high-

dimensional input space. Examples of this approach are REMBO

[24], HeSBO [25], and ALEBO [26]. Another approach is

to leverage any possible underlying additive structure of the

objective function with a Bayesian optimization algorithm based

on additive GPs, such as the Add-GP-UCB algorithm [27].

Other promising approaches are TuRBO [28], which attempts

to focus on promising areas of the parameter space via local

optimization, and SAASBO [29], which utilizes a fully Bayesian

GP that aims to identify sparse axis-aligned subspaces to

extend Bayesian optimization to higher dimensions. Thirdly,

the conclusions drawn in this paper are based on the synthetic

test functions chosen and their underlying behavior. When

encountering objective functions with shapes and challenges

that are not similar to those considered in this paper, the

findings might not hold. Lastly, the noise added to the

Hartmann function could be too low to represent every

possible experiment. It is possible that the measurement

error, or other sources of noise, from an experiment or

simulation, are too large for Bayesian optimization to work

effectively. More investigation is needed to find the maximal

noise levels that Bayesian optimization can tolerate while still

performing well.
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FIGURE 7

CFD simulations. Panel (A) illustrates the flow over a flat plate. Initially the boundary layer is laminar. However, at a critical streamwise length

from the leading edge, the flow transitions to a turbulent boundary layer, which is characterized by an increase in turbulent activity and

skin-friction drag. The blue shaded region illustrates the location of the blowing control region in the present study; Panel (B) shows the

traveling wave blowing profile specified by an amplitude, a wavelength, a traveling frequency and a shift parameter; Panel (C) shows the gap

blowing profile specified by two blowing areas with individual amplitudes separated by a gap; Panel (D) shows the traveling wave blowing

profiles for iterations 18, 24, and 25 where the arrows on the bottom of the plots illustrate the direction and strength of travel; Panel (E) shows

the gap blowing profiles for iterations 15, 17, and 27.

4. Application

In this section, we apply the findings from the investigation

on synthetic test functions in Section 3 to the selection

and design of Bayesian optimization algorithms to specific

simulations, in this case in the area of CFD. Consider high-

fidelity simulations involving the turbulent flow over a flat plate,

as illustrated in Figure 7. Initially, the flow within the boundary

layer is laminar. However, after a critical streamwise length,

the flow transitions into a turbulent regime, characterized by

an increase in turbulence activity, and thereby an increase in

skin-friction drag. This setup mimics the flow encountered on

many vehicles, e.g., the flow over the wing of an aircraft, a

high-speed train, or the hull of a ship. The skin-friction drag

is a resistive force that opposes the motion of any moving

vehicle and is typically responsible for more than half of the

vehicle’s energy consumption. To place this into context, just

a 3% reduction in the skin-friction drag force experienced by
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a long-range commercial aircraft would save around £1.2 M

in jet fuel per aircraft per year, and prevent the annual release

of 3,000 tons of carbon dioxide [30]. There are currently over

25,000 aircraft in active service around the world. Yet despite

this significance, the complexity of turbulence has prevented the

realization of any functional and economical system to reduce

the effects of turbulent skin-friction drag on any transportation

vehicle. This in part, is due to our inability to find optimum

solutions in parameter space to control the turbulence effectively

and efficiently. The aim of these simulations is to minimize

the turbulent skin-friction drag by utilizing active control, via

actuators, which are seen as a key upstream technology approach

for the aerospace sector, that allows us to either blow fluid away

from the plate or suck fluid toward the plate. These actuators

are located toward the beginning of the plate, but after the

transition region, where the flow is fully turbulent. An averaged

skin-friction drag coefficient is then measured along the plate

from the blowing region. Within the blowing region a very

large number of blowing setups are possible. For example, a

simple setup could be a 1D problem where fluid is blown away

from the plate uniformly over the entire blowing region, with a

constant amplitude. In this case, the only parameter to optimize

would be the amplitude of the blowing. However, many more

complex setups are possible [e.g., see [4]]. These numerical

simulations are a prime candidate for Bayesian optimization

as they fulfill the characteristics of an expensive-to-evaluate

black box function: the underlying mathematical expression

is unknown and each evaluation of the objective function is

expensive. Indeed, one evaluation (a high-fidelity simulation

with converged statistics) can take up to 12 h on thousands of

CPU cores and requires the use of specialist software, since the

full turbulence activity covering the flat plate must be simulated

in order to correctly resolve the quantity of interest (i.e., skin-

friction drag). To perform these numerical simulations, the

open-source flow solver Xcompact3D [31] is utilized on the UK

supercomputing facility ARCHER2. This section optimizes two

blowing profiles that follow this setup: a traveling wave with four

degrees of freedom and a gap problem with three degrees of

freedom, where two blowing areas with individual amplitudes

are separated by a gap.

The computational setup consists of a laminar Blasius

solution at the inlet, a convective condition at the outlet, a

homogenous Neumann condition in the far-field, and periodic

conditions in the spanwise direction. The domain dimensions

are Lx × Ly × Lz = 750δ0 × 80δ0 × 30δ0, where δ0 is the

boundary-layer thickness at the inlet. The Reynolds number

at the inlet is Reδ0 = 1, 250, based on the boundary-layer

thickness (i.e., the thin layer of fluid above the plate where the

flow velocity is reduced due to the presence of the plate) and

free-stream velocity (u∞. i.e., the speed of the moving vehicle)

at the inlet of the simulation domain. This corresponds to a

momentum Reynolds number of Reθ0 ≈ 169 to 2,025, for the

canonical case (no control), from the inlet to the outlet. The

mesh size is chosen to be nx × ny × nz = 1, 537 × 257 × 128,

with a uniform spacing in the streamwise (x-axis in Figure 7A)

and spanwise (z-axis) directions and non-uniform spacing in

the wall-normal direction (y-axis) to properly resolve the near-

wall effects. This results in a mesh resolution of 1x+ = 31,

0.54 ≤ 1y+ ≤ 705, and 1z+ = 15 in viscous (inner) units,

where the inner scaling is with respect to the friction velocity

(i.e., scaled by the wall-shear stress generated by the skin-friction

drag force) at the start of the control region for the canonical

case. The control region extends from x = 68δ0 to 145δ0 in

the streamwise direction, corresponding to a Reynolds number

range of Reθ ≈ 479–703, for the canonical case. To accelerate

the transition-to-turbulence, a random volume forcing approach

[32], located at x = 3.5δ0, is used to trip the boundary layer.

Figure 7 depicts the two blowing profiles in question, and

defines the parameters for the optimization. The traveling wave

with four degrees of freedom, given in Figure 7B, is a wave

defined by an amplitude in the range 0.01–1.00% of the overall

free-stream velocity and a wavelength between 0.00 and 0.02

(inner scaling). The angular frequency, restricted to values

between -0.25 and 0.25 (inner scaling), allows the wave to travel

up- and down-stream. Lastly, a shift parameter displaces the

wave vertically up and down. This parameter is restricted to

values between -1.00 and 1.00% of the free-stream velocity.

The blowing turns into suction for cases where the blowing

profile is negative. The gap configuration with three degrees

of freedom, illustrated in Figure 7C, includes two blowing

regions with individual amplitudes in the range 0.01–1.00%

of the overall free-stream velocity and a gap restricted to

between 5δ0 and 355δ0. While the aim for both problems is the

maximization of the global drag reduction (GDR), defined as

the globally averaged skin-friction drag reduction with respect

to the canonical case, the gap problem with three degrees of

freedom also considers the energy consumption of the actuators

and tries to find profiles that reduce the drag while also

achieving NES. Net-energy savings is achieved when the energy

used by the blowing device is smaller than the energy saved

by the drag reduction (much of the energy expenditure in

aerodynamics/hydrodynamics applications is used to overcome

the skin-friction drag). In this work, NES is calculated following

the approach of Mahfoze et al. [4], where the input power for the

blowing device is estimated from real-world experimental data

and a relationship between input power and blowing velocity is

derived [see Mahfoze et al. [4] for more details].

The Bayesian optimization algorithm used for both

problems is informed by the results of the synthetic test

functions from Section 3. For the surrogate model a GP with

a zero mean function and a Matérn kernel with ν = 5/2

was defined and its hyperparameters were estimated from the

training data using MLE. While CFD simulations are expensive,

they allow for parallel evaluations. This is done by running,

concurrently, multiple simulations, and combining the results

once all simulations are completed. Therefore, these setups
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TABLE 7 Results for traveling wave experiment.

Evaluation Amplitude Shift Wavenumber Frequency GDR (in %)

1 0.50 −0.74 0.02 −0.22 −25.71

2 0.96 0.50 0.00 0.20 12.26

3 0.85 0.67 0.01 0.23 15.91

4 0.09 −0.48 0.02 −0.07 −15.63

5 0.42 −0.16 0.01 −0.02 −4.67

6 0.62 0.89 0.00 −0.05 19.69

7 0.44 −0.50 0.00 −0.22 −16.73

8 0.19 0.31 0.01 −0.19 8.33

9 0.02 −0.34 0.00 0.17 −10.94

10 0.68 −0.98 0.01 −0.12 −34.70

11 0.31 0.62 0.01 0.12 14.86

12 0.73 0.85 0.01 −0.15 19.52

13 0.34 0.16 0.02 0.08 4.28

14 0.81 0.06 0.02 0.04 1.94

15 0.90 −0.02 0.01 0.01 −1.22

16 0.24 −0.77 0.01 0.15 −26.98

17 0.84 1.00 0.01 0.04 21.43

18 0.39 1.00 0.01 −0.00 22.07

19 1.00 1.00 0.00 −0.25 21.77

20 1.00 1.00 0.02 0.00 21.83

21 0.48 1.00 0.02 0.13 21.90

22 0.01 1.00 0.02 −0.25 22.06

23 0.01 1.00 0.00 −0.25 21.88

24 0.01 1.00 0.02 0.25 22.19

25 1.00 1.00 0.02 −0.25 22.03

26 0.01 1.00 0.00 0.25 21.95

27 0.01 1.00 0.02 0.01 22.00

28 0.42 1.00 0.01 −0.25 22.07

29 0.01 1.00 0.01 0.25 22.04

30 0.01 1.00 0.01 0.01 22.17

31 0.43 0.79 0.00 −0.22 18.45

32 1.00 1.00 0.00 0.25 21.88

33 0.01 1.00 0.01 −0.25 21.93

34 0.47 1.00 0.02 −0.25 21.75

35 1.00 1.00 0.02 0.25 21.83

36 0.83 0.94 0.02 −0.02 21.02

Horizontal line separates initial training points and points suggested by Bayesian optimization. Points with global drag reduction over 22% in bold.

are well-suited for the multi-point approach presented in

Section 3.2.4 that, as our investigations showed, has no real

disadvantage compared to the single-point approach. Based on

previous work, for example Mahfoze et al. [4], the possibility

that the underlying objective function is characterized by large

flat areas similar to the 6D Ackley function cannot be ruled out.

Thus, an acquisition function that allows the selection of batches

and performs well even when encountering flat areas should be

implemented. The sequential Monte Carlo Upper Confidence

Bound acquisition function with the trade-off hyperparameter

β = 1 yielded very good results for the Ackley function as

well as all other test function and is thus chosen with a batch

size of four to optimize the CFD problems in this section.

Section 3.2.2 showed that Bayesian optimization is able to find

good solutions even with a relatively small number of initial

training data points. Hence, for both problems, four points per

input dimension were randomly selected from a Maximin Latin

Hypercube [21].
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TABLE 8 Results for gap experiment.

Evaluation Amplitude 1 Amplitude 2 Gap GDR (in %) NES (in %)

1 0.97 0.55 110.35 32.86 -4.31

2 0.28 0.12 191.95 10.19 -1.31

3 0.87 0.89 225.60 34.75 -7.41

4 0.40 0.41 289.40 17.75 -3.36

5 0.13 0.69 241.42 16.14 -4.34

6 0.71 0.25 133.84 22.47 -1.66

7 0.66 0.80 352.52 26.74 -7.97

8 0.53 0.64 179.61 25.28 -3.18

9 0.83 0.03 318.82 19.83 -0.97

10 0.19 0.96 51.96 25.34 -3.53

11 0.04 0.30 92.16 8.72 -0.96

12 0.49 0.45 31.67 22.86 -0.87

13 0.27 0.01 5.00 7.72 -0.28

14 1.00 0.01 5.00 22.04 -2.84

15 0.01 0.01 5.00 0.91 0.25

16 0.15 0.38 5.00 13.91 -0.77

17 0.01 0.01 45.54 0.98 0.32

18 0.01 0.01 355.00 0.72 0.06

19 0.01 0.10 5.00 3.01 -0.44

20 0.47 0.01 355.00 11.84 -0.39

21 0.01 0.01 131.32 0.77 0.11

22 0.01 0.01 237.00 0.62 -0.04

23 0.01 0.63 5.00 15.33 -0.15

24 0.01 0.01 77.50 0.80 0.13

25 0.01 0.01 5.00 0.91 0.25

26 0.28 0.63 5.00 21.72 -1.24

27 0.60 0.01 184.71 14.83 -0.01

28 0.38 0.67 5.00 24.86 -1.31

Horizontal line separates initial training points and points suggested by Bayesian optimization. Points with net-energy savings in bold.

Table 7 present the results of the 16 training points plus

20 points (or five batches of four points), selected using

Bayesian optimization, by maximizing the GDR, for the

traveling wave problem. While the highest GDR of the initial

training data was 19.69%, Bayesian optimization improves

upon this value with each evaluated batch, finding multiple

strategies that achieve a GDR above 22%, with the best

strategy, from batch 2, giving a GDR of 22.19%. Three

blowing profiles, including the overall best solution found,

are depicted in Figure 7D. Overall, the shift parameter seems

to be the main driver behind the drag reduction, as almost

all strategies selected by Bayesian optimization implement

the upper limit of this parameter, independent of the other

parameter values.

While blowing at a high amplitude yields increased skin-

friction drag reduction, it also consumes more energy. The

second experiment addresses this point, and accounts for

the energy consumption, following Mahfoze et al. [4], when

optimizing the blowing profile. Table 8 provides the results

for 12 initial training points and four batches, suggested via

Bayesian optimization, by maximizing the NES. The initial

strategies selected by the Latin Hypercube did not find a solution

that achieved both GDR and NES. Bayesian optimization was

able to find multiple strategies that achieved both, in which

the NES and the GDR were relatively small (0.11–0.32% and

0.77–0.98%). However, the algorithm also found one strategy

with NES of -0.01% and a GDR of 14.83%. While this strategy

did not achieve NES, it did not increase overall energy use,

and a small increase in the efficiency of the actuators could

yield NES with a considerable GDR. Compared to the high

intensity blowing for the traveling wave, in this experiment

the amplitudes are clustered toward the lower end of the

parameter space. This is a result of the objective to optimize

NES, which penalizes high-velocity blowing due to its increased

power requirements. Figure 7E illustrates this by providing the

blowing profiles of three solutions; the two solutions with the
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greatest NES and the solution with a high GDR, as previously

described.

5. Conclusion

In this paper, Bayesian optimization algorithms,

implemented with different types of acquisition functions,

were benchmarked regarding their performance and

their robustness on synthetic test functions inspired by

applications in engineering and machine learning. Synthetic

test functions have the advantage that their shape and their

global optimum are known. This allows the algorithms to

be evaluated on (a) how close their best solutions are to the

global optimum and (b) how well they perform on specific

challenges such as oscillating functions or functions with

steep edges. This evaluation can indicate advantages and

shortcomings of the individual acquisition functions and can

inform researchers on the best approach to choose for their

specific problem.

Four sets of comparisons were conducted in this research

article. First, analytical single-point acquisition functions were

compared to each other. Second, the effect of varying the

number of initial training data points was investigated.

Third, the analytical approach was contrasted with acquisition

functions based on Monte Carlo sampling. Fourth, the

single-point approach was compared to the multi-point or

batched approach.

From these experiments six main conclusions could be

drawn: (i) While all acquisition functions performed well

on simple test functions, optimistic policies, such as the

UCB, dealt best with challenging problems. (ii) Varying

the number of initial training data points did not have a

significant effect on the performance of the individual methods.

(iii) Improvement-based acquisition functions struggled

with flat test functions. (iv) The results showed that Monte

Carlo acquisition functions and multi-point acquisition

functions present a good alternative to the widely used

analytical single-point methods. (v) The multi-point approach

is particularly advantageous when the objective function

takes a long time to evaluate and allows parallel evaluations.

(vi) Bayesian optimization performs equally well on noisy

objective functions.

Finally, two experiments in CFD were taken as illustrative

examples on how the findings of this paper can be used

to guide the design of a Bayesian optimization algorithm

and tailor it to unique problems. In detail, a multi-point

approach was employed that used the Monte Carlo Upper

Confidence Bound acquisition function allowingmultiple points

to be evaluated in parallel with concurrent simulations. For

both experiments, Bayesian optimization was able to improve

upon the training points straight away and find solutions

that implement GDR for the traveling wave and GDR as

well as NES for the experiment where two blowing areas

were separated by a gap. However, the effects of the second

experiment remained relatively small but these optimization

studies are nevertheless encouraging in the quest to design a

robust and efficient control strategy to reduce drag around

moving vehicles.
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