
ORIGINAL RESEARCH
published: 07 April 2022

doi: 10.3389/fams.2022.806537

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 April 2022 | Volume 8 | Article 806537

Edited by:

Paolo Bientinesi,

Umeå University, Sweden

Reviewed by:

Richard Veras,

University of Oklahoma, United States

Jiajia Li,

College of William & Mary,

United States

*Correspondence:

Cem Savas Bassoy

cem.bassoy@iosb.fraunhofer.de

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 31 October 2021

Accepted: 26 January 2022

Published: 07 April 2022

Citation:

Bassoy CS (2022) Iterator-Based

Design of Generic C++ Algorithms for

Basic Tensor Operations.

Front. Appl. Math. Stat. 8:806537.

doi: 10.3389/fams.2022.806537

Iterator-Based Design of Generic
C++ Algorithms for Basic Tensor
Operations
Cem Savas Bassoy*

Fraunhofer IOSB, Ettlingen, Germany

Numerical tensor calculus has recently gained increasing attention in many scientific

fields including quantum computing and machine learning which contain basic tensor

operations such as the pointwise tensor addition and multiplication of tensors. We

present a C++ design of multi-dimensional iterators and iterator-based C++ functions for

basic tensor operations usingmode-specific iterators only, simplifying the implementation

of algorithms with recursion and multiple loops. The proposed C++ functions are

designed for dense tensor and subtensor types with any linear storage format, mode and

dimensions. We demonstrate our findings with Boost’s latest uBlas tensor extension and

discuss how other C++ frameworks can utilize our proposal without modifying their code

base. Our runtime measurements show that C++ functions with iterators can compute

tensor operations at least as fast as their pointer-based counterpart.

Keywords: tensor n-rank, N-way array, multi-dimensional array, tensor computations, multi-dimensional iterator,

software design and development

1. INTRODUCTION

Numerical tensor calculus can be found in many application fields, such as signal processing [1],
computer graphics [2, 3], and data mining [4, 5] in which tensors are attained by, e.g., discretizing
multi-variate functions [6] or by sampling multi-modal data [7]. Tensors are interpreted as
generalized matrices with more than two dimensions and are, therefore, also referred to as
hypermatrices [8]. Similar to matrix computations, most numerical tensor methods are composed
of basic tensor operations such as the tensor-tensor, tensor-matrix, tensor-vector multiplication,
the inner and outer product of two tensors, the Kronecker, Hadamard and Khatri-Rao product [9–
11]. Examples of such methods containing basic tensor operations are the higher-order orthogonal
iteration, the higher-order singular value decomposition [12], the higher-order power method and
variations thereof.

High-level libraries in Python or Matlab, such as NumPy, TensorLy, or TensorLab1 offer a
variety of tensor types and corresponding operations for numerical tensor computations. However,
in case of tensor multiplication operations tensors are dynamically unfolded in order to make use of
optimized matrix operations, consuming at least twice the memory than their in-place alternatives
[13]. Depending on the program, Python or Matlab can also introduce runtime overhead due to
just-in-time compilation or interpretation and automatic resource management.

To offer fast execution times with minimal memory consumption, many tensor libraries are
implemented in C++ which provides a simple, direct mapping to hardware and zero-overhead

1https://numpy.org, http://tensorly.org, https://www.tensorlab.net.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.806537
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.806537&domain=pdf&date_stamp=2022-04-07
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:cem.bassoy@iosb.fraunhofer.de
https://doi.org/10.3389/fams.2022.806537
https://www.frontiersin.org/articles/10.3389/fams.2022.806537/full
https://numpy.org
http://tensorly.org
https://www.tensorlab.net

Bassoy Design of Generic C++ Tensor Algorithms

abstraction mechanism [14, 15]. Their programming interface is
close to the mathematical notation supporting elementwise and
complex multiplication tensor operations [16–21]. All libraries
offer a family of tensor classes that are parameterized by at least
the element type. The library presented in [21] also parameterize
the tensor template by the tensor order and dimensions. Tensor
elements are linearly arranged in memory either according to
the first-order or the last-order storage format. Most libraries
use expression templates to aggregate and delay the execution
of mathematical expressions for a data-parallel and even out-
of-order execution [17, 19]. Some libraries can express the
general form of the tensor-tensor multiplication with Einstein’s
summation convention using strings or user-defined objects.
For instance, expressions like C["ijk"]=A["ilj"]*B["kl"] or
C(i,j,k)=A(i,l,k)*B(k,l) specify a 2-mode multiplication
of a 3-dimensional with a matrix. The interface can be very
convenient utilized if the application or numerical method
uses a fixed tensor order or contraction mode. However, many
numerical methods such as the higher-order orthogonal iteration
consist of variable tensor multiplications preventing the use of
aforementioned expressions. In such cases, flexible interfaces
and functions similar to the one presented in [22] are required
allowing, e.g., the contractionmode to depend on other variables.
A comprehensive and recent overview of the tensor software
landscape is provided in [23] including all of the previously
mentioned C++ libraries.

Most of the above mentioned libraries implement tensor
operations using pointers, single and multi-indices. Accessing
tensor elements with multi-indices, however, can slow down the
execution of a recursively defined tensor function by a factor that
is equal to the recursion depth and tensor order [24]. Using single
indices or raw pointers on the other hand requires a combination
of induction variables with mode-specific strides. This can be
inconvenient and error-prone, especially when library users want
to modify or extend C++ functions. The authors in [25] suggest
to parameterize C++ functions in terms of tensor types and
their proxies with which mode-specific iterators can be generated
using the member functions begin and end. Index operations
are hidden from the user by offering a simple iterator increment
operation that is able to adjust its internal data pointer according
to a predefined stride. However, their begin and end functions
do not allow to specify a mode. The authors in [26] propose
to use member functions begin and end of a tensor type
that can generate mode-specific iterators. The mode is a non-
type template parameter of the iterator requiring the recursion
index and the contraction modes to be compile-time parameters.
Similar to the aforementioned approaches, tensor functions are
defined in terms of tensor types which makes the specification of
iterator requirements difficult.

In this article, we present iterator-based C++ algorithms for
basic tensor operations that have been discussed in [22] as part
of a Matlab toolbox. Our software implementation follows the
design pattern that has been used in the Standard Template
Library (STL) and separates tensor functions from tensor types
with the help of iterators only [27]. The separation helps to
define iterator and function templates that are not bound to
particular tensor and iterator types, respectively.We present C++

functions such as for_each and transform that perform unary
and binary operations on tensor and subtensor elements. Our
discussion also includes more complex multiplication operations
such as tensor-vector (ttv), tensor-matrix (ttm), and the tensor-
tensor multiplication (ttt). While we demonstrate their usability
with Boost’s uBlas tensor extension, the proposed C++ templates
can be instantiated by tensor types that provide pointers to a
contiguous memory region.

To our best knowledge, we are the first to propose a set of basic
tensor functions that can process tensor types without relying
on a specific linear data layout, eliminating the need to provide
multiple algorithms for similar types. While a discussion of
optimization techniques for data locality or parallel execution of
tensor operations are beyond the scope of this article, we provide
algorithmic changes to all proposed tensor functions to increase
spatial locality. Moreover, we demonstrate that the introduced
iterator abstraction does not penalize the performance of
iterator-based C++ functions. On the contrary, our performance
measurements with approximately 1,800 differently shaped
tensors show that iterator- based functions compute elementwise
tensor operations and the tensor-vector product at least as fast as
pointer-based functions.

The remainder of the paper is organized as follows: Section
2 introduces mathematical notations used in this work and
provides an overview of data organization for dense tensor
and subtensor types. Section 3 describes Boost’s uBlas tensor
extension and class templates for tensors and subtensors.
Section 4 introduces multi-dimensional iterators for a family
of tensor types supporting any linear storage format. Section 5
discusses the design and implementation of tensor operations
using multi-dimensional iterators. Section 6 presents runtime
measurements of iterator- and pointer-based implementations
of two elementwise tensor operations. Lastly, section 7 presents
some conclusions of our work.

2. PRELIMINARIES

2.1. Mathematical Notation
A tensor is defined as an element of the tensor space that is given
by the tensor product of vector spaces typically over the real or
complex numbers [28]. For given finite basis of the vector spaces,
tensors can be represented by multi-dimensional arrays [8]. We
do not distinguish between tensors and multi-dimensional arrays
and allow their elements to be bool or integer types. The number
of dimensions is called the tensor order and is denoted by the
letter p. Tensors are denoted by bold capital letters with an
underscore, e.g., A with A = (ai)i∈I where i is a multi-index
i = (i1, i2, . . . , ip) with ir ∈ Ir for all 1 ≤ r ≤ p. The r-th
index set Ir is defined as Ir : = {1, 2, . . . , nr} for all 1 ≤ r ≤ p
with nr ∈ N. n = (n1, . . . , np) is called a dimension tuple
of a p-dimensional tensor. The Cartesian product of all index
sets of a p-order tensor A is called the multi-index set I with
I = I1 × I2 × · · · × Ip. Elements of a p-dimensional tensor A
are given by A(i1, i2, . . . , ip) = ai1i2...ip or A(i) = ai with i ∈ I.
Matrices have two dimensions and will be represented without
an underscore B. Vectors are given by small bold letters such as
b where one of the first two dimensions are equal to or greater

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

than one. A tensor is a scalar if all dimensions are equal to one
and denoted by small, non-bold letters.

A subtensorA′ of a tensorA is a reference to a specified region
or domain of A and has the same order p and data layout π as
the referenced tensor. It can be regarded as a lightweight handle
with a dimension tuple n′ where the subtensor dimensions satisfy
n′r ≤ nr for 1 ≤ r ≤ p. The r-th index set I′r of a subtensor and its
multi-index set I′ are analogously defined to Ir with I′r ⊆ Ir and
I, respectively. Each dimension n′r and the corresponding index
subset I′r are determined by fr , tr , and lr where fr ∈ Ir and lr ∈ Ir
are the lower and upper bound of the index range with 1 ≤ fr ≤
lr ≤ nr . The integer tr defines the step size for the r-th dimension
satisfying tr ∈ N for 1 ≤ r ≤ p. The shape tuple n′ = (n′1, . . . , n

′
p)

of a subtensor is given by n′r =
⌊

(lr − fr)/tr
⌋

+ 1. Elements of a
p-dimensional subtensor A′ are given by A′(i′) = a′

i′
with i′ ∈ I′.

Assuming a simple linear (flat) memory model, dense tensors
shall be stored contiguously in memory. The (absolute) memory
locations of tensor elements are given by k = k0 + j · δ with k0 ∈
N0 being the memory location of the first tensor element and
δ being the number of bytes required to store tensor elements.
We call J : = {0, 1, . . . ,

∏p
r=1 nr − 1} the single index set of A

where each j ∈ J is the relative position of the j-th tensor element
denoted by A[j]. A subtensor A′ of a tensor A has its own single
index set J′ with

∏p
r=1 n

′
r elements. We write A′[j′] to denote the

j′-th subtensor element.

2.2. Data Organization and Layout
The tensor layout or storage format of a dense tensor defines the
ordering of its elements within a linearly addressable memory
and, therefore, the transformation between multi-indices and
single indices. A p-order tensor A with a dimension tuple
n, has (

∏

r nr)! possible orderings where only a subset of
those are considered in practice. In case of two dimensions,
most programming languages arrange matrix elements either
according to the row- or column-major storage format. More
sophisticated non-linear layout or indexing functions have been
investigated for instance in [29, 30] with the purpose to increase
the data locality of dense matrix operations.

The most prominent element layouts are first- and last-order
storage formats. The former format is defined in the Fortran, the
latter in the C and C++ language specification, respectively. Any
linear layout can be expressed in terms of a permutation tuple
π . The q-th element πq corresponds to an index subscript r of a
multi-index ir with the precedence q where ir ∈ Ir and 1 ≤ q, r ≤
p. In case of the first-order format, the layout tuple is defined
as πF : = (1, 2, . . . , p) where the precedence of the dimension
ascends with increasing index subscript. The layout tuple of the
last-order storage format is given by πL : = (p, p− 1, . . . , 1).

Given a layout tuple π and the shape tuple n, elements of a
stride tuple w are given by wπr = 1 for r = 1 and wπr =
∏r−1

q=1 nπq otherwise, with 1 ≤ wπq ≤ wπr for 1 ≤ q < r ≤ p, see

also Equation (2) in [24]. The q-th stride wq is a positive integer
and defines the number of elements between two elements with
an identical multi-index except that their q-th index differs by
one. Fortran stores tensor elements according to the first-order

storage format with wF = (1, n1, n1 · n2, . . . ,
∏p−1

r=1 nr). In case

of the last-order storage format πL = (p, p− 1, . . . , 1), the stride
tuple is given by wL = (

∏p
r=2 nr ,

∏p
r=3 nr , . . . , np, 1) which is

used by the C and C++ language for the data layout of the built-in
multi-dimensional arrays.

3. BOOST.UBLAS TENSOR EXTENSION

Initially equipped with basic matrix and vector operations,
Boost’s uBlas has been recently extended with tensor templates
and corresponding tensor operations to support multi-linear
algebra applications2. Tensor order, dimensions and contraction
modes (if applicable) of the tensor and subtensor types are
runtime variable. Common arithmetic operators are overloaded
and evaluated using expression templates. In the following, we
will only use the namespace std to denote the standard library
namespace and skip boost::numeric::ublas. Boost’s uBlas
tensor extension offers a variety of basic dense tensor operations
offering at least four important tensor functionality categories
that have been discussed in [23].

3.1. Tensor and Subtensor Templates
The tensor template class represents a family of
tensor types and adapts a contiguous container such as
std::vector. It is designed to organize multi-dimensional
data and to provide access with multi-indices and
single indices.

template <class T,
class F = first_order,
class C = std::vector<value_type>>

class tensor;

The element type T of tensor needs to fullfill the requirements
specified by the container type C and needs to support all basic
arithmetic scalar operations such as addition, subtraction,
multiplication, and division. The container C type must
satisfy the requirements of a contiguous container. By
default, if no container class is specified, std::vector is
used. Public member types such as value_type, size_type,
difference_type, pointer, reference, and iterator are
derived from the container type which stores elements of
type value_type and takes care of the memory management.
The memory space for tensor is dynamically allocated by
std::vector::allocator_type. Public member functions are
provided in order to construct, copy and move tensors. Data
elements can be assigned to the tensor using the assignment
operator =. Elements can be accessed with a single index using
the access operator [] and multi-indices with the function
call operator (). The user can conveniently create subtensors
with the function call operator (). Size and capacity member
functions such as size(), empty(), clear(), and data() are
provided as well. The user has multiple options to instantiate
tensor types. The default constructor creates an empty tensor of
order zero with an empty shape tuple. The following expression
instantiats a three-dimensional tensor A with the extents 4, 2,
and 3 with elements of type double.

2See GSoC18 link for the project description, Github link for the initial

implementation and Github link for the most current development.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 April 2022 | Volume 8 | Article 806537

https://summerofcode.withgoogle.com/archive/2018/projects/6064119220273152/
https://github.com/BoostGSoC18/tensor
https://github.com/boostorg/ublas
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

auto A = tensor<float>{4,2,3};

The user can also specify dimensions for each mode using the
extents class from which the tensor order and size of the data
vector is derived. The layout tuple is initialized according to the
first-order storage format if not specified otherwise. Once the
layout and dimensions are initialized, the constructor computes
strides according to the computation in subsection 2.2 and
Equation (2) in [24]. The following code snippet shows a possible
instantiation of a three-dimensional tensor with a last-order
storage format.

auto A = tensor<double,last_order>(extents{4,2,3});

The copy assignment operators () of the tensor class template
are responsible for copy data and protecting against self-
assignment. The user can expect the source and destination
tensor class instances to be equal and independent after the
copy operation. Two tensors are equal if they have the same
shape tuple, tensor order and elements with the same multi-
index independent of their layout tuple. Besides the type of the
data elements, the user can change the content and the size
of all member variables at runtime. The subtensor template
class is a proxy of tensor for conveniently reference a subset of
tensor elements.

template <class T>
class subtensor;

The tensor template specializes subtensor with tensor<

value_type,container> such that tensor::subtensor_t

equals subtensor<tensor<value_type,container». In
general, T needs to provide an overloaded access operator and
function call operator for accessing contiguously stored tensor
elements. The subtensor template contains a reference of the
viewed tensor instance, i.e., subtensor::tensor_t, a pointer to
the first element of type value_type*, extent ranges of a single
dimension using the class span, extents of type size_type,
strides of type size_type and also provides the same public
member types and methods as tensor allowing both types to be
used in free functions interchangeably. A subtensor instance
neither owns nor tracks the referenced tensor object. It might
become invalid whenever the corresponding tensor instance
does not exist any more.

The constructor of subtensor takes a reference of
subtensor::tensor_t and might take range types such
as span and std::integral types as additional arguments
that specify the multi-index space of a subtensor instance.
The r-th span instance defines an index set I′r that is a
subset of the index set Ir of a selected tensor instance. A
subtensor instance without any span objects references all
elements of a subtensor::tensor_t object. The tensor

template provides an overloaded function call operator with a
template parameter pack which simplifies the construction of a
subtensor subject. For instance, if A is of type tensor<float>
with a dimension tuple (3, 4, 2), then S of the following
expression is of type subtensor<tensor<float>> and has the
dimensions 2, 2, 1.

auto S = A (span(1,2), span(2,3), 1);

The pointer to the first subtensor element is computed by adding
an offset j∗ to the pointer of the first tensor element. The offset
j∗ is computed by combining p lower bounds f of the span

instances using the index function λ in Equation (1) in [24]
such that j∗ = λw(f) with f = (f1, . . . , fp) where w is the
stride tuple of a tensor and fr is the lower bound of the r-th
span instance.

3.2. Multi-Index Access
The tensor template provides multiple overloaded function
call operators for conveniently accessing elements with multi-
indices and scalar memory indices. The function call operator is
a variadic template that computes the inner product of the stride
and multi-index tuple in order to transform multi-indices onto
single indices. Hence, the user can define the following statement
which converts a three-dimensional tensor A into an identity
tensor with ones in the superdiagonals.

for(auto i = 1u; i <= n; ++i)
A(i,i,i) = 1.0;

Note that the statement is valid independent of A’s layout tuple.
The template tensor additionally allows to dynamically specify
multi-indices using std::vector. In that case the argument of
the function call is given by std::vector<std::size_t>(p,i)
where p is the tensor order. Using multi-indices abstracts from
the underlying data layout and enables the user to write layout
invariant programs as all elements have a unique multi-index
independent of the data layout. Note that accessing elements of
a p-dimensional tensor A with multi-indices involves a multi-
index to memory index transformation that is given by λw(i) =
∑p

r=1 wr(ir − 1) where p is the tensor order with p > 1 and
w is the stride tuple of A, see also Equation (1) in [24]. For
fixed stride tuples wF and wL, the index functions λwF and λwL

coincide with definitions provided in [25, 29]. Tensor elements
can also be accessed with a single index using the overloaded
access operator of tensor. This is convenient whenever the
complete memory index set needs to be accessed independent
of the tensor layout or order of data access is not relevant for
the implementation of the tensor operation. For instance, A with
any dimensions and storage format can be initialized by the
following statement.

for(auto j = 0u; j < A.size(); ++j)
A[j] = 0;

In contrast to an access with multi-indices, accessing
tensor elements with single indices does not involve index
transformations. However, most of the more complex tensor
operations such as the tensor transposition require some type of
multi-index access.

Subtensor elements can be similarly accessed using multi-
indices with the subtensor’s overloaded function call operator.
Given the previously defined subtensor instance S with the
dimensions (2,2,1), all diagonal elements can be set to 1 using
a single for-loop where m is equal to 2.

for(auto i = 1; i <= m; ++i)
S(i,i,1) = 1;

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Similar to the tensor case, the relative memory location needs to
be computed as well, using index function λ transforming every
index i′ ∈ I′r into an index of the set Ir with j = j∗+λw′′ (i′) where
j∗ is the relative memory location of the first subtensor element.
Elements of the stride tuple w′′ is given by w′′

r = w′
rtr for 1 ≤ r ≤

p in which w′ is computed with n′. The subtensor template also
provides an overloaded access operator with a single index. The
following statement sets all subtensor elements to zero.

for(auto j = 0u; j < S.size(); ++j)
S[j] = 0;

In contrast to the tensor case, accessing a relative memory
location of subtensor’s element with a single index involves its
transformation using the index function λ and its inverse λ−1.
Given a valid single index j′ ∈ J′ and the relativememory location
of the first subtensor element j∗, the relative memory location j ∈
J of a subtensor element at index j′ is given by j = j∗ + λ′w′′ ,w′ (j

′)

with λ′w′′ ,w′ being a composition of the index functions λw′′ and

λ−1
w′ . The latter is the inverse index function is given by λ

−1
w (j) = i

where ir = ⌊xr/wr⌋ + 1 with xπr = xπr+1 −wπr+1 · (iπr+1 − 1) for
r < p and iπp = ⌊j/wπp⌋ + 1, see also [24].

4. MULTI-DIMENSIONAL ITERATOR

C++ iterators are class templates that can traverse and access
C++ container elements. They help to decouple the dependency
between C++ container and C++ algorithms by parameterizing
the latter in terms of iterators only. The following class template
multi_iterator simplifies the iteration over a multi-index set
of a tensor or subtensor independent of their storage formats and
helps to decouple tensor types from tensor functions.

template<class iterator>
class multi_iterator;

The template parameter iterator should be a valid template
parameter for std::iterator_traits with which iterator
attributes can be queried. The tensor and subtensor templates
can specialize multi_iterator with their corresponding
pointer or iterator type. The constructor of multi_iterator
initializes three private member variables, the current pointer of
type std::iterator_traits<iterator>::pointer, a pointer
to the strides of type const std::size_t* and a stride of type
std::size_t. The following statement specializes the multi-
dimensional iterator template and instantiates it.

auto it = multi_iterator<pointer>(k,w,1);

The argument k is a pointer to the first tensor element and w

a pointer to the first stride tuple element. The last argument 1
selects the second stride from w. The copy-assignment operator of
iterator copies the current position k, the pointer to the stride
tuple w, and the stride wc. We consider two dimension-based
iterators i1 and i2 equal if the current positions i1.k, i2.k and
the strides i1.wc, i2.wc of the iterators are equal. Therefore, the
statement (i1=i2) == i2 is considered true as both iterators
have equal position and stride after the assignment (i1=i2).

The following example illustrates the difference of two ranges
that are created by the random access iterator type iterator

of std::vector and the multi_iterator<pointer> type. Let
A be a three-dimensional dense tensor with elements of type
float contiguously stored according to the first-order storage
format. Let also k be a pointer to the first element of A initialized
with A.data(). Given 4, 3, 2 be A’s extents and w the stride
tuple with (1,4,12), respectively, the two statements instantiate
iterator pairs.

iterator first(k), last(k+w[2]);
multi_iterator<pointer> mfirst(k,w,1), mlast(k+w[2],w,1);

The first half-open range [first,last) covers all tensor
elements with memory indices from 0 and to 12. The second
range only covers elements with the multi-indices (1, i, 1) for
1 ≤ i ≤ 2 which corresponds to a mode-2 tensor fiber, i.e., the
first row of the frontal tensor slice. Applying the index function λ,
the relative memory positions of A’s elements are at position 0, 4
and 8. The iteration over the second mode of A can be performed
with both iterator pairs.

for(; first != last; first+=w[1]) { *first = 5.0; }
for(; mfirst != mlast; mfirst+=1) { *mfirst = 5.0; }

The statements initialize the first row of A. The first statement
uses the C++ standard random-access iterator first which
is explicitly incremented with the second stride w[1]. The
same operation can be accomplished with the multi-dimensional
iterator mfirst which is initialized and internally incremented
with the second stride w[1]. Our implementation of multi-
dimensional iterators can also be used with C++ algorithms of the
standard library. For instance, std::fill can be used together
with mfirst and mlast to initialize the first row of A.

std::fill(mfirst, mlast, 5.0);

The user can introduce member functions begin and end

of tensor and subtensor or implement free functions, both
simplifying the instantiation of multi-dimensional iterators.
The user needs to specify a one-based mode that is greater
than zero and equal to or smaller than the tensor order.
Both functions could also allow to specify a multi-index
with std::vector<std::size_t> and define the displacement
within the multi-index space except for the dimension dim. In
the following, begin and end shall be member functions of the
tensor and subtensor types. The aforementioned initialization
of A’s first row can be performed in one line which first
generates mode-specific iterates using begin and end for the
first mode.

std::fill(A.begin(1),A.end(1),5.0);

Note that the user can perform the initialization independent of
A’s storage format. Moreover, fibers with different modes using
C++ algorithms of the standard library can be combined. The
following statement for instance computes the inner product of a
mode-3 and mode-2 fiber.

std::inner_product(A.begin(3),A.end(3),
B.begin(2),0.0);

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 1 | Nested-loop with multi-dimensional iterators for tensor types
of order 3 with any linear storage format.

for(auto it3=A.begin(3); it3!=A.end(3); ++it3)
for(auto it2=it3.begin(2); it2!=it3.end(2); ++it2)
for(auto it1=it2.begin(1); it1!=it2.end(1); ++it1)

*it1 = v;

Again, A and B can be of different types (such as tensor
or subtensor) with different storage formats. The user can
invoke begin and end function with no mode or mode 0 with
which the single-index space of a tensor or subtensor can be
iterated through.

std::fill(A.begin(),A.end(), 0.0);

Note that range-based for-loops can also be used instead of
std::fill. Similar to the tensor type, the multi_iterator

template provides twomethods begin and endwith whichmulti-
dimensional iterators can be instantiated. The new instantiated
iterators have the same pointer position and stride tuple reference
but a new stride depending on the argument which specifies the
mode. For instance, a multi-dimensional iterator it can be used
to define a multi-dimensional iterator pair that is able to iterate
along the third mode.

auto first = it.begin(3), auto last = it.end(3);

Listing 1 illustrates the initialization of a three-dimensional
tensor or subtensor Awithmulti-dimensional iterators. The code
example consists of three nested for-loops. Within each loop a
multi-dimensional iterator it{r} is initialized using the begin
and end member function of either the tensor A or a multi-
dimensional iterator of the previous loop. The iterator number
corresponds with the position within the stride tuple so that
it{r} will be internally incremented with the w[r-1] stride in
case of tensors and with w[r-1]*s[r-1] in case of subtensors
where s[r-1] is the step size. The inner loop assigns value v

to the column elements of the (it3,it2)-th frontal slice. The
innermost loop can be replaced with the following statement.

std::fill(it1.begin(1), it1.end(1), v);

In contrast to the iterator design in [25, 26], our iterator instances
are able to clone themselves for different modes. Tensor A in the
outer-most loop is replaceable by a multi-dimensional iterator
it3 that is generated in a previous statement with the expression
A.begin(3). In the next section we present tensor functions
that iterate over the multi-index space of multi-dimensional
tensors and subtensors with arbitrary storage format using multi-
dimensional iterators only.

5. TENSOR FUNCTIONS

The following tensor functions implement basic tensor
operations and iterate over the multi-index space of tensor types
using multi-dimensional iterators combining multiple tensor
elements. The user is not forced to use the aforementioned multi-
dimensional iterator class templates. Yet the multi-dimensional

iterator should be able to iterate over a specific mode and must
provide begin and end member functions that can generate
multi-dimensional iterators with the same capabilities. Most of
the following tensor functions require input iterator attributes of
the standard library.

Similar to the basic linear algebra subroutines (BLAS),
we distinguish between first-level and higher-level tensor
algorithms. The former generalize function templates of the C++
standard library for tensor types and have identical function
names with almost the same function signature. They combine
elements of one or more tensor or subtensor instances with
the same multi-index and are often referred to as pointwise or
elementwise tensor operations. Higher-level tensor operations
have a more complex control-flow and tensor elements with
different multi-indices such as the tensor-tensor multiplication.

All of the following C++ tensor functions implement tensor
operations with multiple loops and contain two optimizations
that have been suggested in [24] optimizing index computation
(minimum-index) and inlining recursive function by compile-
time optimization (inline). Comparing the tree-recursive and
equivalent iteration-based implementations that have presented
in [24], we favor the tree-recursion which has fewer lines of C++
code, is easier to understand and is only about 8% slower if the
leading dimension of the tensors or subtensors is greater than or
equal to 256.

5.1. First-Level Tensor Operations
The following proposed first-level tensor C++ function templates
are akin to the ones provided by the algorithms library of the
C++ standard library and combine elements with the samemulti-
index. With similar functions signatures, tensor functions pose
different iterator requirements and has in most cases tensor order
as an additional parameter. Almost all C++ tensor functions
contain a function object (predicate) that is applied to every input
element. The user can utilize existing function objects of the C++
standard library, define its own class or use lambda-expressions
which is why first-level C++ tensor functions can be regarded as
higher-order functions for tensors.

It should be noted that dense and contiguously stored tensors,
C++ functions from the standard library such std::transform

or std::inner_product can be used. However, the usage of
loops utilizing a single-index or alike in case of subtensors slows
down the performance by a factor which is proportional to
the subtensor order [24]. If the leading dimension nπ1 of a
tensor is large enough and greater than 512, the experiments
in [24] show that the control- and data-flow overhead of a
multi-loop approach only slows down the computation by at
most 12%. In extreme cases where the leading dimension is
smaller than 64, we observed a slow down of about 50%.
This observation favors the usage of one implementation with
nested recursion and multiple loops for dense tensors and their
subtensors if the leading dimensions are in most cases greater
than 256.

The implementation of basic tensor functions can be derived
from the previous example in listing 1. In contrast to the
C++ algorithms, first-level tensor function templates iterate

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 2 | Implementation of for_each with multi-dimensional iterators.

template <class InputIt, class UnaryFn>
void for_each(unsigned r,

InputIt first, InputIt last, UnaryFn fn)
{

const auto s=r-1;

if(r > 1)
for(; first != last; ++first)
for_each(s, first.begin(s), first.end(s), fn);

else /* base case: r = 1 */
std::for_each(first,last,fn);

}

over multiple ranges using multi-dimensional iterators. The
function for_each in listing 2 applies the function object fn
of type UnaryFn to every tensor element that is accessed by
multi-dimensional iterator pairs first and last. Given a tensor
or subtensor A of order pwith p>0, for_each in listing 2 needs to
be performed with an iterator pair A.begin(p) and A.end(p).
The parameter r corresponds to the inverse recursion depth
which is initialized with the tensor order p and decremented
until the base case of the recursion is reached where r is equal
to 1. for_each calls itself std::distance(first,last) times
in line 6 with a new range defined by first.begin(r-1) and
first.end(r-1) where first is an iterator instance of the
previous function call. When the base case with r=1 is reached,
std::for_each is called in line 7 with the range specified by
first.begin(1) , first.end(1). If for_each is called with an
r smaller than p, for_each skips p-rmodes and only applies fn
on the first r modes. If r is greater than p, any memory access
is likely to cause a segmentation fault. If the user calls for_each
with r=0, std::for_each is directly called and iterated along the
single index space of the tensor or subtensor.

Note that for_each calls itself n2 · · · np times if the tensor or
subtensor is of order p > 1 and has the dimensions n1, n2, . . . , np.
Given a tensor or subtensor A of order p with any linear
storage format and a unary function object fn, the arguments
of for_each should be p, A.begin(p), A.end(p), and fn. For
instance, adding a scalar v to all elements of A can be performed
if fn is defined as std::bind(std::plus<>{},_1,v) or using a
lambda function with the same computation.

//A:=A+v;
for_each(p, A.begin(p), A.end(p), [v](auto &a){a+=v;});

The user can implement elementwise subtraction,
multiplication, division operations by defining a binary
function object from the standard library such as
std::bind(std::multiplies<>{},_1,v). It is also
possible to define bitwise tensor operations, e.g.,
std::bind(std::bit_or<>{},_1,v) if v satisfies the template
parameter requirements of the binary operation. The user can
conveniently create complex elementwise tensor operations that
contain a sequence of scalar operations for each element. For
instance, raising all tensor or subtensor elements to the power of

Listing 3 | Implementation of transform with multi-dimensional iterators.

template <unsigned r,
class InputIt, class OutputIt, class UnaryOp>

void transform(InputIt fin, InputIt lin,
OutputIt fout, UnaryUp op)

{
constexpr auto s=r-1;

if constexpr (r > 1)
for(; fin!=lin; ++fin, ++fout)
transform<s>(fin.begin (s), fin.end(s),

fout.begin(s), op);

else /* base case: r = 1 */
std::transform (fin, lin, fout, op);

}

2, dividing the result by v and adding the value w is given by the
following expression.

//A:=A.^2/v+w;
for_each(p, A.begin(p), A.end(p),

[v,w](auto &a){a*=a/v+w;});

In contrast to calling simple overloaded operators of tensor or
subtensor types, this statement does not create temporary tensor
objects and is as efficient as expression templates.

Function transform, presented in listing 3, has a signature
which is similar to the one of std::transform. It operates
on two multi-dimensional ranges which are defined by the
iterators fin, lin of type InputIt and fout of type
OuputIt defining the input and output ranges, respectively.
Akin to the for_each implementation, the one-dimensional
ranges are given by iterators that are instantiated either by
the previous recursive call or when transform is initially
called. For demonstration purposes, the inverse recursion
depth and its initial value is specified using a non-type
template parameter r. The if condition is modified with
the constexpr specifier so that r>1 is evaluated at compile
time. A C++ compiler can decide to inline the recursive calls
which leads faster runtimes in case of small dimensions [24].
Once the base case with r=1 is reached std::transform

performs the unary operation op on elements of tensor
fibers that are given by the ranges [fin,lin) and [fout,
fout+std::distance(fin,lin)).

Given p+1-dimensional tensors or subtensors A and C with
the shape tuple n and any linear storage format. Let also op be
a unary operation of type UnaryOp. The multiplication of a scalar
v with the elements of A is accomplished by calling transform

as follows.

// C:= A+v;
transform<p>(A.begin(p), A.end(p), C.begin(p),

[v](auto a){ return a*v;});

Given p+1-dimensional tensors or subtensors A, B, and C with
the shape tuple n and any linear storage format. Let also op be
a binary operation of type BinaryOp that can process elements of
A and B. Elementwise addition of A and B can be performed by
calling transform as follows.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

// C:= A+B;
transform<p>(A.begin(p), A.end(p),

B.begin(p), C.begin(p), std::plus<>{});

Users can implement their own multi-dimensional iterators
supporting the input iterator type traits with the begin and
end method for initializing iterators. The copy and transform

functions have the same signature except the unary operator
which can be left out in case of copy. Moreover, copy can
be regarded as a specialization of transform where the unary
function op returns a single element that is provided by the
input iterator. With r specifying the inverse recursion depth, our
implementation of copy is given by the following function call.

transform<r>(fin, lin, fout, [](auto a){return a;}));

Transposing a tensor can be accomplished using the copy

function with minor modifications. Let tau of type, e.g.,
std::array<unsigned,p> be an additional standard container
for the index permutation as a function parameter and let the
function name copy be changed to transpose. An out-of-place
tensor-transposition is performed with

// C := A^{tau};
transpose<p>(A.begin(tau[p-1]), A.end(tau[p-1]),

C.begin(p), tau);

The recursive function call in transpose needs to be changed
accordingly, replacing the argument p with r-1. Note this simple
implementation of the tensor transposition does not conserve
data locality only for both tensors unless the permutation
tuple is trivial. A high-performance version of the transposition
operation is given in [31].

An implementation of the inner product of two tensors or
subtensors with any linear storage format is given in listing 4.
The function signature and body corresponds to a modified
transform function. The std::inner_product computes the
inner product of tensor or subtensor fibers multiple times using
results init of previous function calls. Computing the inner
product of two tensors or subtensors A and B is given by the
following function call.

// c := <A,B>;
auto inner = inner_product<p>(A.begin(p), A.end(p),

B.begin(p), Value{});

The initial value is given by the default constructor of Value
which should be implicitly convertible to the elements type of
A and B. The frobenius norm of a tensor A can be implemented
using the inner_product as follows.

// c: = fnorm(A) = sqrt(inner(A,A));
auto c = std::sqrt(inner_product<p>(A.begin(p),A.end(p),

A.begin(p),Value{}));

The computation of the frobenius norm is given by first executing
the unary operation [](auto const& a){return a*a;} with
transform and accumulate all elements of the output tensor C
using the accumulate function.

5.2. Higher-Level Tensor Operations
Higher-level tensor operations perform one or more inner
products over specified dimensions and, therefore, exhibit a
higher arithmetic intensity ratio compared to first-level tensor

Listing 4 | Implementation of inner_product with multi-dimensional iterators.

template <unsigned r, class InputIt,
class OutputIt, class Value>

Value inner_product(InputIt fin, InputIt lin,
OutputIt fout, Value init)

{
constexpr auto s=r-1;

if constexpr (r > 1)
for(; fin!=lin; ++fin, ++fout)
init = inner_product<s>(fin.begin(s),fin.end(s),

fout.begin(s),init);

else /* base case: r = 1 */
init = std::inner_product(fin, lin, fout, init);

return init;
}

operations. Prominent examples are the general tensor-times-
tensor multiplication with variations.

5.2.1. Tensor-Vector Multiplication

One such variation is the q-mode tensor-vector multiplication
where q equals the contraction dimension. Let A be a tensor or
subtensor of order p > 1 with dimensions n and any linear
storage format. Let b be a vector with dimension nq with 1 ≤ q ≤

p. Let C be a tensor or subtensor of order p− 1 with dimensions
n′ = (n1, . . . , nq−1, nq+1, . . . , np). The q-mode tensor-vector

multiplication computes 1/nq
∏p

r=1 nr inner products, i.e., fiber-
vector multiplications, according to

C(i1, . . . , iq−1, iq+1, . . . , ip) =

nq
∑

iq=1

A(i1, . . . , iq, . . . , ip)·b(iq) (1)

with 1 ≤ ir ≤ nr . If p = 2, the tensor-vector multiplication
computes a vector-matrix product of the form c = bT · A for
q = 1 and a matrix-vector product of the form c = A · b for
q = 2. Vector b is multiplied with the frontal slices of A if p is
greater than 2 and q = 1 or q = 2.

Function ttv in listing 5 implements the general tensor-times-
vector multiplication where the contracting dimension q is a
one-based compile time parameter computing all contractions
for 1 < q ≤ p. The second template parameter ra corresponds
to the inverse recursion depth and ranges from 1 ≤ r ≤ p. The
third template parameter rc depends on q so that rc = ra − 1 for
q < ra ≤ p and rc = ra for 1 ≤ ra ≤ q. The algorithm used in ttv
is based on the algorithm 1 that has been proposed in [32]. The
implementation can be regarded as an extension of the previously
discussed functions with similar signature and body. The first if-
statement is introduced to skip and place the iteration along the
q-th dimension inside the base case. Therefore, iterators for the
next recursion are generated for A based on the current position
of fa. The second if-statement contains the recursive call that
can be found in all previous listings. The else-statement contains
the base case of the recursion which is executed if ra=1. The base
case multiplies vector b with a selected slice of A and stores the

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

results in the corresponding fiber of C. Given a tensor A of order
p, a vector b and a tensor C of order p-1, all with the same element
type and storage format, then

// C = A *q b
ttv<q,p,p-1>(A.begin(p), b.begin(),C.begin(p-1));

computes the q-mode tensor-times-vector product for 1 < q ≤

p. Note that spatial data locality for A is maximized when stride
wa
q satisfies w

a
q ≤ wa

ra
for all ra 6= q which is the case for a storage

format with a layout tuple (q,π2, . . . ,πp). For that purpose, C
stride wc

1 needs to satisfy wc
1 ≤ wc

rc
for all rc 6= q. Assuming that

only one storage format, the spatial data locality can be increased
for any linear storage format by modifying the recursion order
according to the storage format and reordering the loops in the
base case as suggested in [32]. This is accomplished by using the
layout vectors π of A and C that contain indices with wπr ≤

wπr+1 for all 1 ≤ r < p. Replacing indices ra and rc with
pia[ra-2] and pic[rc-2] allows to generate iterators with
strides that are decreasing with the recursion depth. The base case
needs to be changed as well with the following code snippet that
computes a slice-vector product accessing A and C for any linear
storage format.

auto ta = pia[0];
auto tc = pic[0];

for(auto faq=fa.begin(q); faq!=fa.end(q); ++faq,++fb){
auto op = [b=*fb](auto const& a, auto const& c)

{return c+a*b;});

std::transform(faq.begin(ta), faq.end(ta),
fc. begin(tc), fc. begin(tc), op);

}

Instead using std::inner_product, the base case scales A’s
fibers with b and writes the result in C’s corresponding fibers. If A
and B are contiguously stored, memory access can be performed
in a coalesced manner. The algorithm can be further optimized
for temporal data locality and parallel execution. Interested
readers are referred to [32].

5.2.2. Tensor-Matrix Multiplication

A generalization of the q-mode tensor-vector multiplication and
a specialization of the tensor-tensor multiplication is the q-mode
tensor-matrix multiplication. Let A be a tensor or subtensor
of order p > 1 with dimensions n and any linear storage
format. Let B be a matrix with dimensions (nq, n

′
q) with 1 ≤

q ≤ p. Let C be a tensor or subtensor of order p with
dimensions n′ = (n1, . . . ,m, . . . , np). The q-mode tensor-matrix

multiplication computes (m/nq)
∏p

r=1 nr inner products, i.e.,
fiber-vector multiplications, according to

C(i1, . . . , j, . . . , ip) =

nq
∑

iq=1

A(i1, . . . , iq, . . . , ip) · B(j, iq) (2)

with 1 ≤ ir ≤ nr and 1 ≤ j ≤ m. If p = 2, a matrix-
matrix product C = B · A for q = 1 and C = A ·

BT for q = 2, respectively. Matrix B is multiplied with the
frontal slices of A accordingly if p greater than 2 and q = 1
or q = 2.

Listing 5 | Implementation of the q-mode tensor-vector product with iterators for

q>1.

template<unsigned q, unsigned ra, unsigned rc,
class InputIt1,class InputIt2,class OutputIt>

void ttv(InputIt1 fa, InputIt1 la, InputIt2 fb,
OutputIt fc)

{
constexpr auto sa = ra-1;
constexpr auto sc = rc-1;

if constexpr (ra == q)
ttv<q,sa,rc>(fa.begin(sa), fa.end(sa), fb, fc);

else if constexpr (ra > 1)
for(; fa != la; ++fa, ++fc)
ttv<q,sa,sc>(fa.begin(sa),fa.end(sa),

fb,fc.begin(sc));

else /* base case: ra = 1 and rc = 1 */
for(; fa != la; ++fa, ++fc)

*fc = std::inner_product(fa.begin(q),fa.end(q),
fb ,*fc);

}

The implementation of the q-mode tensor-matrix
multiplication is almost identical to ttv except for the base
case, minor modifications for the recursion cases and the
function signature.

template<unsigned q, unsigned r,
class InputIt1,class InputIt2,class OutputIt>

void ttm(InputIt1 fa, InputIt1 la, InputIt2 fb,
OutputIt fc)

The contracting dimension q is a one-based compile time
parameter of ttm which performs a valid computation for
1 < q ≤ p. As both tensors or subtensors have the
same order, ttm requires only one template parameter r which
equates to ra in ttv. The implementation of ttm’s base-case
computes a matrix-slice product of the form C = A · BT by
multiplying a two-dimensional slice of A with a transposed B

and storing the results in corresponding fibers of C. The base
case is presented in the following code section and executed
when r=1.

for(auto fb1=fb; fa!=la; ++fa, ++fc,fb0 = fb)
for(auto fcq=fc.begin(q);fcq!=fc.end(q);++fcq,++fb1)

*fcq = std::inner_product(fa.begin(q),fa.end(q),
fb1.begin(2),*fcq);

When r=1, iterators fa, la, and fc have been instantiated by
previously generated iterators with their begin and endmethods
for r=1. We postulate that fb is initialized with begin for the
first dimension with r=1. The first for-loop iterates over the
first mode of A and C using fa and fc. The second for-loop
iterates over mode q of Cwith the starting address of the previous
iterator and first mode of B and calling std::inner_product

with A’s fiber and one column of B. Given a tensor or
subtensor A of order p, a matrix B and a tensor or subtensor
C of order p, with similar element types and any linear data
layout, then

// C = A *q B;
ttm<q,p> (A.begin(p), B.begin(1), C.begin(p));

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

auto fb2 = fb.begin(2);
auto pi0 = pi[0];

for(auto fcq=fc.begin(q);fcq!=fc.end(q);++fcq,++fb){
auto fb1 = fb.begin(1);
for(auto faq=fa.begin(q);faq!=fa.end(q);++faq,++fb1){
auto op=[b=*fb1](auto const& a, auto const& c)

{return c+a*b;});
std::transform(faq.begin(pi0),faq.end(pi0),

fcq.begin(pi0),fcq.begin(pi0), op);
}

}

computes the q-mode tensor-times-matrix product. Note that
spatial data locality for A and C is high when their strides wq

satisfy wq ≤ wr for all r 6= q. Assuming that only one storage
format, the spatial data locality can be increased for any linear
storage format similar to ttv. This is done by utilizing the layout
vectors π of both tensors and by replacing the index r with
pi[r-2] that allows to generate iterators with decreasing strides
and recursion depth. The loop ordering inside the base case of
ttm is changed from (n1,nq,m) to (m,nq,nπ1). In that case A and C
are accessed in a coalesced manner for any linear storage format
if the tensors are contiguously stored in memory where one fiber
of C is accessed nq times. The algorithm can be further optimized
for temporal data locality and parallel execution.

5.2.3. Tensor-Tensor Multiplication

The tensor-tensor product is the general form of the tensor-
matrix and tensor-vector multiplication. Let A and B be tensors
or subtensors of order pa and pb with dimensions na and nb,
respectively. Given two permutation tuples ϕ and ψ of length pa
and pb and the number of contractions q with qa = pa − q and
qb = pb − q, the q-fold tensor-tensor multiplication computes
elements of tensor or subtensor C of order pc = qa + qb
with dimensions nc and using permutation tuples ϕ and ψ

according to

C(ic) =

m1
∑

j1=1

· · ·

mq
∑

jq=1

A(ia) · B(ib), (3)

where the shape tuples satisfy ncrc = nara for 1 ≤ rc ≤ qa with

ra = ϕr , n
c
rc
= nbrb for 1 ≤ r ≤ qb with rc = qb + r and rb = ψr ,

mr = nara = nbrb for 1 ≤ r ≤ q with ra = ϕr+qa and rb =

ψr+qb . The first q elements of ϕ and ψ specify the contraction
modes, while the remaining qa and qb elements specify the
free (non-contraction) modes. The k-mode tensor-matrix and
k-mode tensor-vector multiplication are specializations of the
q-fold tensor-tensor multiplication which corresponds to the k-
mode tensor-vector multiplication, if q = 1, pa > 1, pb = 1
and ϕ = (1, . . . , k − 1, k + 1, . . . , pa, k), ψ = (1). The k-mode
tensor-matrix multiplication is given if q = 1, pa > 1, pb = 2
and ϕ = (1, . . . , k− 1, k+ 1, . . . , pa, k), ψ = (1, 2).

Function ttt in listing 6 implements the tensor-times-tensor
multiplication as defined in Equation (3) for any number of
contractions q>1. The contraction is performed with tensors or

subtensors A and B of order pa and pb with any linear storage
format and without unfolding A or B. The free and contraction
modes reside within the permutation tuple phi and psi that
must be a container with random access capabilities. Function
ttt is defined with four non-type template parameter. The first
three ra, rb, and rc are the current modes of each corresponding
tensor or subtensor and should be initially instantiated with pa

and pb and pc, respectively. The last non-type parameter q of ttt
and equals to the number of contraction modes.

The control flow of ttt contains four main branches of which
three contain a for-loop with a recursive function call. The first
for-loop is exectued qb times and iterates over free index spaces
of B and Cwith s = ψrb for q < rb ≤ pb and qa < rc ≤ pc without
adjusting iterators of A. The second for-loop is executed qa times
and iterates over free index spaces of A and C where s = ϕra for
q < ra ≤ pa and 1 ≤ rc ≤ qa without adjusting iterators of
B. The third for-loop is executed q times and iterates over the
contraction index spaces of A and Bwhere s = ϕra and r = ψrb for
1 < ra,b ≤ q without adjusting iterators of C. If ra = 1 and rb = 1
the base case is reached and ttt performs an inner product with
iterators that have been previously instantiated.

The q-mode tensor-tensor multiplication can be interpreted
as a mix of the inner and outer tensor product with permutation
tuples. The latter is partly accomplished by the qa + qb-fold
execution with the first and second for-loop. However, input
tensor elements of A and B are not multiplied to complete the
outer product operation. Instead an inner product over q modes
is computed for the recursion levels r > qa + qb. The last
two branches could be replaced by the inner_product in listing
4 using the permutation tuples phi and psi. The minimum
recursion depth is 1 when q = 1 and qa,b = 0, while the
maximum recursion depth equals q + qa + qb with q > 0 and
qa,b > 0.

Given tensors or subtensors A of order 3, B of order 4 and
C of order 3 with similar element types, any linear data layout.
Let the dimension tuples of A and B be na = (4, 3, 2) and
nb = (5, 4, 6, 3), respectively. Let also q = 2 be the number of
contractions andϕ = (1, 2, 3) andψ = (2, 4, 1, 2) be the elements
of the permutation tuples phi and psi, respectively. Given the
dimensions (na3, n

b
1, n

b
2), i.e., (2,5,6), then

// C = A(_i,_j,_)*B(_,_i,_,_j)
ttt<pa,pb,pc,q>(phi,psi,

A.begin(pa),B.begin(pb),C.begin(pc));

performs a 2-mode tensor-tensor multiplication of A and B

according to phi, psi, and q. Spatial data locality for A and B is
high when for q > 0 their strides wa

ϕ1
and wb

ψ1
satisfy wa

ϕ1
≤ wa

r

for all r 6= ϕ1 and wb
ψ1

≤ wb
r for all r 6= ψ1, respectively.

Performance analysis and optimization techniques for the
general tensor-tensor multiplication are discussed in [33, 34].

6. RUNTIME ANALYSIS

This section presents runtime results of the transform

function (listing 3) and the function inner_product (listing
4). The runtime measurements also include pointer-based
implementations that have been presented in [24]. We

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

Listing 6 | Template Function ttt using multi-dimensional iterators implementing

Equation (3).

template<unsigned ra, unsigned rb,
unsigned rc, unsigned q,
class InputIt1, class InputIt2,
class OutputIt, class Permutation>

void ttt(Permutation const& phi,
Permutation const& psi,
InputIt1 fa, InputIt2 la,
InputIt2 fb, InputIt2 lb,
OutputIt fc)

{
constexpr auto sa = ra-1;
constexpr auto sb = rb-1,
constexpr auto sc = rc-1;

if constexpr (rb > q)
for(; fb!=lb; ++fb,++fc)

ttt<ra,sb,sc,q>(phi,psi,
fa,la,
fb.begin(sb),fb.end(sb),
fc.begin(sc));

else if constexpr (ra > q)
for(auto s=phi[sa]; fa!=la; ++fa,++fc)

ttt<sa,rb,sc,q>(phi,psi,
fa.begin(s),fa.end(s),
fb,lb,fc.begin(sc));

else if constexpr (ra > 1)
for(auto s=phi[sa], r=psi[sb]; fa!=la; ++fa,++fb)

ttt<sa,sb,rc,q>(phi,psi,
fa.begin(s),fa.end(s),
fb.begin(r),lb,
fc);

else // base case: ra=1 and rb=1

*fc = std::inner_product(fa,la,fb,*fc);
}

have also included runtime results of the ttv function
(listing 5) that has been discussed in [32] as a sequential
implementation for the tensor-times-vector multiplication.
All pointer and iterator-based functions have identical with
respect to their control-flow in which the recursion index is a
template parameter.

6.1. Setup
The following runtime measurements have been performed with
1792 differently shaped tensors ranging from 32 to 1024 MiB
for single- and 64 to 2048 MiB for double-precision floating-
point numbers. The order of the tensors ranges from 2 to 14
while dimensions range from 256 to 32768. Dimension tuples
are arranged within multiple two-dimensional arrays so that
runtime data could be visualized as three-dimensional surfaces
or contour plots in terms of the tensor order and tensor size.
The contour plots consist of 100 height levels that correspond
to averaged throughputs. We will refer to the contour plots
as throughput maps. Spatial data locality is always preserved
meaning that relative memory indices are generated according
to storage format. Tensor elements are stored according to the

first-order storage format. This setup is identical to the tensor
test set that has been presented in [24]. For the tensor-times-
vector multiplication, we have used a setup that is akin to the one
described in [32]. All tensors are asymmetrically shaped ranging
from 64 to 2048 MiB for single- and 128 to 4096 MiB for double-
precision floating-point numbers. The tensor order ranges from
2 to 10 and the contraction mode has been set to 1 in order to
preserve spatial data locality for all tensor objects.

The experiments have been carried out on a Core i9-7900X
Intel Xeon processor with 10 cores and 20 hardware threads
running at 3.3 GHz. It has a theoretical peak memory bandwidth
of 85.312 GB/s resulting from four 64-bit wide channels with a
data rate of 2666MT/s with a peak memory bandwidth of 21.328
GB/s. The sizes of the L3 cache and each L2 cache are 14MB and
1024KB. The source code has been compiled with GCC v9.3 using
the highest optimization level -Ofast and -march=native.The
benchmark results of each function are the average of 10 runs on
a single core.

6.2. Results
Figure 1 contains two throughput maps of a pointer- and

iterator-based transform function. Both implement an

elementwise tensor addition of the form C:=A+v; using unary

function object [v](auto a){return a+v;}. The throughput
of transform with pointers and iterators are most effected when

the tensor size smaller than 128. We assume that this is caused

by the caching mechanism which is still able to hold some data
inside the last level cache and to speed up the computation. This
effect diminishes when the tensor size is greater than 256 MiB.
The throughput also contains a slight variation for different
tensor order. For tensor sizes greater than 256 MiB, pointer-
based implementation of transform computes the tensor
addition with approximately 12.2 GB/s varying with at most 10%
from the mean value. The iterator-based implementation is more
consistent and only slows down to approximately 12.2 GB/s if
the tensor order is 4 and 5. The std::transform function of
the C++ standard library, the pointer-based and iterator-based
transform function reach a median throughput of 13.71, 12.01,
and 12.60 GB/s for 95% of test cases and a maximum throughput
of 15.57, 13.50, and 13.71 GB/s.

The runtime behavior of the inner_product

implementations is similar, see Figure 2. The
std::inner_product function of the C++ standard library,
the pointer-based and iterator-based inner_product function
reach a median throughput of 14.8, 12.03, and 12.47 GB/s for
95% of test cases. They exhibit maximum throughput of 15.36,
12.59, and 12.82 GB/s mostly when the tensor size is equal to
32 MiB. We have made similar runtime observations for other
elementwise tensor operations such as for_each where the
iterator-based implementation is in many cases 1 to 5% faster
than their corresponding pointer-based counterparts.

Similar results are obtained for iterator-based and pointer-
based implementations of the tensor-times-vector operations
where both C++ functions compute the tensor-vector-product
with 2.09 (single-precision) GFLOPS for about 95% test-cases.
This can be observed in Figure 3 which contains throughput

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

FIGURE 1 | Single core throughput in GB/s of the transform function with pointers (left) that has been discussed in [24] and iterators (right) that is presented in

listing 3. Iterator-based transform function reaches a median throughput of 12.60 GB/s and is about 2% to 5% faster than its pointer-based counterpart.

FIGURE 2 | Single core throughput in GB/s of the inner_product function with pointers (left) that has been discussed in [24] and with iterators (right) that is

presented in listing 4. Iterator-based inner_product function reaches a median throughput of 12.47 GB/s and is about 2 to 5% faster than its pointer-based

counterpart.

maps for the iterator-based and pointer-based implementation
of the tensor-times-vector operation. The iterator-based function
ttv in listing 5 reaches a peak throughput of 2.92 GFLOPS when
tensor size and order are around 64 MiB and 10, respectively.
The pointer-based counterpart exhibits a maximum throughput
of 2.74 GFLOPS with the same tensor dimensions and is about
6.5% slower than the iterator-based function. Those performance
peaks happen for larger tensor order when the first (contraction)
dimension of the input tensor is relatively small. This results in
a higher reuse of cache lines that belong to the input vector and
output tensor fiber.

7. CONCLUSIONS

We have presented generic C++ functions for basic tensor
operations that have been discussed in [22] as part of a
Matlab toolbox for numeric tensor computations. Following
design pattern of the Standard Template Library, all proposed
C++ functions are defined in terms of only multi-dimensional
iterators and avoid complex pointer arithmetic. The set of
the C++ functions includes elementwise tensor operations
and more complex tensor operations such as tensor-tensor
multiplication. All C++ functions perform the corresponding

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 April 2022 | Volume 8 | Article 806537

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

FIGURE 3 | Single core throughput in GFLOPS of the ttv function with pointers (left) and with iterators (right) that is presented in listing 5. Iterator-based ttv
function computes the tensor-vector product with median throughput of 2.09 GFLOPS and performs as fast as the pointer-based implementation.

computation in-place and in a recursive fashion using two
optimizations that have been discussed in [24]. We have
introduced a multi-dimensional iterator that can be instantiated
by Boost’s uBlas tensor and subtensor types. Other C++
frameworks can utilize the proposed C++ functions for any
linear storage format by implementing the proposed or their
ownmulti-dimensional iterator fulfilling a minimal set of iterator
requirements. Our performance measurements show that the
iterator-based functions compute elementwise tensor operations
and the tensor-times-vector product at least as fast as their
corresponding pointer-based counterparts. Our iterator-based
design method is applicable to other tensor operations such
as the metricized-tensor times Khatri-Rao product (MTTKRP)
which is used to decompose tensors according to the PARAFAC
model [35, 36]. This implies that multi-dimensional iterators
can be used for efficiently implementing tensor operations.

In future, we intend to design C++ concepts for multi-
dimensional iterator or ranges. We also would like to integrate
optimization techniques that have been discussed in [32,
33] and to enable parallel execution of different type of
tensor operations.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and
has approved it for publication.

REFERENCES

1. Savas B, Eldén L. Handwritten digit classification using higher order

singular value decomposition. Pattern Recognit. (2007) 40:993–1003.

doi: 10.1016/j.patcog.2006.08.004

2. Vasilescu MAO, Terzopoulos D. Multilinear image analysis for facial

recognition. In: Proceedings of the 16th International Conference on Pattern

Recognition. Vol. 2 Quebec City, QC (2002). p. 511–514.

3. Suter SK, Makhynia M, Pajarola R. TAMRESH - tensor approximation

multiresolution hierarchy for interactive volume visualization. In: Proceedings

of the 15th Eurographics Conference on Visualization. EuroVis ’13. Chichester

(2013). p. 151–60.

4. Kolda TG, Sun J. Scalable tensor decompositions for multi-aspect data

mining. In: Proceedings of the 8th IEEE International Conference on Data

Mining. (Pisa) 2008. p. 363–72.

5. Rendle S, Balby Marinho L, Nanopoulos A, Schmidt-Thieme L. Learning

optimal ranking with tensor factorization for tag recommendation. In:

Proceedings of the International Conference on Knowledge Discovery and Data

Mining. Paris (2009). p. 727–36.

6. Khoromskij B. Tensors-structured numerical methods in scientific

computing: survey on recent advances. Chemometr. Intell.

Lab. Syst. (2012) 110:1–19. doi: 10.1016/J.CHEMOLAB.2011.

09.001

7. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51, 455–500. doi: 10.1137/07070111X

8. Lim LH. Tensors and hypermatrices. In: Hogben L, editor.Handbook of Linear

Algebra, 2nd Edn. Chapman and Hall (2017).

9. Cichocki A, Zdunek R, H PA, Amari S. Nonnegative Matrix and Tensor

Factorizations, 1st Edn. John Wiley & Sons, (2009).

10. da Silva JD, Machado A. Multilinear algebra. In: L. Hogben, editor.Handbook

of Linear Algebra, 2nd Edn. Chapman and Hall, (2017).

11. Lee N, Cichocki A. Fundamental tensor operations for large-

scale data analysis using tensor network formats. Multidimensional

Syst Signal Process. (2018) 29:921–60. doi: 10.1007/s11045-017-

0481-0

12. Lathauwer LD, Moor BD, Vandewalle J. A multilinear singular

value decomposition. SIAM J Matrix Anal Appl. (2000) 21:1253–78.

doi: 10.1137/S0895479896305696

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 April 2022 | Volume 8 | Article 806537

https://doi.org/10.1016/j.patcog.2006.08.004
https://doi.org/10.1016/J.CHEMOLAB.2011.09.001
https://doi.org/10.1137/07070111X
https://doi.org/10.1007/s11045-017-0481-0
https://doi.org/10.1137/S0895479896305696
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Bassoy Design of Generic C++ Tensor Algorithms

13. Li J, Battaglino C, Perros I, Sun J, Vuduc R. An input-adaptive and in-

place approach to dense tensor-times-matrix multiply. In: Proceedings of

the International Conference for High Performance Computing, Networking,

Storage and Analysis. SC ’15. Austin, TX (2015). p. 1–12.

14. Stroustrup B. Foundations of C++. In: Programming Languages and Systems

- 21st European Symposium on Programming. Vol. 7211 of Lecture Notes in

Computer Science. Tallinn (2012). p. 1–25.

15. Stroustrup B. Software development for infrastructure. Computer. (2012)

45:47–58.

16. Veldhuizen TL. Arrays in Blitz++. In: Caromel D, Oldehoeft RR, Tholburn

M, editors. Lecture Notes in Computer Science. ISCOPE. Vol. 1505. Berlin:

Springer (1998). p. 223–30.

17. Reynders III, JV, Cummings JC. The POOMA framework. Comput Phys.

(1998) 12:453–59.

18. Landry W. Implementing a high performance tensor library. Sci Program.

(2003) 11:273–90.

19. Solomonik E, Matthews D, Hammond J, Demmel J. Cyclops tensor

framework: Reducing communication and eliminating load imbalance in

massively parallel contractions. In: Proceedings of the 2013 IEEE 27th

International Symposium on Parallel and Distributed Processing. IPDPS ’13.

Cambridge, MA (2013). p. 813–24.

20. Harrison AP, Joseph D. Numeric tensor framework: exploiting

and extending Einstein notation. J Comput Sci. (2016) 16:128–39.

doi: 10.1016/j.jocs.2016.05.004

21. Poya R, Gil AJ, Ortigosa R. A high performance data parallel tensor

contraction framework: Application to coupled electro-mechanics. Comput

Phys Commun. (2017) 216:35–52. doi: 10.1016/j.cpc.2017.02.016

22. Bader BW, Kolda TG. Algorithm 862: MATLAB tensor classes for

fast algorithm prototyping. ACM Trans Math Softw. (2006) 32:635–53.

doi: 10.1145/1186785.1186794

23. Psarras C, Karlsson L, Bientinesi P. The landscape of software for tensor

computations. CoRR. 2021;abs/2103.13756.

24. Bassoy C, Schatz V. Fast higher-order functions for tensor calculus with

tensors and subtensors. In: Shi Y, Fu H, Tian Y, Krzhizhanovskaya VV, Lees

MH, Dongarra J, et al., editors. Computational Science—ICCS 2018. Springer

International Publishing (2018). p. 639–52.

25. Garcia R, Lumsdaine A. MultiArray: a C++ library for generic programming

with arrays. Softw Pract Exp. (2005) 35:159–88. doi: 10.1002/spe.630

26. Aragón AM. A C++ 11 implementation of arbitrary-rank tensors for

high-performance computing. Comput Phys Commun. (2014) 185:1681–96.

doi: 10.1016/j.cpc.2014.01.005

27. Stepanov A. The standard template library. Byte. (1995) 20:177–8.

28. HackbuschW. Numerical tensor calculus. Acta Numerica. (2014) 23:651–742.

doi: 10.1017/S0962492914000087

29. Chatterjee S, Lebeck AR, Patnala PK, Thottethodi M. Recursive array layouts

and fast parallel matrix multiplication. In: Proceedings of the Eleventh Annual

ACM symposium on Parallel algorithms and architectures. SPAA ’99. New

York, NY (1999). p. 222–31.

30. Elmroth E, Gustavson F, Jonsson I, Kågström B. Recursive blocked

algorithms and hybrid data structures for dense matrix library

software. SIAM Rev. (2004) 46:3–45. doi: 10.1137/S003614450342

8693

31. Springer P, Su T, Bientinesi P. HPTT: a high-performance tensor transposition

C++ library. In: Proceedings of the 4th ACM SIGPLAN InternationalWorkshop

on Libraries, Languages, and Compilers for Array Programming. Barcelona

(2017). p. 56–62.

32. Bassoy C. Design of a high-performance tensor-vector multiplication

with BLAS. In: Rodrigues JMF, Cardoso PJS, Monteiro JM, Lam R,

Krzhizhanovskaya VV, Lees MH, et al., editors. Computational Science – ICCS

2019 Lecture Notes in Computer Science. Vol. 11536. Cham: Springer. (2019).

p. 32–45.

33. Springer P, Bientinesi P. Design of a high-performance GEMM-like

tensor-tensor multiplication. ACM Trans Math Softw. (2018) 44:1–29.

doi: 10.1145/3157733

34. Matthews DA. High-performance tensor contraction without

transposition. SIAM J Sci Comput. (2018) 40:C1–C24. doi: 10.1137/16M10

8968X

35. Ballard G, Knight N, Rouse K. Communication lower bounds for matricized

tensor times Khatri-Rao product. In: 2018 IEEE International Parallel and

Distributed Processing Symposium (IPDPS). Vancouver, BC: IEEE (2018). p.

557–67.

36. Bader BW, Kolda TG. Efficient MATLAB computations with

sparse and factored tensors. SIAM J Sci Comput. (2008) 30:205–31.

doi: 10.1137/060676489

Conflict of Interest: The author declares that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Bassoy. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 April 2022 | Volume 8 | Article 806537

https://doi.org/10.1016/j.jocs.2016.05.004
https://doi.org/10.1016/j.cpc.2017.02.016
https://doi.org/10.1145/1186785.1186794
https://doi.org/10.1002/spe.630
https://doi.org/10.1016/j.cpc.2014.01.005
https://doi.org/10.1017/S0962492914000087
https://doi.org/10.1137/S0036144503428693
https://doi.org/10.1145/3157733
https://doi.org/10.1137/16M108968X
https://doi.org/10.1137/060676489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	Iterator-Based Design of Generic C++ Algorithms for Basic Tensor Operations
	1. Introduction
	2. Preliminaries
	2.1. Mathematical Notation
	2.2. Data Organization and Layout

	3. Boost.uBlas Tensor Extension
	3.1. Tensor and Subtensor Templates
	3.2. Multi-Index Access

	4. Multi-Dimensional Iterator
	5. Tensor Functions
	5.1. First-Level Tensor Operations
	5.2. Higher-Level Tensor Operations
	5.2.1. Tensor-Vector Multiplication
	5.2.2. Tensor-Matrix Multiplication
	5.2.3. Tensor-Tensor Multiplication

	6. Runtime Analysis
	6.1. Setup
	6.2. Results

	7. Conclusions
	Data Availability Statement
	Author Contributions
	References

