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A nested multiscale model to
study paratuberculosis in
ruminants

Rendani Netshikweta and Winston Garira*

Modelling Health and Environmental Linkages Research Group, Department of Mathematics and

Applied Mathematics, University of Venda, Thohoyandou, South Africa

In this study, we present a nested multiscale model that integrates

the within-host scale and the between-host scale disease dynamics for

Paratuberculosis in ruminants (e.g., cattle, goats, and sheep), with the aim of

ascertaining the influence of initial infective inoculum dose on its dynamics.

Ruminant paratuberculosis is often characterized as an environmentally-

transmitted disease and it is caused by bacteria called Mycobacterium avium

subspecies paratuberculosis that can survive in the physical environment for

a considerable period of time. In the context of nested multiscale models

developed at host level, a key feature is that the within-host scale and the

between-host scale disease dynamics influence each other in a reciprocal

way, with the between-host scale influencing the within-host scale through

initial infective inoculum dose which susceptible ruminants may consume

from the environment. The numerical results of the nested multiscale model

presented in this study demonstrate that once the minimum infectious dose

is consumed, then the infection at the within-host scale is sustained more by

pathogen replication than by super-infection. From these results we conclude

that super-infection might have an insignificant e�ect on the dynamics of

PTB in ruminants. However, at this stage we cannot precisely conclude if

super-infection does not e�ect on the dynamics of the disease. This would

be investigated further using an embedded multiscale model, which is more

appropriate in giving us conclusive results. We further demonstrate the need

to use nested multiscale models over single-scale modeling approach by

estimating a key parameter for pathogen replication that cannot be estimated

using single-scale models.

KEYWORDS

multiscale modeling of disease, nested multiscale models, environmentally-

transmitted diseases, multiscale modeling of paratuberculosis, infectious disease

systems

1. Introduction

Paratuberculosis (PTB) infection, also known as Johne’s disease, is an important

disease in ruminants such as cattle, goats, and sheep [see [1–3] and references

therein] that cannot be easily ignored as its cases continue to be reported

throughout the world, more especially in countries with temperate climates. Ruminant

Paratuberculosis is often characterized as an environmentally-transmitted disease.
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PTB is caused by bacteria called Mycobacterium avium

subspecies paratuberculosis (MAP) which infects the intestine of

ruminants [4]. This organism is most commonly widespread

in dairy cattle and can lead to serious economic burdens in

livestock industries due to the reduction of milk production

and the productive life of cattle as well [5]. The main clinical

outcomes of PTB infection in cattle are failure of growth,

increase in weight loss, and chronic diarrhea. Although PTB

has not been classified as a zoonotic disease, clinical studies

show that most human patients with Crohn’s disease are found

with MAP [6]. Crohn’s disease is an inflammatory bowel

disease characterized by a persisting, painful, and diarrheal

inflammatory disease of the intestinal tract in humans [6].

Ruminants usually acquire PTB infection through ingestion

of the infective bacteria in colostrum, and from the faeces of

infected ruminants contaminating food and surface water/water

troughs. The disease can also be transmitted vertically from an

infected pregnant ruminant to its foetus. However, following

the ingestion of MAP bacteria contained in faecal material, and

reaching the gut of an infected ruminant, MAP are engulfed

by macrophages in the submucosal of the ruminant, and the

submucosal macrophages become infected [2]. In general, the

dynamics of MAP among submucosal macrophages within

an infected ruminant can be controlled by the ruminant

immune response (such as T-helper immune response cells).

Yet, currently there is no meaningful treatment that has been

made available for PTB in ruminants, and control programs

implemented in many countries have had limited success [7].

It is important to note that at the ruminant host level both the

two PTB disease processes: (i) the infection of a ruminant by

free-living MAP in the environment and (ii) the shedding of

MAP into the environment by an infected ruminant interlink

the transmission process of MAP among the ruminants which

often happens at a slow time scale and the replication process

of MAP within an infected ruminant which often occur at a

fast time scale to close the complete multiscale cycle (i.e., the

replication-transmission cycle) dynamics of PTB [25].

Multiscale models that characterize infectious disease

processes across different scales at different levels of organization

of an infectious disease have been developed recently to study

disease dynamics [3, 8–14, 21–24]. Some of these multiscale

models have further been used to evaluate the comparative

effectiveness of different preventive and treatment health

interventions that operate at different scales against infections

[13, 14]. Based on the categorization in [15, 16], there are

five main different categories of multiscale models of infectious

disease systems that can be developed at different levels of

organization of an infectious disease system (the cell level,

the tissue level, the host level, etc.) which are: (i) individual-

based multiscale models (IMSMs), (ii) nested multiscale models

(NMSMs), (iii) embedded multiscale models (EMSMs), (iv)

hybrid multiscale models (HMSMs), and (v) coupled multiscale

models (CMSMs). In multiscale modeling of infectious disease

systems, knowledge of the different categories of multiscale

models is important to understand which multiscale model is

most suitable for characterizing disease dynamics at particular

levels of organization of an infectious disease system. It is

also important for the description of the structure of the

multiscale model. It enables authors to describe the structure

of the multiscale model in brief by referring to the generic

description of the structure of the category of the multiscale

model concerned without the need to repeatedly discuss its

structure whenever a multiscale model of an infectious disease

system is being developed and focus instead on issues peculiar

to that multiscale model [16]. In this study we develop a

nested multiscale model to study the multiscale dynamics of

PTB in ruminants and further use it to enhance a single-

scale model that can be developed at host/population/herd

level. Nested multiscale models of infectious diseases are

mathematical models in which the macroscale sub-model

influences the microscale sub-model through the initial value

of the inoculum of the infective pathogen. In these nested

multiscale models, the microscale also influences the macroscale

through pathogen excretion. Further, the macroscale sub-model

and the microscale sub-model must be described by the same

formalism or mathematical representation for this category of

multiscale models. We can identify three main classes in the

category of nested multiscale models which are [15, 16]:

(a) Class 1 - Transformation based nested multiscale models

(TRAN-NMSMs): Here the microscale scale submodel

is formally transformed into a macroscale model.

They are formulated through developing microscale

structured macroscale submodels. At host level this task

is accomplished by subdividing the entire host population

into various sub-classes corresponding to the different

levels of microscale traits: naive or completely susceptible,

completely or partially immune, vaccinated, immune

compromised or protected from infection due to certain

genetic factors.

(b) Class 2 - Unidirectional coupling based nested multiscale

models (UNID-NMSMs): The nature of themultiscale model

in this class is such that there is strictly one-way inter-

scale information flow among the two submodels (from the

microscale submodel to the macroscale submodel).

(c) Class 3 - Simplification based nested multiscale models

(SIMP-NMSMs): These are multiscale models of infectious

disease systems which are formulated by simplifying or

reducing the order/dimensions of UNID-MSMs in class 2

of this category. The simplification or reduction of order is

sometimes achieved by using methods such as slow and fast

time scale analysis [12] or dynamical systems basedmethods

such as centre manifold theory [17].

In this article, we first develop a class 2 nested multiscale

model of PTB disease dynamics in ruminants at host level,

and then derive a class 3 nested multiscale model through
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fast-and-slow time scale analysis of the class 2 nested multiscale

model. For the host level of organization of an infectious

disease system, the within-host scale (the microscale) sub-

model and the between-host scale (the macroscale) sub-model

serve as building blocks in the development of the complete

nested multiscale model [16]. For PTB infection in ruminants,

the within-host scale on one hand is associated with the

interaction of MAP with ruminant macrophages (target cells)

and other immune response cells that happens inside an infected

ruminant. It is at this scale where the outcomes of infection

within a single infected ruminant determine if, when and how

much the ruminant will further transmit the bacteria into the

environment, and in turn affecting the spread of the disease

for the ruminant at between-host scale. The processes of PTB

infection at the within-ruminant-host can be modified by the

within-host conditions andmedical interventions. The between-

host scale disease processes on the other hand, however, are

associated with the transmission dynamics of MAP bacteria that

typically occurs between ruminants and their environment. This

takes place when ruminants feed from contaminated pasture

with fecal material containing infective MAP, or drink from

contaminated surface water/water troughs with the bacteria. The

processes of disease transmission at the between-ruminant-host

scale can be modified by control measures such as reducing

fecal contamination of food, water and pasture (which can be

achieved by raising feed and water troughs, strip grazing, or

use of mains/piped water rather than surface/pond water); avoid

spreading yardmanure on pasture; andmaintain proper hygiene

practices particularly in buildings/yards and calving boxes [18].

To date, most of PTB disease dynamics models in the

literature have been devoted to study the dynamics of PTB

infection in ruminants and evaluating the effect of control

measures aimed at controlling, eliminating, and even eradicating

this disease using a single-scale modeling approach [1, 19, 20].

This is despite the fact that PTB infection is a complex and

multiscale disease system. However, we have to date, witnessed

the development of fewmodels in the literature that consider the

complexity andmultiscale nature of PTB infection in attempting

to study its dynamics [3, 21–23]. Themultiscale models in [3, 21]

use the time-since-infection approach to link the within-host

sub-model with the between-host sub-model for PTB infection

as well as the dependence of some epidemiological parameters

on the within-host MAP bacteria load. This coupling principle

employed in [3, 21] was suggested for the first time by Gilchrist

and Sasaki [24]. In addition, it is also worthy to note that the

multiscale models in [3, 21] are categorized as hybrid multiscale

models [15, 16]. Although the multiscale models in [3, 21] and

the multiscale model developed in this study all characterize

the reciprocal influence between the within-host scale and

the between-host scale disease dynamics, there are important

differences between these multiscale models. Specifically, in the

current nested multiscale model, both the within-host scale

and the between-host scale sub-models are all described by the

same formalism or mathematical representation (i.e., a system

of ODEs). However, the multiscale models in [3, 21] are hybrid

multiscale models, where only the within-host scale sub-models

are represented by ODEs, while their between-host sub-models

are represented by partial differential equations (PDEs). The

hybrid multiscale models in [3, 21] are more difficult to analyze

than nested multiscale models because apart from the fact

they incorporate different time scales for the within-host scale

and the between-host scale, they also do not use a common

metric of disease transmission across scales. At within-host scale,

pathogen load is used as the metric for disease transmission

while at between-host scale, disease class (i.e., infected class) is

used as the metric for disease transmission.

The rest of this paper is organized as follows. In Section

2, we derive and analyze the nested multiscale model for

PTB multiscale dynamics. It is in this section where we

evaluate the influence of initial infective inoculum on the

dynamics of PTB. In Section 3, we estimate a parameter

of pathogen replication that cannot be estimated using

single-scale models. In Section 4, we analyze the simplified

multiscale model of PTB and show that the model is

mathematically and epidemiologically well-posed. We also

perform a sensitivity analysis of the two ruminant population

health measures derived from the simplified multiscale model.

The paper ends up with discussion and conclusions in

Section 5.

2. Derivation of nested multiscale
model for the dynamics of ruminant
paratuberculosis (PTB)

For infectious disease systems at host level, the between-

host scale sub-model and the within-host scale sub-model

are the building blocks upon which multiscale models are

developed. In this case, we derive a nested multiscale model

that integrates the between-host sub-model associated with

the transmission dynamics of PTB disease and the within-

host sub-model associated with the replication dynamics of

MAP bacteria within an infected ruminant at the site of

infection. In the following sections, we begin by presenting

two independent sub-models for PTB disease dynamics at two

distinct scales, one at the between-host scale and other at

the within-host scale and then integrate them into a single

multiscale model.

2.1. The between-host scale submodel
for the PTB multiscale model dynamics

The between-host scale submodel for the multiscale

dynamics of PTB in ruminants is described by a susceptible-

infected-susceptible-infected, SIS, model coupled with the
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TABLE 1 A summary of the variables associated with the transmission

cycle of PTB at the between-host scale.

No. Variable Description

1. SC(t) Population of susceptible ruminant hosts at time t

2. IC(t) Population of infected ruminant hosts at time t

3. BC(t) Population of MAP bacteria in the environment at time t

compartment of the MAP environmental dynamics, BC , that

depicts the evolution of bacteria in the environment. The

description of model variables associated with the transmission

cycle of PTB at the between-host scale are tabulated in

Table 1. We make the following assumptions for this sub-

model:

(a) The transmission of the infection is only through

contact with MAP bacterial load (BC) in the physical

environment. However, if there is any direct transmission,

it can be estimated by indirect transmission in terms of

environmental MAP bacterial load (BC).

(b) The dynamics of SC , IC , and BC are assumed to occur

at slow time scale, t, compared to the within-host scale

PTB transmission dynamics variables that occur at fast time

scale, τ , so that SC = SC(t), IC = IC(t), and BC = BC(t).

(c) The different classes that the infected ruminant progresses

through (e.g., the exposed class, the chronically infected

class, etc.) are accounted for by the within-host scale sub-

model.

(d) The average extracellular MAP bacteria in each infected

ruminant is modeled phenomenologically by N̂c, which is

a proxy for individual ruminant infectiousness.

(e) The environmental MAP bacterial (BC) do not replicate in

the environment (outside-host environment).

(f) ruminant with MAP can recover from PTB infection.

Based on these assumptions the sub-model for the PTB

transmission dynamics at the between-host scale becomes:





(i)
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γ̂C(Bc)IC(t),

(ii)
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− [µC + δ̂C(Bc)+ γ̂C(Bc)]IC(t),

(iii)
dBC(t)

dt
= N̂cαcIC(t)− αCBC(t),

(2.1)

The between-host scale submodel given by Equation (2.1) is

based on monitoring the dynamics of three populations which

are susceptible ruminants (SC), infected ruminants (IC), and

MAP bacterial load (BC) in the physical environment. The first

equation of the model system (2.1) describes the dynamics of

susceptible ruminants. At any time t, new recruits of susceptible

ruminants enter the ruminant population through birth and

incoming ruminants from different farms/geographical regions

at a constant rate 3C and is also increased through recovery

of infected individuals at a rate γ̂C(Bc), with Bc being the

population of the within-ruminant-host MAP bacteria at time

τ . This population losses individuals due to natural death at

a constant rate µC . The susceptible population also decreases

through infection at a rate βCBC(t)/(B0 + BC(t)) with βC

being the exposure rate to infective MAP bacterial load (BC)

in the environment and B0 is the saturation parameter of

the bacteria that yield 50 percent chance of a ruminant

getting infected with PTB infection after ingesting the bacteria.

The infection happens when susceptible ruminants feed from

contaminated pasture with faecal material containing infective

MAP, or drink from contaminated surface water/water troughs

with the bacteria. The second equation in the model system

(2.1) describes the dynamics of PTB infected ruminants. This

population increases through infection of susceptible ruminants

and decreases through natural death at a constant rate µC as

well as through recovery at a rate γ̂C(Bc). There is additional

death at a rate δ̂C(Bc) in the population of infected ruminants

due to disease, so that an average lifespan of PTB infected

ruminant in the population is 1/(µC + δ̂C(Bc) + γ̂C(Bc)). We

assume that infected ruminants spread the disease through

contaminating the environment at a rate N̂cαcIC , where N̂c

models phenomenologically the average number of the within-

host scale MAP bacterial load available for excretion into

the environment by each infected ruminants at a rate αc.

Therefore, the population dynamics of MAP bacilli in the

environment, described by the last equation of the model

system (2.1), increases following excretion of MAP bacteria by

infected ruminant hosts in faecal material into the environment

at a rate N̂cαcIC . This population of MAP bacilli in the

environment is assumed to decrease due to natural death

at a rate αC . However, from the single model system (2.1),

we note that N̂c is treated as a single value parameter. But

in reality N̂c is a composite parameter that summaries the

bacterial dynamics within an infected individual ruminant,

and this makes the single-scale model system (2.1) to be

unrealistic. We also note that it is not easy to estimate N̂c

using a single-scale models. However, an alternative approach

for estimating N̂c is to use a nested multiscale model. In the next

section, we derive a within-host scale submodel for estimating

N̂c. The description of model variables associated with the

transmission cycle of PTB at the between-host scale are tabulated

in Table 1.

2.2. The within-host scale submodel for
the PTB multiscale model dynamics

For the derivation of the current nested multiscale

model for PTB in ruminants considered in this study,
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the within-host submodel dynamics is adopted from a

more elaborative single-scale model framework from the

work by Magombedze et al. [2] with minor modifications

which are based on multiscale considerations. However,

the main multiscale consideration incorporated into the

model in [2] is the excretion/shedding rate αc, which is

an important multiscle consideration since in general the

within-host scale sub-model is linked to the between-host

scale sub-model through pathogen shedding/excretion [15].

The resulting within-host model describes the interactions

of six populations: susceptible macrophages (Mφ) which are

target cells, infected macrophages (Im) which are macrophages

which have internalized extracellular MAP bacteria cells, MAP

bacterial load (Bc) at the extracellular environment, naive

CD4+ T cells (T0), Th1 immune response cells (T1), and

Th2 phenotype immune response cells (T2) [see the work

in [2]]. We also modify the model in [2] by making the

following assumptions:

(a) Transmission of the infection between cells is only

through contact with the extracellular MAP bacterial

load Bc in the extracellular environment at the site

of infection.

(b) The within-host scale disease processes happen at fast time

scale, τ , compared to the between-host scale PTB submodel

variables so that Mφ = Mφ(τ ), Im = Im(τ ), Bc = Bc(τ ),

T0 = T0(τ ), T1 = T1(τ ), and T2 = T2(τ ).

(c) The extracellular MAP bacterial load modeled

mechanistically by Bc = Bc(τ ) is a proxy for individual

ruminant infectiousness.

(d) The extracellular MAP bacteria does not replicate outside

the macrophage cells of an individual ruminant.

(e) The depletion of MAP bacteria in the extracellular

environment through engulfment by macrophages is

negligible.

These assumptions lead to the following submodel of
ordinary differential equations for the within-host scale PTB
transmission dynamics:





i.
dMφ (τ )

dτ
= 3φ − βφMφ (τ )Bc(τ )− µφMφ (τ ),

ii.
dIm(τ )

dτ
= βφMφ (τ )Bc(τ )− γmT1(τ )Im(τ )− (km + µφ )Im(τ ),

iii.
dBc(τ )

dτ
= NmkmIm(τ )− (µc + αc)Bc(τ ),

iv.
dT0(τ )

dτ
= 30 − (δmIm(τ )+ δbBc(τ ))T0(τ )− µ0T0(τ ),

v.
dT1(τ )

dτ
= θ1δmIm(τ )T0(τ )− µ1T1(τ ),

vi.
dT2(τ )

dτ
= θ2δbBc(τ )T0(τ )− µ2T2(τ ).

(2.2)

In the within-host scale sub-model (2.2), the first two

equations describe the dynamics of the within-ruminant-host

macrophage population which is divided into two groups. The

first group is of susceptible macrophage cells Mφ(τ ) (these

are macrophages which are healthy and are susceptible to the

Paratuberculosis at the site of infection). The second group

is of infected macrophage cells Im(t) (these are macrophages

which are infected by the MAP bacteria). We assume that,

at any time τ , new macrophage recruits enter the population

of susceptible macrophages through the supply of macrophage

cells from progenitor monocytes that are recruited from the

blood to the site of infection at a constant rate 3φ and

this population loses individuals due to natural death at a

constant rate µφ . Susceptible macrophages acquire infection

through engulfing extracellular MAP bacilli bacteria at a

rate βφ . We assume that in the population of infected

macrophages experiences additional death due to bursting of

infected cells at a rate km and due to cell removal by T1

immune response at a rate γm. In addition, when infected

macrophages burst at constant rate km, they are assumed to

release an average number of intracellular MAP bacilli Nm

into the extracellular environment, so that the total number of

intracellular bacteria released into the extracellular environment

is NmkmIm. The third equation of the model system (2.2)

describes the changes in time of the population size of MAP

bacteria in the extracellular environment which is generated

following the release of the intracellular MAP bacilli into

the extracellular environment when each infected macrophage

bursts. We assume that the population of MAP bacteria in

the extracellular environment decays naturally at a constant

rate µc and are excreted out of the body of infected ruminant

into the physical environment through feces at a constant

rate αc. The last three equations of the model system (2.2)

describe the evolution in time of the population of ruminant

immune response cells at the site of infection in the gut

which are naive CD4+ T cells (T0), and the two subsets

of the MAP specific immune response, Th1 (T1) and Th2

(T2) cells [see [2] and reference therein]. The population of

naive CD4+ T cells (T0) for MAP bacilli are produced at

a constant rate 30 from the thymus. We assume that these

naive CD4+ T cells decay naturally at a rate µ0. Following

the work in [2], we assume that T0 cells become T1 or

T2 immune response cells at per capita rates δm and δb,

respectively. Thus, the population of T1 and T2 immune

response cells are proliferated at a rate θ1δmImT0 and θ1δbBmT0,

respectively. We assume that both the population of T1 and

T2 immune response cells decay naturally at rates µ1 and µ2,

respectively. The description of model variables associated with

the replication cycle of PTB at the within-host scale are tabulated

in Table 2.
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2.3. Integration of the between-host and
within-host submodels of PTB dynamics
into a nested multiscale model

In the previous two subsections we presented the two

submodels for the dynamics of PTB infection [between-host

submodel (2.1) and within-host submodel (2.2)] that separately

describe the two key processes of PTB disease dynamics

(transmission and replication of MAP bacteria processes) which

occur at two distinct scales (within-host scale and between-

host scale). We now integrate them into a single multiscale

model as shown in flow diagram in Figure 1. We achieve this by

replacing the parameter N̂c which phenomenologically models

within-host scale pathogen replication by a variable Bc(τ )

which mechanistically models the within-host scale pathogen

replication to get:





i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γ̂C(Bc)IC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− [µC + δ̂C(Bc)+ γ̂C(Bc)]IC(t),

iii.
dBC(t)

dt
= αcBc(τ )IC(t)− αCBC(t),

iv.
dMφ (τ )

dτ
= 3φ − βφMφ (τ )Bc(τ )− µφMφ (τ ),

v.
dIm(τ )

dτ
= βφMφ (τ )Bc(τ )− γmT1(τ )Im(τ )− (km + µφ )Im(τ ),

vi.
dBc(τ )

dτ
= NmkmIm(τ )− (µc + αc)Bc(τ ),

vii.
dT0(τ )

dτ
= 30 − (δmIm(τ )+ δbBc(τ ))T0(τ )− µ0T0(τ ),

viii.
dT1(τ )

dτ
= θ1δmIm(τ )T0(τ )− µ1T1(τ ),

ix.
dT2(τ )

dτ
= θ2δbBc(τ )T0(τ )− µ2T2(τ ).

(2.3)

Based on the categorization of multiscale models of

infectious disease systems presented in [15, 16], the

multiscale model for PTB disease dynamics given by

(2.3) falls in the category of nested multiscale models of

class 2.

2.4. Analysis of the multiscale model
using fast-low time-scale analysis

We note from the full nested multiscale model system given

by (2.3) has two different time scales involved which are the

between-host time scale (t) associated with the transmission

dynamics of PTB at the population level and the within-

host time scale (τ ) associated with the replication dynamics

TABLE 2 A summary of the variables associated with the replication

cycle of PTB at the within-host scale.

No. Variable Description

1. Mφ (τ ) Population of susceptible macrophages within an infected

ruminant host at time τ

2. Im(τ ) Population of infected macrophages within an infected

ruminant host at time τ

3. T0(τ ) Population of naive CD4 T cells within an infected ruminant

host at time τ

4. T1(τ ) Population of specific immune response, Th1 within an

infected ruminant host at time τ

5. T2(τ ) Population of specific immune response, Th2 within an

infected ruminant at time τ

6. Bc(τ ) Population of extracellular MAP bacteria within an infected

ruminant host at time τ

of PTB infectious agent at an individual ruminant level. This

makes the analysis of the full nested multiscale model system

(2.3) more difficult to perform. However, the analysis of the

multiscale model system (2.3) can be simplified by expressing

the slow time-scale and the fast time-scale in terms of each

other by using the relationship t = ǫτ , where 0 < ǫ ≪

1 and ǫ being a constant highlighting the fast time-scale

dynamics of the within-host model compared to the slow time-

scale of the between-host scale dynamics. We further assume

the constant rate of recovery and constant disease-induced

death rate of infected ruminants so that γ̂C(Bc) = γC and

δ̂C(Bc) = δC , so that the full nested multiscale model system

(2.3) becomes:





i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= αcBc(t)IC(t)− αCBC(t),

iv. ǫ
dMφ(t)

dt
= 3φ − βφMφ(t)Bc(t)− µφMφ(t)

v.ǫ
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t)

vi. ǫ
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t)

vii. ǫ
dT0(t)

dt
= 30 − (δmIm(t)+ δbBc(t))T0(t)− µ0T0(t)

viii. ǫ
dT1(t)

dt
= θ1δmIm(t)T0(t)− µ1T1(t)

ix. ǫ
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(2.4)
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FIGURE 1

A schematic representation of the nested multiscale model of paratuberculosis disease in ruminants, with λC = βCBC/(B0 + BC).

In the next two sub-sections, we assess through numerical

simulations the full nested multiscale model system given by

equation (2.4) to ascertain the reciprocal influence between

the between-host scale and the within-host scale dynamics

of PTB infection. We achieve this by demonstrating (i)

the influence of the between-host scale on the within-host

scale through the initial infective inoculum that susceptible

ruminants may acquire by interacting with MAP bacteria in

contaminated environment, and (ii) the influence of the within-

host scale parameters on the between-host disease dynamics.

The parameter values used for simulations are tabulated in

Table 3. In addition, initial values used for simulations for

the full nested multiscale model system (2.4) are as follows:

SC(0) = 2, 000, IC(0) = 5, Bc(0) = 10, Mφ(0) =

500, Im(0) = 0, T0(0) = 0, T1(0) = 0, T2(0) = 0,

BC(0) = 1, 000.

2.4.1. The influence of initial inoculum on the
within-host scale of PTB infection dynamics

In this subsection, we demonstrate through numerical

simulations of the full nested multiscale model system (2.4)

the influence of between-host scale dynamics on within-host

scale variables for PTB infection dynamics. This is achieved by

varying the initial value condition of the infective inoculum

Bc(0) that susceptible ruminants may acquire by interacting

with MAP bacteria in contaminated environment for different

values and assess its impact on the dynamics of four selected

key within-host variables, Im, Bc, T1, and T2. Figure 2 shows

the effect of varying Bc(0) for different values on the within-

host variables (Im, Bc, T1, T2). Bc(0): Bc(0) = 10, Bc(0) =

1, 000, and Bc(0) = 1, 000, 000. The used values are plausible

largely because of the scarcity of multiscale empirical data

for PTB. We used the multiscale model as an experimental
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TABLE 3 Model parameter values used for simulations.

Parameter Description Unit Value References

(Range explored)

3C Ruminants birth rate day−1 0.27 [0.14–0.27] [1, 3]

βC Ruminants infection rate day−1 0.00027 [0.0–0.008] Assumed

µC Natural death rate of Ruminants day−1 0.0001 [0.001–0.0001] [1]

δC Cattle removal rate due day−1 0.0008 [0.005–0.0008] [1]

to PTB infection

γC Ruminant recovery rate day−1 0.0014 [0.014–0.0008] Assumed

αC Environmentally bacteria day−1 0.0018 [0.01–0.0008] [1]

death rate

B0 Saturation rate of bacteria day−1 1,000 [0 - 1,000] [3]

3φ Macrophages supply rate day−1 10 [8.0–10.0] [2]

βφ Macrophages infection rate day−1 0.002 [0.0–0.01] [2]

µφ Macrophages natural day−1 0.02 [0.11–0.025] [2]

death rate

Nm Burst size day−1 100 [80–100] [2]

km Burst rate day−1 0.00075 [0.00–0.0001] [2]

γm T1 lytic effect day−1 0.01 [0.0–0.2] [2]

µc Bacteria’s death rate day−1 0.03 [0.0–1.0] [2]

αc Excretion rate day−1 0.01 [0.0–1.0] [3]

30 T0 supply rate day−1 0.001 [0.00001–0.001] [2]

µ0 T0 death rate day−1 0.01 [0.1–0.01] [2]

µ1 T1 death rate day−1 0.03 [0.1–0.01] [2]

µ2 T2 death rate day−1 0.02 [0.1–0.01] [2]

δm T0 differentiation into T1 cells day−1 0.01 [0.0–0.1] [2]

δb T0 differentiation into T2 cells day−1 0.01 [0.0–0.1] [2]

θ1 T1 cells clonal expansion day−1 9,000 [1.0–10,000] [2]

θ2 T2 cells clonal expansion day−1 9,000 [1.0–10,000] [2]

tool to investigate a range of model variables initial inoculum.

From the numerical results in Figure 2, we notice that as the

initial infective inoculum Bc(0) increases beyond the minimum

infectious dose (MID), there is a noticeable but minimal changes

in the dynamics of the within-host scale variables Im, Bc, T1,

T2. This is because, once the host is infected, the replication of

the MAP bacteria at the within-host scale sustains the disease

dynamics at this scale.

Figure 2 shows the solution profiles of the population of

(Figure 2A) infected macrophage population (Im), (Figure 2B)

within-host MAP bacteria population (Bc), (Figure 2C) MAP-

Specific Th1 response cells (T1), and (Figure 2D) MAP-Specific

Th2 response cells for different values of initial inoculum of

MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 1, 000,

and Bc(0) = 1, 000, 000 at within-host scale. The results in

Figure 2 illustrate that the variation in the initial inoculum

influence the dynamics of the disease at the within-host

scale only within a period of 50 days. But, after that the

dynamics of the disease reach an endemic level. Therefore,

this implies that different initial inoculum values converge

to the same endemic state after a period of about 50 days.

Overall, this confirms that once the minimum infectious dose

is consumed, the long term disease dynamics is independent

of the initial inoculum. And also confirms that as the initial

inoculum increases, the time to reach the endemic state

also increases.

2.4.2. The influence of within-host scale
parameters on the between-host scale PTB
infection dynamics

In this subsection, we illustrate through numerical

simulations of the full nested multiscale model system (2.4) the

influence of within-host scale parameters on between-host scale

variables for PTB infection dynamics. We vary the within-host
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FIGURE 2

Graphs of numerical solutions of the multiscale model system (2.4) showing changes of (A) infected macrophage population (Im), (B)

within-host MAP bacteria population (Bc), (C) MAP-Specific Th1 response cells (T1), and (D) MAP-Specific Th2 response cells (T2) for di�erent

values of initial value condition of the within-host MAP bacterial load Bc(0): Bc(0) = 10, Bc(0) = 1, 000, and Bc(0) = 1, 000, 000.

scale parameters, αc, µc, and Nm and assess their impact

on the dynamics of the between-host scale variables SC , IC ,

and BC .

Figure 3 shows graphs of numerical solutions of the model

system (2.4) showing dynamics of (Figure 3A) population of

susceptible ruminants (SC), (Figure 3B) population of infected

ruminants (IC), and (Figure 3C) environmental MAP bacteria

load (BC) for different values of excretion rate of the within-

host scale MAP bacilli into the environment αc: αc = 0.1,

αc = 0.01, and αc = 0.001. The results show that an

increase in the excretion rate of the within-host scale bacterial

load into the physical environment by each infected ruminant

individual has important ruminant population health effects

at the between-host scale dynamics of PTB infection as there

is a noticeable increase in the population of environmental

MAP bacteria BC and the population of infected ruminants

IC as well as a decrease in the population of susceptible

ruminants SC .

Figure 4 shows changes in (Figure 4A) population of

susceptible ruminants (SC), (Figure 4B) population of infected

ruminants (IC), and (Figure 4C) population of environmental

MAP bacteria load (BC) for different values of natural decay rate

of the within-host scale MAP bacteria cells: µc: µc = 0.3, µc =

0.03, and µc = 0.003. The results in Figure 4 show that as the
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FIGURE 3

Graphs of numerical solutions of the multiscale model system (2.4) showing the evolution in time of (A) population of susceptible ruminants

(SC), (B) population of infected ruminants (IC), and (C) between-host MAP bacterial load (BC) for di�erent values of excretion rate of the

within-host MAP bacterial load into the environment αc: αc = 0.1, αc = 0.01, and αc = 0.001.

death rate of the within-host scale bacterial load increases, there

is also a noticeable reduction in the population of environmental

MAP bacteria BC and the population of infected ruminants

IC as well as an increase in the population of susceptible

ruminants SC at between-host scale. Therefore, development

of any treatment measures that target MAP bacteria at within-

host scale such as antibiotics [28] are equally good for both

the individual ruminant and the population because a single

infected ruminant will no longer pose a threat for transmitting

infection in the population/herd which consequently reduces the

transmission risk of the disease among the ruminants in the

population/herd.

Figure 5 shows the dynamics in the (Figure 5A) population

of susceptible ruminants (SC), (Figure 5B) population of

infected ruminants (IC), and (Figure 5C) population of

environmental MAP bacterial load (BC) for different values of

within-host scale bursting size of each infected macrophage cell

Nm: Nm = 100, Nm = 1, 000, Nm = 10, 000. The numerical

results in Figure 5 show that as the average replication rate

of the within-host MAP bacteria within infected macrophage

cells at the site of infection increases, transmission of PTB

infection at the population/herd level of ruminants also

increases. Therefore, these results demonstrate the benefit of

treatment that can restrict the replication of MAP bacteria at
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FIGURE 4

Graphs of numerical solutions of the multiscale model system(2.4) showing changes in (A) population of susceptible ruminants (SC), (B)

population of infected ruminants (IC), and (C) population of environmental MAP bacterial load (BC) for di�erent values of death rate of the

within-host MAP bacterial load µc: µc = 0.3, µc = 0.03, and µc = 0.003.

individual ruminant level on the transmission of the disease at

the population/herd level of ruminants. Collectively, we note

from the results in Figures 3–5, that the between-host scale

variables (SC , IC , BC) are significantly sensitive to the variation

of the three selected within-host scale parameters (αc, µc, and

Nm), particularly the decay rate µc of the within-host scale

MAP bacteria.

Overall, the results in Figures 2–5 show that:

(a) The between-host scale influences the within-host scale

through the initial inoculum of the infectious agent.

(b) Once the initial inoculum has been introduced from the

between-host scale, then the infection at within-host scale

is sustained by pathogen replication.

(c) As the initial inoculum acquired from the between-host

scale increases beyond the MID, the time taken for the

infection at within-host scale to reach equilibrium increases.

(d) The between-host scale variables (SC , IC , BC) are

significantly sensitive to the variation of the three

selected within-host scale parameters (αc, µc, and Nm),

particularly the decay rate µc of the within-host scale MAP

bacteria.
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FIGURE 5

Graphs of numerical solutions of the multiscale model system (2.4) showing dynamics in (A) population of susceptible ruminants (SC), (B)

population of infected ruminants (IC), and (C) population of environmental MAP bacterial load (BC) for di�erent values of within-host scale MAP

bacteria produced per bursting infected macrophage cell Nm: Nm = 100, Nm = 1, 000, Nm = 10, 000.

This indeed indicates that during the dynamics for PTB

infection in ruminants once the infection has successfully

established at the within-host scale, the contribution of initial

infective inoculum to the total pathogen load becomes negligible

compared to the contribution of the replication of the pathogen.

Further, the results in Figures 3–5 seem to have a threshold

effect. This is because there no significant differences between SC

and IC for low values of α, µ, and Nm and yet these quantities

are significantly different for higher values of these parameters.

It may be just the values of parameters used, but further work to

be reported elsewhere will investigate this as it could be utilized

for control measures.

3. Estimation of N̂c from the full
nested multiscale model

In this section, we estimate N̂c parameter in the single

scale model for the dynamics of PTB infection using the nested

multiscale model system (2.4). This is achieved by assuming

that 0 < ǫ ≪ 1, so that to reasonable approximation we

can set ǫ = 0 in the full nested multiscale model system

(2.4). Thus, we consider the last six equations of the PTB

full nested multiscale model system (2.4) re-written here as a

quick reference
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



i. ǫ
dMφ(t)

dt
= 3φ − βφMφ(t)Bc(t)− µφMφ(t),

ii. ǫ
dIm(t)

dt
= βφMφ(t)Bc(t)− γmT1(t)Im(t)− (km + µφ)Im(t),

ii. ǫ
dBc(t)

dt
= NmkmIm(t)− (µc + αc)Bc(t),

iv. ǫ
dT0(t)

dt
= 30 − (δmIm(t)+ δbBc(t))T0(t)− µ0T0(t),

v. ǫ
dT1(t)

dt
= θ1δmIm(τ )T0(τ )− µ1T1(t),

vi. ǫ
dT2(t)

dt
= θ2δbBc(t)T0(t)− µ2T2(t).

(3.5)

Since 0 < ǫ << 1, we can set ǫ to zero so that the

within-host scale PTB replication dynamics submodel becomes

independent of time and we obtain:





i. 3φ − βφM
∗
φB

∗
c − µφM

∗
φ = 0,

ii. βφM
∗
φB

∗
c − γmT

∗
1 I

∗
m − (km + µφ)I

∗
m = 0,

iii. NmkmI
∗
m − (µc + αc)B

∗
c = 0,

iv. 30 − (δmI
∗
m + δbB

∗
c )T

∗
0 − µ0T

∗
0 = 0,

v. θ1δmI
∗
mT

∗
0 − µ1T

∗
1 = 0,

vi. θ2δbB
∗
cT

∗
0 − µ2T

∗
2 = 0.

(3.6)

From (3.6) we get





i. M∗
φ =

23φ(µc + αc)

βφNmkmM + 2µφ(µc + αc)
,

ii. I∗m =
M

2
,

iii. B∗c =
NmkmM

2(µc + αc)
,

iv. T∗
0 =

230(µc + αc)

2µ0(µc + αc)+ [δm(µc + αc)+ δbNmkm]M
,

v. T∗
1 =

θ1δm30(µc + αc)M

2µ0µ1(µc + αc)+ µ1[δm(µc + αc)+ δbNmkm]M
,

vi. T∗
1 =

θ2δb30NmkmM

2µ2µ0(µc + αc)+ µ2[δm(µc + αc)+ δbNmkm]M
.

(3.7)

In the expression (3.7),





M = −φ1 +

√
φ2
1 + 4φ2

φ1 =
k3 + µ1µ0k2 − k1Q

k2k1
,

φ2 =
µ1µ0Q

k2k1
,

(3.8)

with





Q = µφ(µφ + δφ)(R0W − 1),

k1 =
µ1δm(µc + αc)+ µ1δbNmkm

(µc + αc)
,

k2 =
βφNmkm(µφ + km)

(µc + αc)
,

k3 = k0 + µφγmθ1δm30,

k0 =
βφNmkmγmθ1δm30

(µc + αc)
,

R0W =
βφ3φNmkm

µφ(µφ + km)(µc + αc)
.

(3.9)

Further, in the expression (3.9) the quantity

R0W =
βφ3φNmkm

µφ(µφ + δφ)(µc + αc)
,

is the within-host scale basic reproductive number. Therefore,

the fast-slow analysis reduces the within-host scale submodel

system (2.2) to the algebraic equations given in (3.7) which can

be fed into the parameters of the between-host scale submodel

and become





i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= αcB

∗
c IC(t)− αCBC(t).

(3.10)

We note that from the model system given by (3.10) that

the total number of extracellular MAP bacilli excreted by each

infected ruminant into the physical environment BcIC is now

approximated by B∗c IC . Using the notation that N̂c = B∗c , a

composite parameter which can be interpreted as the average

number of the within-host scale MAP bacterial load (Bc) at

the endemic equilibrium that is available for excretion into

the environment by each infected ruminant, the full multiscale

model (2.4) of PTB transmission dynamics is simplified to

become





i.
dSC(t)

dt
= 3C −

βCBC(t)

B0 + BC(t)
SC(t)− µCSC(t)+ γCIC(t),

ii.
dIC(t)

dt
=

βCBC(t)

B0 + BC(t)
SC(t)− (µC + δC + γC)IC(t),

iii.
dBC(t)

dt
= NcαcIC(t)− αCBC(t)

(3.11)
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where the composite parameter Nc which estimates N̂c is given

by

Nc =
Nmkm

2(µc + αc)

[
−φ1 +

√
φ2
1 + 4φ2

]
. (3.12)

In the expression forNc given by equation (3.12), the expressions

φ1 and φ2 are defined by (3.8) and (3.9). Based on the

categorization of the multiscale models of infectious disease

systems in [15, 16], the multiscale model system given by (3.11)

is a nested multiscale model of class 3. After estimating Nc

as well as establishing the simplified nested multiscale model

system given by (3.11), we now analyze the behavior of this

nested multiscale model system (3.11). In the next section, we

present some results from mathematical analysis and numerical

simulations of the behavior of the simplified nested multiscale

model (3.11).

4. Mathematical analysis of the
simplified nested multiscale model
for PTB infection in ruminants

The PTB dynamics multiscale model system (3.11) can be

analyzed in a region Ŵ ⊂ R
3
+ of biological interest, which is

given by

Ŵ = {(SC; IC;BC) ∈ R
3
+ :

0 ≤ SC + IC ≤ S1, 0 ≤ BC ≤ S2}
(4.13)

where the constant S1 and S2 are such that





S1 =
3C

µC
,

S2 =
Ncαc3C

αCµC
.

(4.14)

It can be easily shown that all solutions for the simplified

multiscale model system (3.11) with positive initial conditions

remain bounded within the invariant region Ŵ given by

(4.13). Therefore, it is sufficient to consider the dynamics

of the flow generated by the simplified nested model system

(3.11) in Ŵ.

In the following three subsections, we evaluate global

stability of both the disease-free and endemic equilibrium

states for the PTB dynamics multiscale model system (3.11)

as well as evaluating sensitivity of the two main between-host

transmission metrics which are the basic reproductive number

(R0) and the endemic value of the nestedmultiscale model (3.11)

MAP bacteria (B∗C).

4.1. Disease-free equilibrium and
reproductive number of the simplified
nested multiscale model

The disease-free equilibrium of the nested multiscale model

system (3.11) was obtained by setting the left-hand side of the

model to zero and further assume that IC = BC = 0 to get

Ê0 = (X∗, 0) =

(
3C

µC
, 0, 0

)
, (4.15)

where Ê0 denotes the disease-free equilibrium of the simplified

nested multiscale model system (3.11).

4.1.1. Derivation of the reproductive number of
the simplified multiscale model

The basic reproduction number denoted by R0, is a

threshold value that is often used as a public health measure to

determine whether a disease will persist or die out. In this study,

we computed the basic reproductive number of the simplified

multiscale model system (3.11) by using the next generation

operator approach in [26] to obtain

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
. (4.16)

Details of the derivation of the basic reproductive number given

by expression (4.16) are given in Appendix A. This expression of

the basic reproductive number can be re-written as

R0 = R0aR0b (4.17)

where the quantity R0a is explained as follows:

a. Consider a single newly infected ruminant entering a

contaminated-free environment at an equilibrium point.

The expected number of bacteria cells produced by

this ruminant and contaminate the environment is

approximately

R0a =
Ncαc

µC(µC + δC + γC)
. (4.18)

From the expression (4.18) we deduce that the quantity

R0a depends on the average MAP bacterial load within an

infected ruminant Nc which is excreted into the physical

environment at a rate αc, where it becomes infectious

to other ruminants during feeding from contaminated

food or water with MAP bacterial load. In this study,

we consider Nc as a composite parameter which is

interpreted as the endemic value of the within-host

scale MAP bacterial load B∗c which we have already

determined from the within-host PTB disease dynamics

sub-model as given in equation (3.12). Therefore, the
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quantity R0a quantifies how much an infected ruminant

can contribute to the spread of the disease in the herd

during its entire period of infectiousness, with 1/(µC +

δC + γC) describes the average life span of an infected

ruminant.

b. Similarly, consider a newly bacterial infectious

dose of MAP bacilli cells entering a disease-

free population of a ruminant population at

an equilibrium point. The expected number of

ruminants infected by this dose of bacteria cells is

approximately

R0b =
βC3C

αCB0
. (4.19)

We can also deduce that the quantity R0b in (4.19)

depends on the supply rate of susceptible ruminants 3C ,

the rate at which susceptible ruminants contract MAP

bacteria in the physical environment domains during

feeding βC , the average life span of each susceptible

ruminant host 1/µC , the average life span of MAP

bacteria load in the physical environment domains and

the susceptibility coefficient to PTB infection in the

ruminant community/herd, where B0 is the bacterial

load that results in 50% chance of ruminants being

infected.

Collectively, based on the two expressions R0a and R0b ,

we conclude that the epidemiological (between-host scale)

transmission parameters and the immunological (within-host

scale) parameters all contribute to the transmission of ruminant

paratuberculosis disease.

4.1.2. Global stability of the disease-free
equilibrium

In this subsection, we determine the global stability of DFE

of the simplified multiscale model system (3.11) by further using

a next generation operator [26]. Thus the model system (3.11)

can be re-written in the form





dX

dt
= F(X,Z),

dZ

dt
= G(X,Z),

(4.20)

where

• X = SC represents a compartment of uninfected

ruminants, and

• Z = (IC ,BC) represents compartments of infected

ruminants and Infective MAP bacteria in the physical

environment.

We let

E0 = (X∗, 0) =

(
3C

µC
, 0, 0

)
, (4.21)

denote the disease-free equilibrium (DFE) of the model

system (3.11). For X∗ to be globally asymptotically stable, the

following conditions (H1) and (H2) must be satisfied.

H1.
dX

dt
= F(X, 0) is globally asymptotically stable (GAS),

H2. G(X,Z) = AZ − Ĝ(X,Z), Ĝ((X,Z) ≥ 0 for (X,Z) ∈ R
3
+

whereA = DZG(X
∗, 0) is anM-matrix andR3

+is the region

where the model makes biological sense.

In this case,

F(X, 0) =
[

3C − µCSC

]
, (4.22)

and the matrix A is given by

A =



−(µC + δC + γC)

βC3C

µCB0

Ncαc −αC


 (4.23)

and

Ĝ(X,Z) =




(
3C

µCB0
−

SC

B0 + BC

)
βCBC

0


 . (4.24)

Since S0C =
3C

µCB0
≥

SC

B0 + BC
, it is clear that Ĝ(X,Z) ≥ 0 for

all (X,Z) ∈ R
3
+. It is also clear that A is a M-matrix, since the off

diagonal elements of A are non-negative.

We state a theorem which summarizes the above results:

Theorem 1. The fixed point

E0 = (X∗, 0) =

(
3C

µC
, 0, 0

)

of the multiscale model system (3.11) is globally asymptotically

stable (GAS) if R0 ≤ 1 and the assumptions (H1) and (H2) are

satisfied.

4.2. Endemic equilibrium and its global
stability

In the subsection, we determine the endemic equilibrium

state of the simplified nested multiscale model system (3.11)
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by setting the left-hand side of the simplified nested multiscale

model system (3.11) to zero but assuming that IC and BC are

non-zero, so that

E∗ =
(
S∗C , I

∗
C ,B

∗
C

)
(4.25)

where





S∗C =
3C[(µC + δC + γC)R0 + βC(δC + µC)]

µC[(βC + µC)(µC + δC)+ µCγC]R0
,

I∗C =
βC3C[R0 − 1]

(µC + δC + γC)(βC + µC)R0
,

B∗C =
µC(µC + δC + γC)[R0 − 1]

(βC + µC)(µC + δC)+ µCγC
,

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
.

(4.26)

We deduce that only a single positive endemic equilibrium point

exists whenever R0 > 1. To this effect, we conclude that there

exists only one unique endemic equilibrium point for model

system (3.11) whenever R0 > 1. We can then further determine

the global stability of the endemic equilibrium for the simplified

multiscale model system (3.11) since we have established the

existence of E∗ without providing any information about its

stability. The global stability of the endemic equilibrium E∗

of the multiscale model system (3.11) is summarized in the

following theorem:

Theorem 2. The Endemic Equilibrium E∗ of the model system

(3.11) is global asymptotically stable (GAS) whenever R0 > 1.

Proof : Let’s consider a Volterra-type Lyapunov function given by

L1 = L(SC , IC ,BC),

= S∗Cg

(
SC

S∗C

)
+ I∗Cg

(
IC

I∗C

)
+

λ∗CS
∗
C

NcαcI
∗
C

B∗Cg

(
BC

B∗C

)
,

(4.27)

and further taking advantage of the properties of the function

g(x) = x− 1− ln(x) (4.28)

which is positive in (0, ∞) except at x = 1 where it vanishes.

We note that L1 is non-negative in the interior of Ŵ and attain

zero at E∗. We now need to show that L̇1 is negative definite.

Differentiating L1 along the trajectories of the model system

(2.1), we obtain

L̇1 =
dSC

dt

[
1−

S∗C
SC

]
+

dIC

dt

[
1−

I∗C
IC

]
+

λ∗CS
∗
C

NcαcI
∗
C

dBC

dt

[
1−

B∗C
BC

]
,

=

[
1−

S∗C
SC

]
[3C − λCSC − µCSC + γCIC]

+

[
1−

I∗C
IC

]
[λCSC − (µC + δC + γC)IC]

+
λ∗CS

∗
C

NcαcI
∗
C

[
1−

B∗C
BC

]
[NcαcIC − αCBC].

(4.29)

Since E∗ is an equilibrium point, the following relations hold





3C = λ∗CS
∗
C + µCS

∗
C , (µC + δC + γC) =

λ∗CS
∗
C

I∗C
,

αC =
NcαcI

∗
C

B∗C
.

(4.30)

Using the relations in (4.30), L̇1 becomes

L̇1 =

[
1−

S∗C
SC

]
[λ∗CS

∗
C + µCS

∗
C − λCSC − µCSC + γCIC

−γCI
∗
C]+

[
1−

I∗C
IC

] [
λCSC −

λ∗CS
∗
CIC

I∗C

]

+
λ∗CS

∗
C

NcαcI
∗
C

[
1−

B∗C
BC

] [
NcαcIC −

NcαcI
∗
CBC

B∗C

]
.

(4.31)

By direct calculations from equation (4.31), we have that the first

term at the right hand side of Equation (4.31) is as follows

[
1−

S∗C
SC

] [
λ∗CS

∗
C + µCS

∗
C − λCSC − µCSC + γCIC − γCI

∗
C

]

=

[
1−

S∗C
SC

] (
λ∗CS

∗
C − λCSC

)

+

[
1−

S∗C
SC

] (
µCS

∗
C − µCSC

)
+

[
1−

S∗C
SC

] (
γCIC − γCI

∗
C

)

= −µC

[
1−

S∗C
SC

]2

− γC

[
1−

S∗C
SC

] [
1−

IC

I∗C

]
+ λ∗CS

∗
C

[
1−

S∗C
SC

] [
1−

λCSC

λ∗CS
∗
C

]

≤ λ∗CS
∗
C

[
1−

S∗C
SC

] [
1−

λCSC

λ∗CS
∗
C

]
.

(4.32)

The second term at the right hand side of Equation (4.31) is

[
1−

I∗C
IC

] [
λCSC −

λ∗CS
∗
CIC

I∗C

]

= λ∗CS
∗
C

[
1−

I∗C
IC

] [
λCSC

λ∗CS
∗
C

−
IC

I∗C

]
,

(4.33)

and the third term at the right hand side of Equation (4.31) is as

follows

λ∗CS
∗
C

NcαcI
∗
C

[
1−

B∗C
BC

] [
NcαcIC −

NcαcI
∗
CBC

B∗C

]

= λ∗CS
∗
C

[
1−

B∗C
BC

] [
IC

I∗C
−

BC

B∗C

]
.

(4.34)
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Therefore,

L̇1 ≤ λ∗CS
∗
C

[
1−

S∗C
SC

] [
1−

λCSC

λ∗CS
∗
C

]

+λ∗CS
∗
C

[
1−

I∗C
IC

] [
λCSC

λ∗CS
∗
C

−
IC

I∗C

]

+ λ∗CS
∗
C

[
1−

B∗C
BC

] [
IC

I∗C
−

BC

B∗C

]
,

≤ λ∗CS
∗
C

[
2−

λCSCI
∗
C

λ∗CS
∗
CIC

+
λC

λ∗C
−

S∗C
SC

−
IC

I∗C

]

+λ∗CS
∗
C

[
1−

ICB
∗
C

I∗CBC
+

IC

I∗C
−

BC

B∗C

]

(4.35)

By using the function g(x) defined in (4.28), we get

L̇1 ≤ λ∗CS
∗
C

[
−g

(
S∗C
SC

)
− g

(
λCSCI

∗
C

λ∗CS
∗
CIC

)
+

λC

λ∗C
− ln

(
BC

B∗C

)

−
IC

I∗C
+ ln

(
IC

I∗C

)
+ ln

(
B0 + BC

B0 + B∗C

)]

+ λ∗CS
∗
C

[
−g

(
ICB

∗
C

I∗CBC

)
− ln

(
IC

I∗C

)
+

IC

I∗C
+ ln

(
BC

B∗C

)
−

BC

B∗C

]
,

≤ λ∗CS
∗
C

[
−g

(
S∗C
SC

)
− g

(
λCSCI

∗
C

λ∗CS
∗
CIC

)
+

BC

B∗C
− ln

(
BC

B∗C

)
−

IC

I∗C

+ ln

(
IC

I∗C

)]

+ λ∗CS
∗
C

[
BC(B0 + B∗C)

B∗C(B0 + BC)
−

B0 + BC

B0 + B∗C
− g

(
B0 + BC

B0 + B∗C

)
−

BC

B∗C
− 1

]

+ λ∗CS
∗
C

[
−g

(
ICB

∗
C

I∗CBC

)
− ln

(
IC

I∗C

)
+

IC

I∗C
+ ln

(
BC

B∗C

)
−

BC

B∗C

]
,

≤ λ∗CS
∗
C

[
BC

B∗C
− ln

(
BC

B∗C

)
−

IC

I∗C
+ ln

(
IC

I∗C

)]

+ λ∗CS
∗
C

[
IC

I∗C
− ln

(
IC

I∗C

)
+ ln

(
BC

B∗C

)
−

BC

B∗C

]
= 0

(4.36)

From (4.36), we have that the largest invariant subset, where

L̇1 = 0, is E∗. Therefore, we conclude from the LaSelle’s

Invariance Principle that E∗ is globally asymptotically stable

(GAS) when R0 > 1.

4.3. Sensitivity analysis

In this sub-section, we conduct a sensitivity analysis of

the two PTB transmission metrics derived from the simplified

nested multiscale model given by (3.11) to the parameters

of the model variation. As mentioned previously, the two

PTB transmission metrics derived from the baseline PTB

multiscale model system (3.11) are: the reproductive number,

R0, which generally describes the dynamics of a disease at

the beginning of an infection and the endemic value of the

environmental bacteria load, B∗C , which generally describes

the dynamics of a disease at the endemic level. For any

epidemic model that describes the dynamics of any diseases

in a population, a sensitivity analysis study is an essential

to perform as it helps to identify model’s parameters which

can be targeted for disease control, elimination, or even

eradication, and also be monitored and controlled during an

outbreak of the disease. In this case, sensitivity analysis of

both the PTB multiscale transmission metrics (R0 and B∗C),

with respect to the variation of the baseline PTB multiscale

model system (3.11)’s parameters is conducted using Latin

Hypercube Sampling and partial rank correlation coefficients

(PRCCs). We used 1,000 simulations per run to investigate the

impact of each model parameter on both the basic reproduction

numbers (R0) and the endemic value of the environmental

bacteria load (B∗C). The sensitivity results of R0 and B∗C to the

model parameters are given in the Tornado plots, Figures 6, 7,

respectively.

Figures 6, 7 show the results of the evaluation of the

sensitivity of the two PTB transmission metrics derived

from the PTB simplified multiscale model (3.11) which are

the basic reproductive number R0 and the value of MAP

environmental bacteria at the endemic level B∗C . From the

sensitivity analysis results of both R0 and B∗C to baseline

PTB multiscale model (3.11)’s parameters in Figures 6, 7, we

deduce that some of the baseline PTB multiscale model (3.11)’s

parameters have positive PRCCs and some have negative

PRCCs. This indicates that, parameters with positive PRCCs

will increase the value of both R0 and B∗C when they are

increased, while parameters with negative PRCCs will decrease

the value of R0 and B∗C when they are increased. For instance,

increasing a parameter like bacteria transmission rate βC at

the between-host scale eventually increases the value of R0

and B∗C , and also increasing parameters like µc will lead

to a reduction in the value of both R0 and B∗C . Therefore,

since R0 characterizes transmission of PTB infection at the

start of the epidemic while B∗C characterizes transmission of

PTB when the disease is now endemic in a herd, we make

the following conclusions regarding the sensitivity of both R0

and B∗C :

(a) On one hand, the PTB transmission metric R0 is highly

sensitive to the variation of the within-host scale parameters

of the multiscale model system (3.11), in particular to the

three within-host scale parameters (µc, Nm, βφ). From the

results of the sensitivity analysis of R0, we can easily notice

that the influence of the between-host scale parameters on

the changes of R0 is negligible.

(b) On the other hand, the PTB transmission metric B∗C is

highly sensitive to the variation of two of the between-host

scale parameters (βC , γC) and only one within-host scale

parameter (µc) of the multiscale model system (3.11).

Overall, since R0 describes the dynamics of the disease at

the start of the infection, this means that at the start of PTB,

pharmaceutical interventions such as drugs that target the killing

of the within-host bacteria as well as restricting the replication of

bacteria within an infected macrophage cells are required to be

highly considered as they are likely to have the highest benefits in

reducing the transmission of PTB among ruminants in the herd.

Moreover, since B∗C describes the dynamics of the disease when it

Frontiers in AppliedMathematics and Statistics 17 frontiersin.org

https://doi.org/10.3389/fams.2022.817060
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Netshikweta and Garira 10.3389/fams.2022.817060

FIGURE 6

Tornado plot of partial rank correlation coe�cients (PRCCs) of the model parameters that influence the PTB transmission metric R0.

has already reached an endemic level when PTB is at the endemic

level, this means that the combination of non-pharmaceutical

interventions such as environmental hygiene management that

reduces the risk of a ruminant to interact with environmental

MAP bacterial cells in the environment and the pharmaceutical

interventions such as drugs that target the killing of the within-

host bacteria need to be highly considered as they are likely to

have the highest benefits in reducing the transmission of PTB

among ruminants in the herd.

5. Discussion and conclusions

Paratuberculosis disease in ruminants, like other

environmentally transmitted diseases which threaten our

food security urgently needs renewed attention and sustainable

interventions. Paratuberculosis infection has been and continues

to be a public health concern in ruminants, impacting on the

development of many ruminant industries, especially those

that are in the developing world. More efforts have been put

in place in order to completely eradicate this disease, yet few

countries in the developing world are on track to eliminate

PTB. However, some countries in the developing world,

particularly EU countries have nearly eliminated PTB [27].

To date, many mathematical models have been developed

and used as an important tool for studying the dynamics of

a number of infectious diseases. Some of these mathematical

models have further been used to evaluate the effectiveness of

various intervention strategies intended to control, eliminate,

or even eradicate most of these infectious diseases including

environmental transmitted diseases. However, the major

innovation in this paper to scientific knowledge is the use of

a nested multiscale model to investigate if the initial infective

inoculum increases beyond the minimum infectious dose

(MID) has an impact on the dynamics of an infectious disease

system in which the pathogen replication-cycle occurs only at

the microscale. The numerical results in this study demonstrate

that once the minimum infectious dose is consumed, then

the infection at the within-host scale is sustained by pathogen

replication. These results also show that as the initial inoculum

increases, the time to reach the endemic state also increases

at this scale domain. From these results it seems likely super-

infection (i.e., repeated infection of the host before it recovers

from the initial infectious episode) might have an insignificant

effect on the dynamics of PTB in ruminants. However, at

this stage we cannot precisely conclude if super-infection

does not effect on the dynamics of the disease. This could

only be investigated using an embedded multiscale model.

Furthermore, the reduction of the dimensions of full nested

multiscale model enabled us to estimate a composite parameter,
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FIGURE 7

Tornado plot of partial rank correlation coe�cients (PRCCs) of the model parameters that influence the PTB transmission metric B∗
C.

Nc, that is difficult to estimate using single-scale models. The

estimation of Nc facilitate in enhancing single-scale model

framework that can be developed at host level to predict the

dynamics of paratuberculosis in ruminants at within-host scale.

This is largely because single-scale models consider pathogen

transmission as the only major disease process, while multiscale

models consider both pathogen transmission and pathogen

replication as the two major disease processes [25]. We also

perform a sensitivity analysis to the two main disease dynamics

metrics of the simplified nested multiscale model, namely

the basic reproductive number and the endemic value of the

MAP bacteria in the environment to determine important

parameters of paratuberculosis disease dynamics. The sensitive

analysis results show that at the start of PTB infection and

when it has reach at the endemic level, the key within-host

parameters µc is relatively sensitive to PTB disease dynamics.

This would be hard to obtain from a single-scale modeling

approach, which would only provide a general indication

about the influential of the within-host dynamics on spread

of the PTB disease at the population level, but not specifically

indicating parameters that have potential influence on the

disease dynamics.
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Appendix A

6. Derivation of the reproductive
number of the PTB simplified
multiscale model

To determine the reproduction number of the equations

(3.11), we use the next generation operator approach

in [26]. Thus the equations (3.11) can be written in

this form





dX

dt
= f (X,Y ,Z),

dY

dt
= g(X,Y ,Z),

dZ

dt
= h(X,Y ,Z).

(6.37)

• X = SC represents the population of uninfected cattle.

• Y = IC represents the population of infected cattle.

• Z = BC represents the population of infected MAP bacilli

in the environment.

Let

U0 =

(
3C

µC
, 0, 0

)
(6.38)

denote the disease free-equilibrium state and further assume

g̃(X∗,Z) =
βC3CBC

µC(µC + δC + γC)(B0 + BC)
. (6.39)

A matrix

A = DZh(X
∗, g̃(X∗, 0), 0) =

βC3CNcαc

µC(µC + δC + γC)B0
− αC

(6.40)

can be presented in the form A = M − D, where

M =
βC3CNcαc

µC(µC + δC + γC)B0
, D = αC (6.41)

Therefore, the basic reproduction number of the model

system (3.11) is expressed by the following quantity,

R0 =
βC3CNcαc

µC(µC + δC + γC)B0αC
(6.42)
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