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The Canonical Polyadic (CP) tensor decomposition is frequently used as a model

in applications in a variety of different fields. Using jackknife resampling to estimate

parameter uncertainties is often desirable but results in an increase of the already high

computational cost. Upon observation that the resampled tensors, though different, are

nearly identical, we show that it is possible to extend the recently proposed Concurrent

ALS (CALS) technique to a jackknife resampling scenario. This extension gives access

to the computational efficiency advantage of CALS for the price of a modest increase

(typically a few percent) in the number of floating point operations. Numerical experiments

on both synthetic and real-world datasets demonstrate that the new workflow based on

a CALS extension can be several times faster than a straightforward workflow where the

jackknife submodels are processed individually.

Keywords: jackknife, Tensors, decomposition, CP, ALS, Canonical Polyadic Decomposition, Alternating Least

Squares

1. INTRODUCTION

The CP model is used increasingly across a large diversity of fields. One of the fields in which
CP is commonly applied is chemistry [1, 2], where there is often a need for estimating not
only the parameters of the model, but also the associated uncertainty of those parameters [3].
In fact, in some areas it is a dogma that an estimate without an uncertainty is not a result.
A common approach for estimating uncertainties of the parameters of CP models is through
resampling, such as bootstrapping or jackknifing [4, 5]. The latter has added benefits, e.g., for
variable selection [6] and outlier detection [4]. Here we consider a new technique, JK-CALS, that
increases the performance of jackknife resampling applied to CP by more efficiently utilizing the
computer’s memory hierarchy.

The basic concept of jackknife is somewhat related to cross-validation. Let TTT ∈ R
I1×···×IN be

a tensor, and U1, . . ., UN the factor matrices of a CP model. Let us also make the assumption
(typical in many applications) that the first mode corresponds to independent samples, and
all the other modes correspond to variables. For the most basic type of jackknifing, namely
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Leave-One-Out (LOO)1, one sample (out of I1) is left out at
a time (resulting in a tensor with only I1 − 1 samples) and a
model is fitted to the remaining data; we refer to that model as
a submodel. All samples are left out exactly once, resulting in I1
distinct submodels. Each submodel provides an estimate of the
parameters of the overall model. For example, each submodel
provides an estimate of the factor (or loading) matrix U2. From
these I1 estimates it is possible to calculate the variance (or bias)
of the overall loading matrix (the one obtained from all samples).
One complication comes from some indeterminacies with CP
that need to be taken into account. For example, when one (or
more) samples are removed from the initial tensor, the order of
components in the submodel may change; this phenomenon is
explained and a solution is proposed in Riu and Bro [4].

Recently, the authors proposed a technique, Concurrent
ALS (CALS) [7], that can fit multiple CP models to the same
underlying tensor more rapidly than regular ALS. CALS achieves
better performance not by altering the numerics but by utilizing
the computer’s memory hierarchy more efficiently than regular
ALS. However, the CALS technique cannot be directly applied to
jackknife resampling, since the I1 submodels are fitted to different
tensors. In this paper, we extend the idea that underpins CALS
to jackknife resampling. The new technique takes advantage
of the fact that the I1 resampled tensors are nearly identical.
At the price of a modest increase in arithmetic operations, the
technique allows for more efficient fitting of the CP submodels
and thus improved overall performance of a jackknife workflow.
In applications in which the number of components in the CP
model is relatively low, the technique can significantly reduce the
overall time to solution.

Contributions
• An efficient technique, JK-CALS, for performing jackknife

resampling of CP models. The technique is based on an
extension of CALS to nearly identical tensors. To the best of
our knowledge, this is the first attempt at accelerating jackknife
resampling of CP models.
• Numerical experiments demonstrate that JK-CALS can lead to

performance gains in a jackknife resampling workflow.
• Theoretical analysis shows that the technique generalizes from

leave-one-out to grouped jackknife with a modest (less than a
factor of two) increase in arithmetic.
• A C++ library with support for GPU acceleration and a Matlab

interface.

Organization
The rest of the paper is organized as follows. In Section 2, we
provide an overview of related research. In Section 3, we review
the standard CP-ALS and CALS algorithms, as well as jackknife
applied to CP. We describe the technique which enables us to
use CALS to compute jackknife more efficiently in Section 4.
In Section 5 we demonstrate the efficiency of our proposed

1Henceforth, when we mention jackknifing we imply LOO jackknifing, unless

otherwise stated.

technique, by applying it to perform jackknife resampling to CP
models that have been fitted to artificial and real tensors. Finally,
in Section 6, we conclude the paper and provide insights for
further research.

2. RELATED WORK

Two popular techniques for uncertainty estimation for CP
models are bootstrap and jackknife [4, 5, 8]. The main difference
is that jackknife resamples without replacement whereas
bootstrap resamples with replacement. Bootstrap frequently
involves more submodels than jackknife and is therefore more
expensive. The term jackknife typically refers to leave-one-
out jackknife, where only one observation is removed when
resampling. More than one observation can be removed at a
time, leading to the variations called delete-d jackknife [9] and
grouped jackknife [10, p. 7] (also known as Delete-A-Group
jackknife [11] or DAGJK). Of the two, grouped jackknife is most
often used for CP model uncertainty estimation, primarily due
to the significantly smaller number of samples generated. When
applied to CP, jackknife has certain benefits over bootstrap, e.g.,
for variable selection [6] and outlier detection [4].

Jackknife requires fitting multiple submodels. A
straightforward way of accelerating jackknife is to separately
accelerate the fitting of each submodel, e.g., using a faster
implementation. The simplest and most extensively used
numerical method for fitting CP models is the Alternating Least
Squares (CP-ALS) method. Alternative methods for fitting CP
models include eigendecomposition-based methods [12] and
gradient-based (all-at-once) optimization methods [13].

Several techniques have been proposed to accelerate CP-
ALS. Line search [14] and extrapolation [15] aim to reduce the
number of iterations until convergence. Randomization-based
techniques have also been proposed. These target very large
tensors, and either randomly sample the tensor [16] or the
Khatri-Rao product [17], to reduce their size and, by extension,
the overall amount of computation. Similarly, compression-
based techniques replace the target tensor with a compressed
version, thus also reducing the amount of computation during
fitting [18]. The CP model of the reduced tensor is inflated to
correspond to a model of the original tensor.

Several projects offer high-performance implementations of
CP-ALS, for example, Cyclops [19], PLANC [20], Partensor [21],
SPLATT [22], and Genten [23]. For a more comprehensive list of
software implementing some variant of CP-ALS, refer to Psarras
et al. [24].

Similar to the present work, there have been attempts at
accelerating jackknife although (to the best of our knowledge) not
in the context of CP. In Buzas [25], the high computational cost
of jackknife is tackled by using a numerical approximation that
requires fewer operations at the price of lower accuracy. In Belotti
and Peracchi [26], a general-purpose routine for fast jackknife
estimation is presented. Some estimators (often linear ones)
have leave-one-out formulas that allow for fast computation of
the estimator after leaving one sample out. Jackknife is thus
accelerated by computing the estimator on the full set and then
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systematically applying the leave-one-out formula. In Hinkle
and Stromberg [27], a similar technique is studied. Jackknife
computes an estimator on s distinct subsets of the s samples. Any
two of these subsets differ by only one sample, i.e., any one subset
can be obtained from any other by replacing one and only one
element. Some estimators have a fast updating formula, which
can rapidly transform an estimator for one subset to an estimator
for another subset. Jackknife is thus accelerated by computing
the estimator from scratch on the first subset and then repeatedly
updating the estimator using this fast updating formula.

3. CP-ALS, CALS AND JACKKNIFE

In this section, we first specify the notation to be used throughout
the paper, we then review the CP-ALS and CALS techniques, and
finally we describe jackknife resampling applied to CP.

3.1. Notation
For vectors and matrices, we use bold lowercase and uppercase
roman letters, respectively, e.g., v and U. For tensors, we follow
the notation in Kolda and Bader [28]; specifically, we use bold
calligraphic fonts, e.g., TTT . The order (number of indices or
modes) of a tensor is denoted by uppercase roman letters, e.g.,
N. For each mode n ∈ {1, 2, . . . ,N}, a tensor TTT can be unfolded
(matricized) into a matrix, denoted by T(n), where the columns
are the mode-n fibers of TTT , i.e., the vectors obtained by fixing
all indices except for mode n. Sets are denoted by calligraphic
fonts, e.g., S . Given two matrices A and B with the same number
of columns, the Khatri-Rao product, denoted by A ⊙ B, is the
column-wise Kronecker product of A and B. Finally, the unary
operator ⊕, when applied to a matrix, denotes the scalar which
is the sum of all matrix elements.

3.2. CP-ALS
The standard alternating least-squares method for CP is shown
in Algorithm 1 (CP-ALS). The input consists of a target tensor
TTT . The output consists of a CP model represented by a sequence
of factor matrices U1, . . ., UN . The algorithm repeatedly updates
the factor matrices one by one in sequence until either of the
following criteria are met: a) the fit of the model to the target
tensor falls below a certain tolerance threshold, or b) a maximum
number of iterations has been reached. To update a specific factor
matrix Un, the gradient of the least-squares objective function
with respect to that factor matrix is set to zero and the resulting
linear least-squares problem is solved directly from the normal
equations. This entails computing the Matricized Tensor Times
Khatri-Rao Product (MTTKRP) (line 4), which is the product
between the mode-n unfolding T(n) and the Khatri-Rao Product
(KRP) of all factor matrices except Un. The MTTKRP is followed
by the Hadamard product of the Gramians (Ui

TUi) of each factor
matrix in line 5. Factor matrixUn is updated by solving the linear
system in line 6. At the completion of an iteration, i.e., a full pass
over all N modes, the error between the model and the target
tensor is computed (line 8) using the efficient formula derived
in Phan et al. [29].

Algorithm 1: CP-ALS: Alternating least squares method
for CP decomposition.

Input: TTT ∈ R
I1×···×IN The target tensor

Output: U1, . . . ,UN The fitted factor

matrices

1 Initialize the factor matrices U1, . . . ,UN

2 repeat

3 for n = 1, 2, . . ., N do

4 Mn ← T(n)(⊙i6=nUi) MTTKRP

5 Hn ← ∗i6=n(Ui
TUi) Hadamard product of

Gramians

6 Un ← MnHn
† Hn

†: pseudoinverse of Hn

7 end

8 e← ||TTT ||2 − (⊕(HN ∗ (UN
TUN)))− 2(⊕(UN ∗MN))

Error calculation

9 until convergence detected or maximum number of
iterations reached

Assuming a small number of components (R), the most
expensive step is the MTTKRP (line 4). This step involves
2R

∏

i Ii FLOPs (ignoring, for the sake of simplicity, the lower
order of FLOPs required for the computation of the KRP). The
operation touches slightly more than

∏

i Ii memory locations,
resulting in an arithmetic intensity less than 2R FLOPs per
memory reference. Thus, unless R is sufficiently large, the speed
of the computation will be limited by the memory bandwidth
rather than the speed of the processor. The CP-ALS algorithm
is inherently memory-bound for small R, regardless of how it
is implemented.

The impact on performance of the memory-bound nature
of MTTKRP is demonstrated in Figure 1, which shows the
computational efficiency of a particular implementation of
MTTKRP as a function of the number of components (for a
tensor of size 50× 200× 200). Efficiency is defined as the ratio of
the performance achieved by MTTKRP (in FLOPs/sec), relative
to the Theoretical Peak Performance (TPP, see below) of the
machine, i.e.,

EFFICIENCY =
PERFORMANCE

TPP
=

#FLOPS/TIME

TPP
.

The TPP of a machine is defined as the maximum number of
(double precision) floating point operations the machine can
perform in 1 s. Table 1 shows the TPP for our particular machine
(see Section 5 for details). In Figure 1, we see that the efficiency of
MTTKRP tends to increase with the number of components, R,
until eventually reaching a plateau. On this machine, the plateau
is R ≥ 60 at ≈ 70% efficiency for one thread and R ≥ 300 at
≈ 35% efficiency for 24 threads. For R ≤ 20, which is common
in applications, the efficiency is well below the TPP.

3.3. Concurrent ALS (CALS)
When fitting multiple CP models to the same underlying tensor,
the Concurrent ALS (CALS) technique can improve the efficiency
if the number of components is not large enough for CP-ALS to
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FIGURE 1 | Efficiency of MTTKRP on a 50× 200× 200 tensor for an increasing number of components. Note that in the multi-threaded execution, the theoretical

peak performance increases while the total number of operations to be performed stays the same (as in the single-threaded case); this explains the drop in efficiency

per thread.

TABLE 1 | Theoretical peak performance (TPP) for a particular machine.

System TPP (GFlops/sec) Threads Frequency per core (Ghz)

CPU
112 1 3.5

1,536 24 2

Due to the decrease in the peak frequency per core when all 24 cores are used, the TPP

for 24 cores is less than 24× the TPP for 1 core.

reach its performance plateau [7]. A need to fitmultiplemodels to
the same tensor arises, for example, when trying different initial
guesses or when trying different numbers of components.

The gist of CALS can be summarized as follows (see Psarras et
al. [7] for details). Suppose K independent instances of CP-ALS
have to be executed on the same underlying tensor. Rather than
running them sequentially or in parallel, run them in lock-step
fashion as follows. Advance every CP-ALS process one iteration
before proceeding to the next iteration. One CALS iteration
entails K CP-ALS iterations (one iteration per model). Each CP-
ALS iteration in turn contains one MTTKRP operation, so one
CALS iteration also entails K MTTKRP operations. But these
MTTKRPs all involve the same tensor and can therefore be fused
into one bigger MTTKRP operation (see Equation 3 of Psarras et
al. [7]). The performance of the fused MTTKRP depends on the
sum total of components, i.e.,

∑K
i=1 Ri, where Ri is the number

of components in model i. Due to the performance profile of
MTTKRP (see Figure 1), the fused MTTKRP is expected to be
more efficient than each of the K smaller operations it replaces.

The following example illustrates the impact on efficiency of
MTTKRP fusion. Given a target tensor of size 50 × 200 × 200,
K = 50 models to fit, and Ri = 5 components in each model, the

efficiency for each of the K MTTKRPs in CP-ALS is about 15%
(3%) for 1 (24) threads (see Figure 1). The efficiency of the fused
MTTKRP in CALS will be as observed for R =

∑K
i=1 Ri = 250,

i.e., 60% (30%) for 1 (24) threads. Since the MTTKRP operation
dominates the cost, CALS is expected to be≈ 4× (≈ 10×) faster
than CP-ALS for 1 (24) threads.

3.4. Jackknife
Algorithm 2 shows a baseline (inefficient) application of leave-
one-out jackknife resampling to a CP model. For details, see Riu
and Bro [4]. The inputs are a target tensorTTT , an overall CPmodel
P fitted to all of TTT , and a sampled mode n̂ ∈ {1, 2, . . . ,N}. For
each sample p ∈ {1, 2, . . . , In̂}, the algorihm removes the slice
corresponding to the sample from tensor TTT (line 3) and model P
(line 4) and fits a reduced model P−p (lines 4–6) to the reduced

tensor T̂̂T̂T using regular CP-ALS. After fitting all submodels, the
standard deviation of every factor matrix except Un̂ is computed
from the In̂ submodels in Q (line 10). The only costly part of
Algorithm 2 is the repeated calls to CP-ALS in line 5.

4. ACCELERATING JACKKNIFE BY USING
CALS

The straightforward application of jackknife to CP inAlgorithm 2
involves In̂ independent calls to CP-ALS on nearly the same
tensor. Since the tensors are not exactly the same, CALS [7]
cannot be directly applied. In this section, we show how one can
rewrite Algorithm 2 in such a way that CALS can be applied.
There is an associated overhead due to extra computation, but we
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Algorithm 2: JK-ALS: An algorithm that performs
(LOO) jackknife resampling on a CP model.

Input: TTT ∈ R
I1×···×IN The target tensor

P = U1, . . . ,UN A CP model fitted

to TTT

n̂ The sampled mode

Output: S1, . . . , SN Uncertainty of each

element of each factor matrix of P

1 Q← ∅ Set containing fitted jackknife models

2 for p ∈ {1, 2, . . . , In̂} do For every index p in mode

n̂

3 TTT −p ← remove the slice with index p in mode n̂ from
tensor TTT

4 P−p← remove row p from factor matrix Un̂ of P

5 P̂−p← cp_als(TTT −p, P−p)

6 P̂−p← permutation and scale adjustment of P̂−p

7 Q← Q ∪ {P̂−p}

8 end

9 for n ∈ {1, 2, . . . ,N} \ {n̂} do For every mode n

except n̂

10 Sn ← standard deviation of factor matrix Un inQ

11 end

will show that the overhead is modest (less than a 100% increase
and typically only a few percent increase).

4.1. JK-CALS: Jackknife Extension of CALS
Let TTT be an N-mode tensor with a corresponding CP model

A1, . . . ,AN . Let T̂̂T̂T be identical to TTT except for one sample (with
index p) removed from the sampled mode n̂ ∈ {1, 2, . . . ,N}. Let
Â1, . . . , ÂN be the CP submodel corresponding to the resampled
tensor TTT .

When fitting a CP model to TTT using CP-ALS, the MTTKRP
for mode n is given by

Mn ← T(n)(AN ⊙ · · · ⊙ An+1 ⊙ An−1 ⊙ · · · ⊙ A1). (1)

Similarly, when fitting a model to T̂̂T̂T , the MTTKRP for mode n is
given by

M̂n ← T̂(n)(ÂN ⊙ · · · ⊙ Ân+1 ⊙ Ân−1 ⊙ · · · ⊙ Â1). (2)

Can M̂n be computed from T(n) instead of T̂(n)? As we will see,
the answer is yes. We separate two cases: n = n̂ and n 6= n̂.

Case I: n = n̂. The slice of TTT removed when resampling
corresponds to a row of the unfolding T(n) = T(n̂). To see
this, note that element TTT (i1, i2, . . . , iN) corresponds to element
T(n)(in, j) of its mode-n unfolding [28], where

j = 1+

N
∑

k=1
k 6=n

(ik − 1)

k−1
∏

m=1
m 6=n

Im. (3)

Algorithm 3: JK-CALS: Concurrent alternating least
squares method for jackknife estimation.

Input: TTT ∈ R
I1×···×IN The target tensor

P = U1, . . . ,UN A CP model fitted to TTT

n̂ The sampled mode

Output: U
(p)
1 , . . . ,U

(p)
N for p = 1, 2, . . . , In̂ The fitted

submodels

1 Initialize the submodels U
(p)
1 , . . . ,U

(p)
N for p = 1, 2, . . . , In̂

for n = 1, 2, . . ., N do Initialize one factor

2 multi-matrix for each mode

3 for p = 1, 2, . . ., In̂ do
4 if n = n̂ then

5 U
(|p)
n ← U

(p)
n with a row of zeros inserted at

index p
6 else

7 U
(|p)
n ← U

(p)
n

8 end

9 end

10 end

11 repeat Concurrently run In̂ instances of CP-ALS

12 for n = 1, 2, . . ., N do

13 Mn ← T(n)(⊙i6=nUi)
14 for p = 1, 2, . . ., In̂ do

15 H
(p)
n ← ∗i6=n(U

(|p)
i

T
U
(|p)
i )

16 U
(|p)
n ← M

(|p)
n H

(p)
n

†

17 if n = n̂ then

18 U
(|p)
n ← zero out row p of U

(|p)
n

19 end

20 end

21 end

22 for p = 1, 2, . . ., In̂ do

23 e← ||TTT −p||
2 − (⊕(H

(p)
N ∗ (U

(|p)
N

T
U
(|p)
N )))−

2(⊕(U
(|p)
N ∗M

(|p)
N )) Error calculation

24 end

25 until convergence detected for all instances or maximum
number of iterations reached

When we remove sample p, then T̂(n) will be identical to T(n)

except that row p from the latter is missing in the former.

In other words, T̂(n) = EpT(n), where Ep is the matrix that

removes row p. We can therefore compute M̂n by replacing

T̂(n) with T(n) in Equation (2) and then discarding row p from
the result:

M̂n ← Ep(T(n)(ÂN ⊙ · · · ⊙ Ân+1 ⊙ Ân−1 ⊙ · · · ⊙ Â1)).

Case II: n 6= n̂. The slice of TTT removed when resampling
corresponds to a set of columns in the unfolding T(n). One could

in principle remove these columns to obtain T̂(n). But instead of
explicitly removing sample p from TTT , we can simply zero out
the corresponding slice of TTT . To give the CP model matching
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dimensions, we need only insert a row of zeros at index p in factor
matrix n̂. Crucially, the zeroing out of slice p is superfluous. In the
MTTKRP, the elements that should have been zeroed out will be
multiplied with zeros in the Khatri-Rao product generated by the
row of zeros insert in factor matrix n̂. Thus, to compute M̂n in
Equation (2) we (a) replace T̂(n) with T(n) and (b) insert a row of

zeros at index p in factor matrix Ân̂.
In summary, we have shown that it is possible to compute M̂n

in Equation (2) without referencing the reduced tensor. There is
an overhead associate with extra arithmetic. For the case n = n̂,
we compute numbers that are later discarded. For the case n 6= n̂,
we do some arithmetic with zeros.

4.1.1. The JK-CALS Algorithm
Based on the observations above, the CALS algorithm [7] can
be modified to facilitate the concurrent fitting of all jackknife
submodels. Algorithm 3 incorporates the necessary changes
(colored red). The inputs are a target tensor TTT , and the sampled
mode n̂. The algorithm starts by initializing In̂ submodels Pp
for p = 1, 2, . . . , In̂ in line 1; each submodel Pp is created by
removing row p from factor matrix Un̂ of model P. As described
in Psarras et al. [7], CALS creates a multi-matrix n for each
mode n by horizontally concatenating the factor matrices of
each submodel Pp in lines 2–10; the superscript |p denotes the

position in n where the factor matrix U
(p)
n is copied. In the case

of JK-CALS, instead of just copying each factor matrix into its
corresponding multi-matrix, the algorithm first checks whether
zero padding is required (lines 5–7). The loop in line 11 performs
ALS for all submodels concurrently. Specifically, in line 13 the
MTTKRP (n) is computed for all models at the same time by
using the multi-matrices i. Then, lines 15 and 16 are the same as
lines 5 and 6 of Algorithm 1; each submodel is treated separately
by reading its corresponding values within n and n (indicated by
the superscript |p). In JK-CALS, when n = n̂, the padded row

is reset to 0 after U
(|p)
n is updated (line 18). Finally, after a full

ALS cycle has completed, the error of each model is calculated
in line 23. In JK-CALS, the error formula is adjusted for each
submodel by considering the L2 norm of its corresponding
subtensor TTT −p.

We remark that JK-CALS can be straightforwardly extended
to grouped jackknife [10, p. 7], in which the samples are split into
groups of d elements (In̂/d groups) and jackknife submodels are
created by removing an entire group at a time. Instead of padding
and periodically zeroing out one row, we pad and periodically
zero out d rows.

4.2. Performance Considerations
While Algorithm 3 benefits from improved MTTKRP efficiency,
the padding results in extra arithmetic operations. Let d denote
the number of removed samples (d = 1 corresponds to
leave-one-out). For the sake of simplicity, assume that the
integer d divides In̂. In grouped jackknife there are In̂/d
submodels, each with R components. The only costly part is
the MTTKRP.

The MTTKRPs in JK-ALS (for all submodels combined)
requires

(

In̂
d

)









2R(In̂ − d)

N
∏

i=1
i6=n̂

Ii









FLOPs. Meanwhile, the fused MTTKRP in JK-CALS requires

2

(

In̂
d
R

) N
∏

i=1

Ii

FLOPs. The ratio of the latter to the former comes down to

In̂
In̂ − d

≤ 2,

since d ≤ In̂/2 in grouped jackknife. Thus, in the worst case,
JK-CALS requires less than twice the FLOPs of JK-ALS. More
typically, the overhead is negligible.

5. EXPERIMENTS

We investigate the performance benefits of the JK-CALS
algorithm to perform jackknife resampling on a CP model
through two sets of experiments. In the first set of experiments,
we focus on the scalability of the algorithm, with respect to both
problem size and number of processor cores. For this purpose, we
use synthetic datasets of increasing volume, mimicking the shape
of real datasets. In the second set of experiments, we illustrate
JK-CALS’s practical impact by using it to perform jackknife
resampling on two tensors arising in actual applications.

All experiments were conducted using a Linux-based system
with an Intel R© Xeon R© Platinum 8160 Processor (Turbo Boost
enabled, Hyper-Threading disabled), which contains 24 physical
cores split in 2 NUMA regions of 12 cores each. The system
also contains an Nvidia Tesla V100 GPU2. The experiments
were conducted with double precision arithmetic and we report
results for 1 thread, 24 threads (two NUMA regions), and the
GPU (with 24 CPU threads). The source code (available online3)
was compiled using GCC4 and linked to the Intel R©Math Kernel
Library5.

5.1. Scalability Analysis
In this first experiment, we use three synthetic tensors of size
50 × m × m with m ∈ {100, 200, 400}, referred to as “small”,
“medium” and “large” tensors, respectively. The samples are in
the first mode. The other modes contain variables. The number
of samples is kept low, since leave-one-out jackknife is usually
performed on a small number of samples (usually < 100), while
there can be arbitrarily many variables.

2Driver version: 470.57.02, CUDA Version: 11.2.
3https://github.com/HPAC/CP-CALS/tree/jackknife
4GCC version 9.
5MKL version 19.0.
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FIGURE 2 | Execution time for single-threaded jackknife resampling applied to three different tensors (small, medium, and large in the top, middle, and bottom panels,

respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All,” which represents doing jackknife to all four models simultaneously).

For each tensor, we perform jackknife on four models
with varying number of components (R ∈ {3, 5, 7, 9}). This
range of component counts is typical in applications. In
practice, it is often the case that multiple models are fitted
to the target tensor, and many of those models are then
further analyzed using jackknife. For this reason, we perform
jackknife on each model individually, as well as to all models
simultaneously (denoted by “All” in the figures), to better
simulate multiple real-world application scenarios. In this
experiment, the termination criteria based on maximum number
of iterations and tolerance are ignored; instead, all models are
forced to go through exactly 100 iterations, typically a small
number of iterations for small values of tolerance (i.e., most
models require more than 100 iterations). The reason for this

choice is that we aim to isolate the performance difference
of the methods tested; therefore, we maintain a consistent
amount of workload throughout the experiment. (Tolerance and
maximum number of iterations are instead used later on in the
application experiments.)

For comparison, we perform jackknife using three methods:
JK-ALS, JK-OALS and JK-CALS. JK-OALS uses OpenMP to
take advantage of the inherent parallelism when fitting multiple
submodels by parallelizing the loop in line 2 of Algorithm 2. Each
thread maintains its own subsample TTT −p and P−p of tensor TTT
and model P, respectively. This method is only used for multi-
threaded and GPU experiments, and we are only going to focus
on its performance, ignoring the memory overhead associated
with it.
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FIGURE 3 | Execution time for multi-threaded (24 threads) jackknife resampling applied to three different tensors (small, medium, and large in the top, middle, and

bottom panels, respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All”, which represents doing jackknife to all four models

simultaneously).

Figure 2 shows results for single threaded execution; in this
case, JK-OALS is absent. JK-CALS consistently outperforms JK-
ALS for all tensor sizes and workloads. Specifically, for any
fixed amount of workload—i.e., a model of a specific number of
components—JK-CALS exhibits increasing speedups compared
to JK-ALS, as the tensor size increases. For example, for a model
with 5 components, JK-CALS is 2.9, 3, 5.2 times faster than JK-
ALS, for the small, medium and large tensor sizes, respectively.

Figure 3 shows results for multi-threaded execution, using
24 threads. In this case, JK-CALS outperforms the other
two implementations (JK-ALS and JK-OALS) for the medium
and large tensors, for all workloads (number of components),

exhibiting speedups up to 35× and 8× compared to JK-ALS and
JK-OALS, respectively. For the small tensor (50×100×100) and
small workloads (R ≤ 7), JK-CALS is outperformed by JK-OALS;
for R = 3, it is also outperformed by JK-ALS. Investigating this
further, for the small tensor and R = 3 and 5, the parallel speedup
(the ratio between single threaded and multi-threaded execution
time) of JK-CALS is 0.3× and 0.7× for 24 threads. However,
for 12 threads, the corresponding timings are 0.28 and 0.27 s,
resulting in speedups of 2.7× and 3.7×, respectively. This points
to twomain reasons for the observed performance of JK-CALS in
these cases: a) the amount of available computational resources
(24 threads) is disproportionately high compared to the volume
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FIGURE 4 | Execution time for GPU + multi-threaded (GPU + 24 threads) jackknife resampling applied to three different tensors (small, medium, and large in the top,

middle, and bottom panels, respectively), and different number of components (from left to right: R ∈ {3, 5, 7, 9}, and “All”, which represents doing jackknife to all four

models simultaneously).

of computation to be performed and b) because of the small
amount of overall computation, the small overhead associated
with the CALS methodology becomes more significant.

That being said, even for the small tensor, as the amount
of workload increases—already for a single model with 9
components—JK-CALS again becomes the fastest method.
Finally, similarly to the single threaded case, as the size of the
tensor increases, so do the speedups achieved by JK-CALS over
the other two methods.

Figure 4 shows results when the GPU is used to perform
MTTKRP for all three methods; in this case, all 24 threads are
used on the CPU. For the small tensor and small workloads
(R ≤ 5), there is not enough computation to warrant the shipping
of data to and from the GPU, resulting in higher execution

times compared to multi-threaded execution; for all other cases,
all methods have reduced execution time when using the GPU
compared to the execution on 24 threads. Furthermore, in
those cases, JK-CALS is consistently faster than its counterparts,
exhibiting the largest speedups when the workload is at its highest
(“All”), with values of 10×, 7×, 7× compared to JK-OALS, and
12×, 10×, 9× compared to JK-ALS, for the small, medium and
large tensors, respectively.

5.2. Real-World Applications
In this second experiment, we selected two tensors of size 89 ×
97×549 and 44×2700×200 from the field of Chemometrics [30,
31]. In this field it is common to fit multiple, randomly initialized
models in a range of low components (e.g., R ∈ {1, 2, . . . , 20},
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FIGURE 5 | Execution time for jackknife resampling applied to two applications tensors. For tensor 89× 97× 549, whose expected rank is 5, three models with

R ∈ {4, 5, 6} were fitted and then jackknife was applied to them (i.e., the “All” group from the previous section). Similarly, for tensor 44× 2, 700× 200, whose expected

rank is 20, three models with R ∈ {19, 20, 21} were fitted and then jackknifed. In both cases, tolerance and maximum number of iterations were set to 10−6 and

1, 000, respectively.

10–20 models for each R, and then analyze (e.g., using jackknife)
thosemodels that might be of particular interest (often those with
components close to the expected rank of the target tensor); in the
tensors we consider, the expected rank is 5 and 20, respectively.
To mimic the typical workflow of practitioners, we fitted three
models to each tensor, of components R ∈ {4, 5, 6} and R ∈
{19, 20, 21}, respectively, and used the three methods (JK-ALS,
JK-OALS and JK-CALS) to apply jackknife resampling to the
fitted models6. The values for tolerance and maximum number
of iterations were set according to typical values for the particular
field, namely 10−6 and 1, 000, respectively.

In Figure 5 we report the execution time for 1 thread, 24
threads, and GPU + 24 threads. For both datasets and for all
configurations, JK-CALS is faster than the other two methods.
Specifically, when compared to JK-ALS over the two tensors,
JK-CALS achieves speedups of 5.4× and 2× for single threaded
execution, 10× and 2.8× for 24-threaded execution. Similarly,
when compared to JK-OALS, JK-CALS achieves speedups of
2.7× and 4.8× for 24-threaded execution. Finally, JK-CALS takes
advantage of the GPU the most, exhibiting speedups of 17.5×
and 3.7× over JK-ALS, and 9× and 2× over JK-OALS, for
GPU execution.

6The same models were given as input to the three methods, and thus require the

same number of iterations to converge.

6. CONCLUSION

Jackknife resampling of CP models is useful for estimating
uncertainties, but the computation requires fitting multiple
submodels and is therefore computationally expensive. We
presented a new technique for implementing jackknife that
better utilizes the computer’s memory hierarchy. The technique
is based on a novel extension of the Concurrent ALS (CALS)
algorithm for fitting multiple CP models to the same underlying
tensor, first introduced in Psarras et al. [7]. The new technique
has a modest arithmetic overhead that is bounded above by
factor of two in the worst case. Numerical experiments on both
synthetic and real-world datasets using a multicore processor
paired with a GPU demonstrated that the proposed algorithm
can be several times faster than a straightforward implementation
of jackknife resampling based on multiple calls to a regular
CP-ALS implementation.

Future work includes extending the software to support
grouped jackknife.
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