
ORIGINAL RESEARCH
published: 30 March 2022

doi: 10.3389/fams.2022.836433

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 1 March 2022 | Volume 8 | Article 836433

Edited by:

André Uschmajew,

Max Planck Institute for Mathematics

in the Sciences, Germany

Reviewed by:

Edgar Solomonik,

University of Illinois at

Urbana-Champaign, United States

Guillaume Rabusseau,

Université de Montréal, Canada

*Correspondence:

Muzaffer Ayvaz

muzaffer.ayvaz@kuleuven.be

Specialty section:

This article was submitted to

Mathematics of Computation and

Data Science,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

Received: 15 December 2021

Accepted: 28 February 2022

Published: 30 March 2022

Citation:

Ayvaz M and De Lathauwer L (2022)

CPD-Structured Multivariate

Polynomial Optimization.

Front. Appl. Math. Stat. 8:836433.

doi: 10.3389/fams.2022.836433

CPD-Structured Multivariate
Polynomial Optimization
Muzaffer Ayvaz 1,2* and Lieven De Lathauwer 1,2

1Department of Electrical Engineering (ESAT), KU Leuven, Leuven, Belgium, 2Group Science, Engineering and Technology,

KU Leuven Kulak, Kortrijk, Belgium

We introduce the Tensor-Based Multivariate Optimization (TeMPO) framework for use in

nonlinear optimization problems commonly encountered in signal processing, machine

learning, and artificial intelligence. Within our framework, we model nonlinear relations

by a multivariate polynomial that can be represented by low-rank symmetric tensors

(multi-indexed arrays), making a compromise between model generality and efficiency

of computation. Put the other way around, our approach both breaks the curse of

dimensionality in the system parameters and captures the nonlinear relations with a good

accuracy. Moreover, by taking advantage of the symmetric CPD format, we develop an

efficient second-order Gauss–Newton algorithm for multivariate polynomial optimization.

The presented algorithm has a quadratic per-iteration complexity in the number of

optimization variables in the worst case scenario, and a linear per-iteration complexity in

practice. We demonstrate the efficiency of our algorithm with some illustrative examples,

apply it to the blind deconvolution of constant modulus signals, and the classification

problem in supervised learning. We show that TeMPO achieves similar or better accuracy

than multilayer perceptrons (MLPs), tensor networks with tensor trains (TT) and projected

entangled pair states (PEPS) architectures for the classification of the MNIST and Fashion

MNIST datasets while at the same time optimizing for fewer parameters and using less

memory. Last but not least, our framework can be interpreted as an advancement of

higher-order factorization machines: we introduce an efficient second-order algorithm

for higher-order factorization machines.

Keywords: multivariate polynomial, numerical optimization, tensor decomposition, Gauss-Newton algorithm,

factorization machines, higher order factorization machines, tensor network, image classification

1. INTRODUCTION

Many problems in data science, signal processing, machine learning and artificial intelligence (AI)
can be thought of determining the nonlinear relationship between input and output data. Several
strategies have been developed to efficiently model these nonlinear interactions. However, due to
the higher-order nature of input and output data, developing scalable algorithms to model these
nonlinear interactions is a challenging research direction. Another major issue is the large number
of system parameters needed to model the physical phenomena under consideration. For example,
large numbers of layers and neurons are needed in deep neural networks (DNNs). Multivariate
polynomials are also utilized to model nonlinear continuous functions. However, this approach
suffers from an exponential increase in the number of coefficients with the degree of the polynomial.
This is known as the curse of dimensionality and is a major drawback that inhibits the development
of efficient algorithms.

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.836433
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.836433&domain=pdf&date_stamp=2022-03-30
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:muzaffer.ayvaz@kuleuven.be
https://doi.org/10.3389/fams.2022.836433
https://www.frontiersin.org/articles/10.3389/fams.2022.836433/full

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Tensor decompositions such as canonical polyadic
decomposition (CPD) and tensor trains (TT) are promising
tools for breaking the curse of dimensionality. Tensors are multi-
indexed arrays. They preserve the higher-order structure which
is inherent in data, are able to model nonlinear interactions,
and can be decomposed uniquely under mild conditions
[1–3]. Efficient numerical optimization algorithms have been
developed for tensor decompositions. In the context of CPD, the
Gauss–Newton algorithm using both line search and trust-region
frameworks have been effectively implemented by exploiting the
CPD structure [4–6]. A low complexity damped Gauss-Newton
algorithm has also been proposed [7]. Moreover, a randomized
block sampling approach has been proposed which achieves
linear time complexity for the CPD of large tensors by utilizing
the Gauss–Newton algorithm [8]. Many data science problems
such as latent factor analysis have been solved by reformulating
them as tensor decomposition problems [9–12]. An inexact
Gauss–Newton algorithm has been proposed for scaling the
CPD of large tensors with non-least-squares cost functions
[13]. Moreover, generalized Gauss–Newton algorithm with its
efficient parallel implementation has been proposed for tensor
completion with generalized loss functions [14]. Our aim in this
work is to extend the efficient numerical approaches to a broader
class of problems that includes not only tensor decompositions
but also the optimization of multilinear/polynomial cost
functions. Examples include, but are not limited to matrix and
tensor eigenvalue problems, nonlinear dimensionality reduction,
nonlinear blind source separation, multivariate polynomial
regression, and classification problems.

In this study, we develop a framework called Tensor-Based
Multivariate Polynomial Optimization (TeMPO) to deal with
nonlinear optimization problems commonly encountered in
signal processing, machine learning and artificial intelligence. A
preliminary version, where only rank-1 CPD is considered with
application in blind identification, appeared as the conference
paper [15]. In the TeMPO framework, these nonlinear functions
are approximated or modeled bymultivariate polynomials. Then,
low-rank tensors are used to represent the polynomial under
consideration. This approach reduces the number of parameters
that define the system, and hence enables us to develop efficient
numerical optimization algorithms. To further elaborate on the
proposed methodology, let us consider the optimization problem

min
p

l(p(z), θ), (1)

where l :R × R
M → R

+ denotes a loss function such as
the mean squared error, p :RI → R denotes an unknown
multivariate polynomial, z ∈ R

I denotes input data, and θ ∈ R
M

denotes output data. We compactly represent the polynomial
p(z) through low-rank tensors. One possible way to do this is
to write the polynomial as a sum of homogeneous polynomials
as follows:

p(z) : =

d∑

j=0

Tjz
j, (2)

where Tj denotes a low-rank tensor of order j, and Tjz
j denotes

the mode-n product (see Section 2.1) of a tensor Tj and the vector
z for all modes. As by convention, T0 is assumed to be scalar
and z0 is assumed to be scalar 1. From now on, we call (2) a
type I model. We can represent a multivariate polynomial with
a single tensor by utilizing a process called homogenization, and
augmenting the independent variable z by a constant 1 as

p(̃z) : =Wz̃d, (3)

whereW is a tensor of order d, and z̃ = [1; z]. Hereafter, we call
(3) a type II model.

An n-variate polynomial of degree d has O
(
nd

)
coefficients.

This exponential dependence on d is the so-called curse of
dimensionality. In the TeMPO framework, we break the curse of
dimensionality by assuming low-rank structure in the coefficient
tensors. For example, when rank- R symmetric CPD structure is
used, the number of parameters needed to represent the n-variate
polynomial of degree d is ndR which is linear in the number
of variables. Several low-rank structures for tensors have been
introduced in the literature [1, 2, 16], e.g., canonical polyadic
decomposition (CPD), Tucker decomposition, hierarchical
Tucker decomposition (HT) [17], tensor train decomposition
(TT) [18]. All of these structures can be incorporated into
the TEMPO framework; however, in this paper we restrict
ourselves to symmetric CPDs. Note that different types of low-
rank structure allow us to represent different sub-classes of
polynomials. Of course, different representations differ in storage
space, and computational complexity. Amore detailed exposition
will be given in Section 3.2. Note also that the type I model allows
us to constrain each term separately while the type II model does
not. Therefore, the type I model is a more general representation
of multivariate polynomials which may provide better results
depending on the applications.

Besides breaking the curse of dimensionality, exploiting low-
rank representations of tensors enables us to derive efficient
expressions for objective function and gradient evaluations.
These then lead us to develop scalable algorithms. We apply our
framework for image classification by adapting the second-order
Gauss–Newton algorithm and exploiting the symmetric CPD
structure in two different tensor representations of multivariate
polynomials. We show that the TeMPO framework with
symmetric CPD structure achieves similar or better accuracy
than various methods such as MLPs, and tensor networks with
different structures for the classical MNIST and Fashion MNIST
datasets while using fewer parameters and therefore less memory.

Related Work
Several tensor-basedmethods have been reported in the literature
for regression and classification, two problems that are in the
class of problems (1). In most of these approaches, a linear model

y = 〈W,X〉 + b, (4)

is used where W denotes a weight tensor and X represents
nonlinear features of the input data. This model corresponds to
the type II model when a symmetric CPD structure is imposed

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 2 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

on the weight tensor W and X is composed of polynomial
features of input data. Clearly, imposing different structures
to the weight tensor W and using different nonlinear features
in the tensor X leads to a different representation of the
nonlinear interaction between input data and output data. For
example, exponential machines utilize the tensor train format
in the weight tensor with a norm regularization term in the
optimization [19]. In this approach, the Riemannian gradient
descent algorithm is used for solving the optimization problem.
In a similar approach, tensor trains is used with the feature map

φ(xj) =
[
cos

(πxj

2

)
, sin

(πxj

2

)]
, by using the density matrix

renormalization group (DMRG) algorithm and the first-order
ADAM algorithm for the optimization of different cost functions
[20, 21]. The same feature map is also used for the linear model
(4) by imposing projected entangled pair states (PEPS) structure
on the weight tensor W [22]. The CPD format in model (4)
has also been studied in the realm of tensor regression with
the Frobenius norm and group sparsity norm regularization
terms while using a coordinate-descent approach [23]. A similar
model is also considered by utilizing the symmetric CPD format
and the second-order Gauss–Newton algorithm with algebraic
initialization for multivariate polynomial regression [24]. Several
approaches have been proposed that utilize CPD or Tucker
formats in tensor regression that use different regularization
strategies to prevent the overfitting [25, 26]. Also, the hierarchical
Tucker (HT) format has been used in the tensor regression
context for the generalized linear model (GLM) y = αTx +

〈W,X〉. This approach was successfully applied to brain imaging
data sets and uses a block relaxation algorithm, which solves a
sequence of lower dimensional optimization problems [27].

Similarly, several models related to the type I model are
considered in various settings. For example, Kar and Karnick use
random polynomial features and parameterize the coefficients of
the polynomial under consideration [28]. The parameterization
used in this approach has been shown to be equivalent to
imposing the CPD format to the weight tensor W [29]. Another
approach is factorization machines which use a multivariate
polynomial kernel in the realm of support vector machines
(SVM) [30]. For second-order factorization machines a first-
order stochastic gradient descent algorithm has been proposed.
This approach has a linear time complexity. Higher-order
factorization machines use the ANOVA kernel to achieve a
linear time complexity and have been successfully applied
to link prediction models using stochastic gradient descent
[31]. The ANOVA kernel does not use symmetric tensors in
the representation and instead only considers combinations
of distinct features [31]. Also, factorization machines in the
symmetric CPD format have been considered using first-order
and BFGS type algorithms [32]. Tensor machines generalize both
the Kar-Karnick random features approach and factorization
machines. It has been shown that these approaches correspond
to specific types of tensor machines in the CPD format. Further,
it has been shown that empirical risk minimization is an efficient
method for finding locally optimal tensor machines if the
optimization algorithm avoids saddle points [29].

As can be seen from the literature summary above, one of the
differences between our approach and the above methods is the

model used. The type I model (2) has not been examined with the
symmetric CPD structure in the weight tensors, to the best of our
knowledge. Another difference of our approach from the above
methods is the algorithm used. While first-order algorithms
are used in most of these approaches, we utilize the second-
order batchGauss–Newton (GN) algorithm. Although first-order
methods have the advantage of lower per-iteration complexity,
second-order GN algorithms generally require fewer iterations to
converge and fewer hyperparameters to be optimized. Moreover,
the GN algorithm using trust-region is more robust in the sense
that it converges to a (local) minimum for any starting point
under mild conditions and it is less prone to swamps (many
iterations with little to no improvement) [5, 6, 33].

We summarize our contributions as follows:

• We develop a TeMPO framework that is able to solve
many nonlinear problems with ubiquitous applications in
signal processing, machine learning and artificial intelligence.
Moreover, we develop an efficient second-order Gauss–
Newton algorithm for optimizing multivariate polynomials in
the CPD format.
• We determine the conditions where the tensorized linear

model (4) with polynomial features and the multivariate
polynomial model (2) coincide when the symmetric CPD
format is used in their representations.
• We show that TeMPO achieves similar or better accuracy

than various methods such as multilayer perceptrons (MLPs),
tensor networks with different architectures including tensor
trains (TT), tree tensor networks, and projected entangled
pair states (PEPS). We also show that TeMPO requires the
optimization for fewer parameters and less memory than these
methods for the classification of the MNIST and Fashion
MNIST datasets.
• Last but not least, our framework can be interpreted as

an advancement of higher-order factorization machines; we
introduce an efficient second-order Gauss–Newton algorithm
for higher-order factorization machines.

The remaining part of this article is organized as follows. In
Section 2, we describe notation and background information
concerning tensors. In Section 3, we describe the TeMPO
framework in a more detailed manner. Section 3 also covers
the details of representation of polynomials by symmetric
CPD structured tensors. In Section 3, we also show how
to exploit the symmetric CPD structure to obtain efficient
expressions for the gradient and Jacobian-vector products which
are necessary for the Gauss–Newton algorithm. The formulation
of the image classification problem in the context of TeMPO,
numerical experiments and related discussions will be covered
in Section 4. We conclude our paper with future remarks in the
last section.

2. PRELIMINARIES

2.1. Notation
A tensor is a higher-order generalization of a vector (first-order)
and a matrix (second-order). Following established conventions,
we denote scalars, vectors, matrices, and tensors by a, a,A, andA,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 3 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

respectively. The transpose of amatrixA is denoted asAT. The ith
column vector of a matrixA is denoted as ai, i.e.,A = (a1, a2 . . .).
The entry with row index i and column index j in a matrix
A, i.e., (A)ij, is denoted by aij. Similarly, (A)i1i2...iN is denoted
by ai1i2...iN . Diag(a) denotes the diagonal matrix whose entries
are composed from the vector a. On the other hand, diag(A)
denotes a vector composed from the diagonal elements of A.
The vectorization operator vec(A) for A ∈ K

I×J stacks all the
columns ofA into a column vector a ∈ K

IJ . The reverse operation
unvec(a) reshapes a vector a into a matrixA ∈ K

I×J . The identity
matrix of size (K×K) is denoted by IK . A vector of length K with
all entries equal to 1 is denoted by1K . The l2 norm of a vector a is
denoted by ‖a‖2. The row-wise and column-wise concatenation
of two vectors a and b is denoted by [a, b] and [a; b], respectively.
The outer product, Kronecker product, Khatri–Rao product, and
Hadamard product are denoted by ⊗, ⊗, ⊙, and ∗, respectively.
The nth power of a vector x with respect to Kronecker product is
defined as x⊗ n = x⊗ x⊗(n−1), with x⊗ 0 = 1. Similarly, x⊙ n and
x∗ n denotes the nth power of vector x with respect to Khatri–
Rao product and Hadamard product, respectively. The mode-n
product of a tensor A ∈ K

I1×I2×...×IN (with K meaning either
R or C) and a vector x ∈ K

In , denoted by A ·n xT, is defined

element-wise as
(
A ·n x

T
)
i1i2···in−1in+1···iN

=
∑IN

in=1
ai1i2···in···iNxin .

The mode-n product of a tensorA ∈ K
I×I×...×I of order k and a

vector x ∈ K
I for all modes is defined as

Axk
def
= A ·1 x

T
·2 x

T . . . ·k x
T.

A mode-n vector or mode-n fiber of a tensor A ∈ K
I1×I2×...×IN

is a vector obtained by fixing every index except the nth. The
mode-n matricization of A is a matrix A[n;N,N−1,...,n+1,n−1,...,1]

collecting all the mode-n vectors as its columns. For example,
an entry ai1i2i3 of a tensor A ∈ K

I×J×K is mapped to the (i2, q)
entry of the matrix A[2;3,1] with q = i1 + (i3 − 1)I. The binomial
coefficient is denoted by Ck

n =
n!

(n−k)!k!
. Some useful definitions

are listed below.

Definition 1 (Symmetric Tensor). A tensor A ∈ K
I×I×...×I of

order k is called symmetric if its entries are invariant under the
permutation of its indices.

As a consequence of this definition, the matrix representations of
symmetric tensors in different modes are all equal.

Definition 2 (Rank of a Tensor). A rank-1 tensor of order N is
the outer product of N nonzero vectors. The rank of a tensor is
equal to the minimal number of rank-1 terms that yield the tensor
as their sum.

Definition 3 (Kronecker Product). Given two matrices A ∈

K
I×J and B ∈ K

K×L, their Kronecker product is

A⊗B =



a1,1B · · · a1,JB
...

. . .
...

aI,1B · · · aI,JB


 ∈ K

IK×JL.

Definition 4 (Khatri–Rao Product). Given two matrices A ∈

K
I×K and B ∈ K

J×K with the same number of columns,

their Khatri–Rao product, also known as columnwise Kronecker
product, is

A⊙B = [a1⊗ b1, a2⊗ b2, . . . , aK ⊗ bK] ∈ K
IJ×K ,

where ai and bi denote the ith column of the matrices A and B,
respectively.

Definition 5 (Hadamard Product). Given two matrices A ∈

K
I×J and B ∈ K

I×J with the same size, their Hadamard product is
the elementwise product, i.e.,

A∗B =



a1,1b1,1 · · · a1,Jb1,J

...
. . .

...
aI,1bI,1 · · · aI,JbI,J


 ∈ K

I×J .

The following properties will be useful for our derivations.

Property 1. Let A ∈ K
I×J ,X ∈ K

J×K ,B ∈ K
K×L. Then

vec(AXB) =
(
BT⊗A

)
vec(X) ∈ K

IL.

Moreover, if X ∈ K
J×J is a diagonal matrix and B ∈ K

J×L, then

vec(AXB) =
(
BT⊙A

)
diag(X) ∈ K

IL.

Property 2. Let A ∈ K
I×J ,B ∈ K

K×J ,C ∈ K
I×L, and D ∈

K
K×L. Then

(A⊙B)T (C⊙D) =
(
ATC

)
∗

(
BTD

)
∈ K

J×L.

Property 3. For matrices A ∈ R
I×J and B ∈ R

J×K , and for the
function f (A,B) = AB, the following equations hold:

∂vec(f (A,B))

∂vec(A)
= BT⊗ II ,

∂vec(f (A,B))

∂vec(B)
= IK ⊗A.

2.2. Canonical Polyadic Decomposition
Here, we will briefly describe the canonical polyadic
decomposition. A more detailed description of CPD can be
found in [1] and references therein. The CPD writes a tensor
T ∈ K

I1×I2×...×IN as a sum of R rank-1 tensors and is denoted byr
U(1), . . . ,U(N)

z
, with its factor matrices U(n) ∈ K

In×R, where R

equals the rank of the tensor. This is a shortcut notation for

T =

R∑

r=1

u(1)r
⊗ u(2)r

⊗ . . . ⊗ u(N)
r ,

where u
(n)
r denotes the rth column of the factor matrix U(n).

CPD is essentially unique under mild conditions [34–37], and
has found many applications in signal processing and machine
learning [1].

For symmetric tensors, all the factor matrices are equal, i.e.,

T =
q
U,U . . . ,U; cT

y
=

R∑

r=1

cr(ur ⊗ ur ⊗ . . . ⊗ ur) ∈ K
I×I×...×I ,

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 4 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 1 | Polyadic decomposition of a third order symmetric tensor T. It is called canonical (CPD) if R is equal to the rank of T, i.e., R is minimal. It allows compact

representation of polynomials.

where U ∈ K
I×R, and c ∈ K

R is a vector of weights which allows
us to give minus signs to the factors for even-degree symmetric
tensors, see Figure 1. The matrix unfolding of a symmetric CPD
is given by

T = UDiag(c)(U⊙U⊙ · · ·⊙U)T.

3. TENSOR-BASED MULTIVARIATE
POLYNOMIAL OPTIMIZATION

The primary aim of the TeMPO framework is to develop efficient
algorithms for modeling nonlinear phenomena commonly
encountered in the areas of signal processing, machine learning,
and artificial intelligence [15]. To achieve this, we assume
structure in the nonlinear function f :RI → R

N that maps the
input data to output data. In our framework, we first assume
smoothness in f and approximate it as multivariate polynomial
p :RI → R

N . Then, we approximate p with low-rank tensors.
This allows us to achieve efficiency both in storing the coefficients
of the approximation and in performing computations with
those coefficients. Although any continuous function on a
compact domain can be approximated by polynomials arbitrarily
well according to the Stone–Weierstrass theorem, polynomial
approximations used in practice can pose several numerical
issues such as the Runge phenomenon. Several strategies have
been proposed to overcome these numerical issues, such as using
different polynomial bases and Tikhonov regularization [38, 39].
In this work, we will focus more on computational issues of
the TeMPO framework; however, it is possible to incorporate
these strategies with TeMPO using slight modifications. In the
remaining part of this section, we describe the scope of TeMPO.
Then we will describe two types of tensor representations of
multivariate polynomials where the symmetric CPD structure
is imposed on the coefficient tensors. Next we will briefly
describe the Gauss–Newton algorithm using the dogleg trust-
region method and show how to exploit the symmetric CPD
structure in the computation of Jacobian and Jacobian-vector
products that are necessary for the Gauss–Newton algorithm.

3.1. Scope of the TeMPO Framework
The TeMPO framework concerns optimization problems with
continuous cost functions on compact domains, namely

multilinear/polynomial cost functions with or without additional
constraints, which is a more general setting than tensor
decomposition or retrieval of a tensor factorization. To better
describe the scope, let us consider the following class of
objective functions:

l(θ , p(z)), (5)

where l :R × R
M → R

+ denotes the performance measure of
the model to be optimized, p :RI → R denotes a multivariate
polynomial represented by low-rank tensors, z ∈ R

I denotes
input data, and θ ∈ R

M denotes output data. A broad range
of objective functions are in the class of (5). For example, the
objective function for the estimation of the CPD of a third-order
tensor T can be written as

1

2

∥∥θ − p(A,B,C)
∥∥2
2
, where p(A,B,C) = vec (JA,B,CK) .

Other tensor decomposition problems, such as block term
decomposition (BTD), also fit into TeMPO. The symmetric
best rank-1 approximation problem [40], which can also be
formulated as

max
z∈R

I
Tzd, subject to ‖z‖ = 1, (6)

is another example problem that fits into the framework. Note
that (6) is expressed as the maximization of an objective function,
rather than as the decomposition of a tensor; indeed TeMPO
allows one to address more general problems. For the symmetric
best rank-1 approximation problem, several approaches such
as higher-order power method [40], generalized Rayleigh–
Newton iteration and the alternating least squares methods
[41], SVD-based algorithms [42], semi-definite relaxations [43]
have been proposed. Problems from unsupervised learning
such as nonlinear dimensionality reduction, manifold learning,
nonlinear blind source separation, and nonlinear independent
component analysis also fit into TeMPO. Similarly, problems
from supervised learning fit into TeMPO as well. In this work, we
will focus on the regression and classification problem and derive
expressions for Jacobian and Jacobian-vector products, which
are necessary for the Gauss–Newton algorithm. However, the
derivations here can be extended to the other problems without
much effort.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 5 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Given data points (yk, zk), the regression problem can be
formulated within the TeMPO framework for the type I model as

min
T0 ,...,Td

p(T0, . . . ,Td,Z)

= min
T0 ,...,Td

1

2

K∑

k=1


yk − T0 −

d∑

j=1

Tjz
j

k




2

,

subject to rank(Tj) = Rj (7)

where Rj ∈ N
+ is a small integer, Tj ∈ R

I×I×...×I denotes the
low-rank structured coefficient tensor of order j to be optimized,
T0 ∈ R denotes a scalar, Z ∈ R

I×K denotes the data matrix, zk
denotes the kth column of Z and K is the number of available
data points. For the type II model, the regression problem takes
the form

min
T

p(T, Z̃) = min
T

1

2

K∑

k=1

(
yk − T z̃di

)2
,

subject to rank(T) = R (8)

where T denotes the low-rank structured coefficient tensor of
order d to be optimized, Z̃ ∈ R

(I+1)×K denotes the augmented
input data matrix, and z̃k denotes the kth column of Z̃, i.e.,
z̃k = [1; zk].

3.2. Tensor Representation of Polynomials
In this subsection, we examine the type I and type II model in
detail. A (symmetric) tensor T of order d and dimension n can
be associated with a homogeneous n-variate polynomial p(z) of
degree d [44], as shown in Equation (3).

Type I: Since any polynomial can be written as a sum of
homogeneous polynomials of increasing degrees, any polynomial
of degree d can be written by using tensors of order up to d, as
shown in Equation (2). Note that in the tensor representation of
polynomials, any tensor can be assumed to be symmetric without
loss of generality. Indeed, any homogeneous polynomial p(z) of
degree d ∈ N can be represented by a multilinear form Tzd,
where T ∈ K

I×I×...×I is a symmetric tensor of order d and z ∈

K
I .
To see this, suppose a homogeneous polynomial p(z) is

represented as

p(z) = T̃zd =

I∑

i1 ,i2,id=1

t̃i1i2...idzi1zi2 . . . zid ,

where T̃ ∈ K
I×I×...×I is a tensor of order d. Since the terms

zi1zi2 . . . zid are invariant under the permutation of indices, we
may write

p(x) =

I∑

i1 ,i2,id=1

ti1i2...idzi1zi2 . . . zid ,

where ti1i2...id =
1

d!

∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

t̃i1i2...id ,

FIGURE 2 | By applying the homogenization process, symmetric tensors can

represent the coefficients of non-homogeneous polynomials. For example, by

stacking the coefficients t, t, T, and T of the third degree polynomial into a

tensor as shown above, we can represent it with a symmetric third-order

tensor. Image reproduced from Debals [46].

here 5(i1i2 . . . id) denotes the collection of all permutation of
indices (i1, i2, . . . , id). Since the entries of T are invariant under
the permutation of indices, we can conclude that T is symmetric.

The above discussion reveals the fact that there are infinitely
many representations of a given polynomial. Indeed two
representations with tensors T and W are equal so long as the
summation of the corresponding entries over the permutation of
indices remains the same, i.e.,

∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

ti1i2...id =
∑

(i1 ,i2 ,...,id)∈5(i1i2...id)

wi1i2...id

In the ANOVA kernel used in higher-order factorization
machines, all t5(i1i2...id) are set to zero except t(i1<i2<...<id) [31],
which leads to a sparse representation. In this paper, we use
symmetric tensors for two reasons. The first reason is that
the CPD of a symmetric tensor can be expressed by a single
factor matrix. Therefore, the symmetric CPD representation of
multivariate polynomial requires fewer number of parameters in
comparison with a non-symmetric representation. The second
reason is that there is a rich history of the representation of
polynomials with symmetric tensors in the field of algebraic
geometry under the name of the Waring problem [45].

Type II: Augmenting the independent variable vector z,
by a constant 11, i.e., z̃ = [1; zT] leads to a different
representation of non-homogeneous polynomials that uses a
single dth order symmetric tensor for the inhomogeneous
multivariate polynomial of degree d, as shown in Equation (3).
This process is called homogenization [46] and is graphically
illustrated in Figure 2. If we just use full tensors, the type I and II

1Since the weight vector c is used in the parametrization of tensors, different

choices of constant in z̃ lead to mathematically equivalent cost functions in the

optimization problems. On the other hand, the choice of the constant may imply

numerical differences—in situations of this type, one should generally choose a

constant that “makes sense for the application.”

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 6 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

models are interchangeable. However, it is important to note that
when low-rank structure is imposed on the coefficient tensors, both
representations yield different classes of low-rank multivariate
polynomial. Hence, these approaches may lead to different
results depending on the application. The former approach
requires more parameters since it uses more factor matrices.
The difference in the number of parameters should be taken
into account to prevent underfitting and overfitting. A more
detailed description for storage complexity is given in Section
3.5. Moreover, the type I model allows us to constrain each
term in the representation separately. In modeling multivariate
polynomials, one might not wish the terms of different order to
have some shared structure, in which case one should choose
the type I model to work with. Similarly, the type II model
should be chosen, if some shared structure is desired in the
terms of different order. To further elaborate on the effects of
homogenization on the rank of a tensor, let us consider the
following proposition.

Proposition 1. Let p(z) :RI → R be a multivariate polynomial
of order d defined as in equation (2) by a scalar T0 and symmetric
tensors Tj ∈ R

I×I×...×I for j = 1, 2, . . . , d. Moreover, let W ∈

R
(I+1)×...×(I+1) be the corresponding tensor obtained from the

homogenization process. The tensorsW and Tj have the same rank
R if and only if the tensors Tj admit unique CPDs with shared
factor matrices and a weight vector c, i.e.,

Tj =
r
U, . . . ,U;C

j

d
(cT)⊙(d−j)

z
, and T0 =

R∑

r=1

(
(cT)⊙ d

)
r
.

Proof 1. Let the CPD of the tensor W be defined as JV, . . . ,VK,
where, for convenience but without loss of generality, the weights of
the rank-1 terms are assumed to be 1. Since W is obtained by the
homogenization process, partitioning V as [vT;Q] and using the
definition of CPD, we obtain

Tj =
r
Q, . . . ,Q;C

j

d
(vT)⊙(d−j)

z
, and T0 =

R∑

r=1

(
(vT)⊙ d

)
r
.

(9)
Since the CPDs of the tensors Tj are unique, the equality (9) holds
if and only if the equalities Q = U and v = c also hold.

Remark 1. In the above proof, we assumed that the vector v does
not contain any zero elements. Note that if the vector v does contain
zero elements, it cancels the corresponding rank-1 terms. Therefore,
in that case rank(W) > rank(Tj), for j = 1, . . . , d − 1. Moreover,
the uniqueness of the CPDs of Tj implies that rank(W) ≥
rank(Tj). Since the equality rank(W) = rank(Tj) holds only when
the tensors Tj have shared factor matrices as described above, we
can conclude that in all other cases rank(W) > rank(Tj).

Proposition 1 together with Remark 1 reveals the fact that if W
admits a rank-R CPD, there exists tensors Tj that admit rank-
Rj CPDs with shared factors and Rj ≤ R. Hence, the expressive
power of the type II model is weaker than the type I model, i.e.,
the type II model requires higher rank values than the type I

model to be able to model functions of the same complexity. In
other words, the set of polynomials represented by the type II
model is a strict subset of the set of polynomials represented by
the type I model for the same rank values.

Although we focus in this study on the type I and type II
models in the symmetric CPD format, the TeMPO framework
is not limited to these. TeMPO collects low-rank tensor
representations of multivariate polynomials under a roof by
utilizing various other tensor decompositions such as TT, HT,
and non-symmetric and partially symmetric CPD formats2.
In this way, TeMPO breaks the curse of dimensionality and
makes it possible to develop second-order efficient algorithms
for the optimization of a more general class of multivariate
polynomials. Moreover, use of structured tensors and multilinear
algebra makes it easy to incorporate other polynomial bases and,
more generally, other nonlinear feature maps rather than the
standard polynomial bases to the TeMPO framework. From this
point of view, TeMPO can be interpreted as a generalization of
higher-order factorization machines that use particular types of
multivariate polynomials with the standard polynomial bases and
utilize first-order and BFGS type algorithms [30–32, 47].

3.3. Gauss–Newton Algorithm
Most standard first-order and second-order numerical
optimization algorithms can be used for solving problem
(8). Since the objective function under consideration is
a least-squares function, we will utilize the second-order
batch Gauss–Newton (GN) algorithm using a trust-region to
take advantage of its attractive properties such as quadratic
convergence near a local optimum point, resistant to swamps,
suitable to incorporate constraints easily and eligible to exploit
multilinear structure. In the case the objective function is not
least squares, the inexact GN algorithm can also be utilized.
Below, we briefly describe the GN algorithm using a trust-region,
and then derive the expressions for Jacobian and Jacobian-vector
products for tensors in the symmetric CPD format. In nonlinear
least-squares problems, the objective function is the squared
error between a data vector y and a nonlinear modelm(z) [6, 33]:

f (z) =
1

2

∥∥m(z)− y
∥∥2
2
=

1

2
rTr, (10)

where z ∈ R
I . The algorithm updates the initial guess iteratively

by taking a step length αk in the direction pk at the iteration k, i.e.,

zk = zk−1 + αkpk,

until some stopping criteria are satisfied. Line search and trust-
region are the two main approaches used to determine αk and
pk. Here, we focus on the dogleg trust-region approach. In this
approach, one sets αk = 1. Then, given a trust-region of radius
δk, the GN step p

gn

k
and the steepest descent step psd

k
for the

current iteration, the step direction pk is determined by the
following procedure:

2Note that the non-symmetric and partially symmetric CPD formats are fairly

straightforward variants of the symmetric CPD format, and derivations presented

in Section 3.4 can be generalized to these formats with slight modifications.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 7 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Algorithm1:GNalgorithm using dogleg trust-region for the
type II model.

Input : Z – Input data matrix
y – Vector of values (labels in the classification

case) for each data point in Z

U, c – Initial factor matrix and weight vector
T0 – Initial scalar

Output: U, c – Optimized factor matrix and weight vector
T0 – Optimized scalar

while not converged do
rk← Compute residual vector using equations (21) and
(22)
gk← Compute gradient using equation (27)
pk← Solve linear systems of equations (12) using CG
method
U, c, T0← Update via dogleg trust-region explained in
Subsection 3.3

end

• If
∥∥pgn

k

∥∥
2
≤ δk, then pk = p

gn

k
.

• If
∥∥pgn

k

∥∥
2

> δk and
∥∥∥psdk

∥∥∥
2

> δk, then pk = δkp
sd
k

/

∥∥∥psdk
∥∥∥
2
.

• If
∥∥pgn

k

∥∥
2

> δk and
∥∥∥psdk

∥∥∥
2
≤ δk, then pk = τkp

sd
k
+ βk(p

gn

k
−

τkp
sd
k
), where τk = −

∥∥∥psdk
∥∥∥
2

2

/∥∥∥Jkpsdk
∥∥∥
2

2
, and βk is selected such

that
∥∥pk

∥∥
2
= δk.

The steepest descent step psd
k

is given by −JT
k
rk. To compute

the GN step, a second order Taylor series approximation for the
objective function is used. The optimal direction for the GN step
p
gn

k
can be obtained by solving the optimization problem,

p
gn

k
= argmin

p
f̃ (p), with f̃ (p) = f (zk)+ pTgk +

1

2
pTHkp,

(11)
where gk denotes the gradient and Hk denotes the Hessian at the

current iteration. Setting ∂̃f (p)/∂p to zero, the solution of (11)
can be obtained by solving the linear system of equations

Hkp
gn

k
= −gk, with gk = JTkrk, (12)

where Jk denotes the Jacobian of f (zk) at iteration k, and
rk = m(zk) − y. However, in real-life applications, explicit
computation of the Hessian is often expensive. To overcome this,
GN approximates the Hessian by the Grammian matrix as

Hk ≈ JTkJk.

In this study, we used the conjugate gradient (CG) algorithm
for solving (12) together with the dogleg trust-region approach
which is implemented in Tensorlab [11]. The overall algorithm is
summarized in Algorithm 1.

3.4. Exploiting the Symmetric CPD Format
As described above, the GN algorithm minimizes a cost function
in the form of Equation (10). The gradient of this objective

function can be written as JTr, and the Hessian is approximated
by JTJ, where J is the Jacobian matrix composed of partial
derivatives of the residual vector r. Hence, it is sufficient to derive
expressions for the Jacobian and Jacobian-vector products. We
begin with the first-order derivatives of the multilinear form
Tzd, where T is in the symmetric CPD format, with respect
to its factors and then proceed to the derivation of Jacobian
and Jacobian-vector products for problems (7) and (8). The
derivations made here can be used in other TeMPO problems
with slight modifications.

3.4.1. Derivatives of the Multilinear Form in the

Symmetric CPD Format
By using the matrix unfolding of the tensor in the symmetric
CPD format and Property 2 of Khatri–Rao product, the
multilinear form Tzd can be written as

Tzd = cT
(
UTz

)∗ d
, (13)

which will be useful for our derivations below.

Lemma 1. Let T ∈ K
I×I×...×I be a symmetric tensor of order d

and its CPD given as T = JU, . . . ,U; cTK. Then the derivative of
the multilinear form Tzd with respect to vec(U) can be obtained as

∂Tzd

∂vec(U)
=

(
(c∗w)⊗ z

)T
,

where w = d
(
UTz

)∗(d−1)
.

Proof 2. The proof immediately follows from Equation (13) and
successive application of Property 3.

Lemma 2. Let T ∈ K
I×I×...×I be symmetric tensor of order d and

its CPD is given as T = JU, . . . ,U; cTK. Then the derivative of
multilinear form Tzd with respect to vector c can be obtained as

∂Tzd

∂c
=

(
zTU

)∗ d
.

Proof 3. The proof immediately follows from Property 3 and
Equation (13).

3.4.2. Exploiting Structure in the Type I Model
Objective Function: The construction of the residual vector r

and the computation of its l2 norm is sufficient for computing
the objective function in (7). By utilizing Property 2 and Equation
(13), the residual vector can be expressed as r = y−µ, where each
entry of the vector µ ∈ R

K is defined as

µk = T0 +

d∑

j=1

cTj w
∗ j
j,k
,

in which wj,k = UT
j zk with Uj ∈ R

I×R, and w
∗ j
j,k

denotes the

jth elementwise power of the vector wj,k. By defining Wj =

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 8 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

[
wj,1,wj,2, . . . ,wj,K

]
, we can write the residual vector r in a

compact form as

r = y− T0 · 1K −

d∑

j=1

(
cTj

(
W
∗ j
j

))T

, (14)

Using the above Equation (14), the objective function can be
computed as the l2 norm of the residual vector r.

Jacobian: The Jacobian matrix for problem (7), with the
tensors Tj in their symmetric CPD format, can be written in a
compact form as

J = [J1; . . . ; JK] , where

Jk =

[
1,

∂rk

∂vec(U1)
, . . . ,

∂rk

∂vec(Ud)
,
∂rk

∂c1
, . . . ,

∂rk

∂cd

]
. (15)

Note that we used the fact ∂rk/∂T0 = 1 in the above equation. By
utilizing Lemma 1 and Lemma 2, the derivative of each term of
the residual vector with respect to Uj and cj can be expressed as

∂rk

∂vec(Uj)
= −j

[(
cj∗w

∗(j−1)
j,k

)
⊗ zk

]T

, and
∂rk

∂cj
=

(
w
∗ j
j,k

)T

.

(16)

By defining W̃j = −j
(
W
∗(j−1)
j

)
for j = 1, . . . , d, and Z =

[z1, z2, . . . , zK], the Jacobian matrix J in (15) can be obtained in
the following compact block form:

J =
[
1K , ((C1W̃1)⊙Z)

T
, . . . , ((CdW̃d)⊙Z)

T
,V

]
, (17)

where V is a K × d block matrix in which each block is defined

as Vk,j =

(
w
∗ j
j,k

)T

, Cj = Diag(cj), and d is the degree of

the polynomial under consideration. Since we only need the
Jacobian-vector products for the GN algorithm, the explicit
construction of the Jacobianmatrix is not required. The Jacobian-
vector products can be obtained in a more memory-efficient way
as described below.

Jacobian-Vector Product: The product of Jacobian J by a
vector x can be obtained using block matrix operations. The
product of each block term by a vector vec(Xj) = xj can be
obtained by utilizing properties 1 and 2 as

((CjW̃j)⊙Z)
T
xj =

[(
XT
j Z

)
∗(CjW̃j)

]T

1R. (18)

Note that the multiplication of a matrix by 1R from the right
is equivalent to summing the columns of the matrix under
consideration. Therefore, neither themultiplication by 1R nor the

transposition of the matrix
(
XT
j Z

)
∗(CjW̃j) in Equation (18) is

necessary to obtain the Jacobian-vector product. Note also that,
since the matrices Cj are diagonal, the product CjW̃j can be
obtained in amemory efficient way bymultiplying the rows of W̃j

by the corresponding diagonal elements of Cj without explicitly
forming the matrices Cj. Overall, the product of the Jacobian J

and the vector x can be obtained by partitioning the vector x, i.e.,

x = [x1; x1; x2; . . . ; xd; xv], and by using the Equations (17) and
(18) as

Jx = x1 · 1K +

d∑

j=1

[(
XT
j Z

)
∗(CjW̃j)

]T

1R + Vxv,

where Xj = unvec(xj).
Jacobian Transpose -Vector Product and Gradient: In a

similar way, block-wise multiplication of the Jacobian transpose
JT by a vector can be obtained from the expression

((CjW̃j)⊙Z)x = vec
(
ZDiag(x)(CjW̃j)

T
)
. (19)

Note that right multiplication by a diagonal matrix can be
done efficiently by only multiplying the columns of the matrix
with the corresponding diagonal elements without explicitly
forming the diagonal matrix. Overall, by defining ξ j =

vec
(
ZDiag(x)(CjW̃j)

T
)
, we can obtain the product of the

Jacobian transpose JT and a vector x in the following form:

JTx =

[
K∑

k=1

xk; ξ 1; ξ 2; . . . ; ξd;V
Tx

]
. (20)

The gradient can be obtained by the product of the Jacobian
transpose JT and the residual vector r. Defining ηj =

vec
(
ZDiag(r)(CjW̃j)

T
)
and utilizing the Equations (19) and (20),

we can obtain the gradient as

g =

[
K∑

k=1

rk; η1; η2; . . . ; ηd;V
Tr

]
.

3.4.3. Exploiting Structure in the Type II Model
Objective Function: The computation of the objective function
for the type II model is similar to that of the type I model.
Utilizing Property 2 and Equation (13), the residual vector for
problem (8) can be obtained as r = y− µ with

µ =
[
cTw∗ d1 ; c

Tw∗ d2 ; . . . ; cTw∗ dK

]
, (21)

where wk = UTz̃k. By defining W = [w1,w2, . . . ,wK], we can
write the residual vector r in a compact form as

r = y−
(
cT

(
W∗ d

))T

, (22)

Using the above Equation (22), the objective function can be
computed as the l2 norm of the residual vector r.

Jacobian: The Jacobian matrix of the cost function in (8) can
be defined in a compact form as

J = [J1; J2; . . . ; JK] , where Jk =

[
∂rk

∂vec(U)
,
∂rk

∂c

]
. (23)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 9 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Utilizing Lemma 1 and Lemma 2 and using the equations in (16),
the parts of Jk in Equation (23) can be written as

∂rk

∂vec(U)
= −d

[(
c∗w∗(d−1)

k

)
⊗ z̃k

]T

,
∂rk

∂c
=

(
w∗ dk

)T

.

By defining W̃ = −d
(
W∗(d−1)

)
, V =

[
∂r1

∂c
;
∂r2

∂c
; . . . ;

∂rK

∂c

]
,

and Z = [̃z1, z̃2, . . . , z̃K], the Jacobian matrix can be obtained in
the following compact form:

J =
[(
(CW̃)⊙Z

)T
,V

]
. (24)

As mentioned earlier, explicit construction of the Jacobian
matrix J is not required. We only require the Jacobian-vector
and Jacobian transpose-vector products and derive efficient
expressions for these products below.

Jacobian-Vector Product: The product of the Jacobianmatrix
J and a vector x can be obtained in a similar way as for the type I
model, by partitioning the vector x, i.e., x = [xu; xc] and utilizing
properties 1 and 2 and Equation (24), as

Jx =
[(
XT
uZ

)
∗(CW̃)

]T
1R + Vxc, (25)

where Xu = unvec(xu). As mentioned earlier for Equation (18),
explicit construction of the diagonal matrix C is not required.
The product CW̃ can be obtained in a memory efficient way
by multiplying the rows of W̃ by the corresponding diagonal
elements of C.

Jacobian Transpose -Vector Product and Gradient: In
similar way, utilizing properties 1 and 2 and Equation (24), the
product of Jacobian transpose JT and a vector x can be written as

JTx =
[
vec

(
ZDiag(x)(CW̃)

T
)
;VTx

]
. (26)

Since the gradient is the product of the Jacobian transpose JT and
the residual vector r, it directly follows from the above Equation
(26) as

g =
[
vec

(
ZDiag(r)(CW̃)

T
)
;VTr

]
. (27)

3.5. Complexity Analysis
We now analyze the storage and computational complexity of
TeMPO where we are optimizing over symmetric rank-R CPD
structured tensors T ∈ K

I×I×...×I of order d. The analysis is
presented here for the type II model. However, since the number
of optimization parameters of the type I and type II models
(see Equations 2, 3) for an I-variate polynomial of degree d are
proportional to each other, the analysis also applies to the type I
model. Indeed, the computational complexity of the type I model
is d times the computational complexity of the type II model. We
also compare with the storage and computational complexity of
TT and PEPS tensor networks.

Representing a multivariate polynomial with I independent
variables and of degree d in dense format requires storing Cd

(I+d)

elements. Using Stirling’s approximation, it can be shown that the

storage complexity for a multivariate polynomial represented in

dense format isO
(
Id

)
for d≪ I. In the symmetric CPD format,

we need to store only the factor matrix U ∈ R
I×R and the

vector of weights c ∈ R
R, where R is the rank of the symmetric

CPD. Therefore, the storage complexity for the type II model
using the symmetric CPD format is O (IR). This shows that the
symmetric CPD format breaks the curse of dimensionality, since
the storage complexity in this format is linear in terms of rank R
and dimension I.

As is clear from Equation (22), the construction of the
matrixW and its dth Hadamard (elementwise) power dominates
the computational complexity of the objective function. The
construction of a single column of the matrix W requires
the multiplication of UT ∈ R

R×I and z̃k ∈ R
I . Thus,

the computational complexity of constructing the matrix W is
O (IKR). The dth Hadamard power of the matrix W can be

computed recursively by using the relationW∗(2m) =
(
W∗m

)∗ 2
.

Thus, the computational complexity of the dth Hadamard power
of the matrix W ∈ R

R×K is O
(
log(d)RK

)
. Therefore, the total

computational complexity for computing the objective function
for a batch of size K is O

(
(I + log(d))KR

)
. Since log(d)≪ I, the

computational complexity for the objective function in Equation
(8) isO (IKR).

The gradient of the objective function in Equation (8)
can be obtained by multiplying the Jacobian transpose JT

by the residual vector r. As shown in Equation (27), this
operation requires multiplication of a matrix Z ∈ R

I×K

by a diagonal matrix Diag(r), and the multiplication of the

matrices ZDiag(r) and (CW̃)
T
with sizes (I × K) and (K ×

R), respectively. Note that the entries of the product CW̃

were already obtained in the computation of the objective
function. Further, the computational complexity for the product
ZDiag(r) isO (IK). Consequently, the computational complexity

for the multiplication of ZDiag(r) and (CW̃)
T
is O (IKR). In

addition, the computation of VTr in Equation (27) requires
O (KR) operations. However KR ≪ IKR. Therefore, the total
computational complexity for computing the gradient isO (IKR)

for R≫ 1.
In addition, TeMPO uses the GN algorithm for the

optimization. However, this is not a requirement and first-
order methods can also be utilized within TeMPO as well. GN
requires solving the linear system of equations in (12). Tensorlab’s
implementation of GN uses the conjugate-gradient (CG) method
which requires only the Grammian-vector product for solving
(12). This operation requires multiplication of the Jacobian and
its transpose by a vector. The computational complexity of
multiplying the transpose of Jacobian by a vector is O (IKR) as
described above. The computationally most expensive operations
in themultiplication of Jacobian by a vector are themultiplication
of matrices XT

u and Z with sizes (R × I) and (I × K), and
the Hadamard product of two matrices of size (R × K) as
shown in Equation (25). Hence, the computational complexity
of computing Jx is O (IKR). Note that the entries of the product
CW̃ were already obtained in the computation of the objective
function. Therefore, the total computational complexity for a
single CG iteration is O (2IKR). Note that a large number of

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 10 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

TABLE 1 | The comparison of the computational complexity of TEMPO with TT and PEPS tensor networks for a batch size of K.

Calls TEMPO PEPS TT-N

(per iter) (Type I model)

Storage O (dIR) O
(
nIR2

TT

)

Objective func. 1 O
(
(dIKR

)
O

(
KR3

BTR
6
PS

)
O

(
nIR2

TT + R3
TT log(I)

)

Gradient 1 O (dIKR) O
(
αKR3

BTR
6
PS

)
O

(
α

(
nIKR2

TT + KR3
TT log(I)

))

Gramian-vector itCG O (2dIKR) − −

CG iterations in the solution of linear equations for the GN
algorithm might increase the computation time compared to
first-order algorithms. In fact, the number of CG iterations scales
with the number of optimization variables (IR), if the exact
solution is desired in the solution of the normal equations.
This may lead to an quadratic complexity of O

(
2(IR)2K

)
.

However, we observed in our experiments that a small number
of CG iterations were sufficient to obtain accurate results. For
example, we set the maximum number CG iterations to 10 for
the classification of the MNIST and Fashion MNIST datasets,
where the number of unknowns is 784 × R with R ranging
from 10 to 150.

The storage complexity of a tensor network with TT
architecture is bounded by O

(
nIR2TT

)
for a tensor of order I

with dimensions (n × n × . . . × n), where RTT denotes the TT-
rank [48]. n is equal to 2 and I is the size of a single image
in the image classification applications presented in [20, 21].
Note that the storage complexity of TT increases with powers
of the TT-rank RTT . The total computational complexity of
TT for computing the objective function has been reported as
O

(
nIR2TT + R3TT log(I)

)
, when the contraction order defined in

[21] is used. When the sweeping algorithm described in [20]
is used, the computational complexity of the objective function
for TT is O

(
n3R3TTI

)
for a single data point of size I. Similar

to the storage complexity, the computational complexity of the
objective function for TT increases with powers of the TT-rank
of the tensor under consideration. On the other hand, automatic
differentiation (AD) is one of methods used to compute the
gradient of TT. The computational complexity of automatic
differentiation is linear in the complexity of the evaluation of the
objective function [49]. Therefore, the computational complexity
of the gradient for TT tensor network presented in [21] is
O

(
α

(
nIKR2TT + KR3TT log(I)

))
, for a batch size of K with α > 1.

The total computational complexity of TT tensor network for
a batch size of K has been reported as O

(
mR2TT(RTT + K)

)
for

a single iteration of the stochastic Riemannian gradient descent
algorithm [19]. As it is clear from the above discussion, both the
storage and the computational complexity of TT increases with a
power of the TT-rank regardless of the algorithm used, while for
TeMPO it increases linearly with the symmetric CPD rank in the
symmetric CPD case.

The computational complexity of a single forward pass of
PEPS for a batch size of K is O

(
KR3BTR

6
PS

)
, when the boundary

matrix product state method is used. Here RBT is the bond
dimension (rank) of the boundary matrix product state of PEPS
and RPS is the bond dimension of PEPS. In addition, the

backward pass for PEPS requiresO
(
αKR3BTR

6
PS

)
operations (with

α > 1), when automatic differentiation is used [22].
The above analysis shows that TeMPO is computationally less

expensive than TT and PEPS, even though it uses a second-
order algorithm. All these results are summarized in Table 1.
The fundamental reason for this is the linear storage complexity
of the symmetric CPD format. Both TT and PEPS involve
third and higher-order tensors, which makes their computational
complexity increase with powers of the bond dimension. On the
other hand, the CPD format is known to be numerically less
stable than the TT format, which relies on orthogonal matrices.

4. NUMERICAL EXPERIMENTS

We conducted an experiment on the regression problem using
synthetic data to illustrate the TeMPO framework and compared
TeMPO with different implementations of SVMs in Section 4.1.
Next, we applied our framework to the blind deconvolution
of constant modulus (CM) signals and compared with the
analytical CM algorithm (ACMA) [50], the optimal step-size CM
algorithm (OSCMA) [51], and the LS-CPD framework [52] in
Section 4.2. In Section 4.3, we further illustrate TeMPO with the
image classification problem. We performed experiments on the
MNIST and FashionMNIST datasets and compared the accuracy
and number of optimization parameters with MLPs, and TT
and PEPS tensor networks. We performed experiments on a
computer with an Intel Core i7-8850H CPU at 2.60 GHz with 6
cores and 32 GB of RAM using MATLAB R2021b and Tensorlab
3.0 [11].

In our blind deconvolution experiments, we used the complex
GN algorithm with the conjugate gradient Steihaug method. We
used the second-order batch Gauss–Newton algorithm for the
regression and classification, following the same intuition as in
[53]. In each epoch of the algorithm, we randomly shuffle the data
points in the training set and process all data points by dividing
them into batches. In the regression and binary classification
case, we optimize a single cost function. In the multi-label
classification case, for each batch, we randomly select a cost
function fl defined for each label to optimize. Thus our algorithm
does not guarantee that each fl will be trained by all training
images in each epoch in the multi-label classification case. To
guarantee this, the algorithm can be modified such that for each
batch all cost functions fl are optimized at the cost of increasing
CPU time by a factor of the number of classes L. However, in
that case the algorithmmight need fewer epochs to converge. The
overall algorithm is summarized in Algorithm 2. Algorithm 2

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 11 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

Algorithm 2: Batched GN algorithm using dogleg trust-
region for regression and classification for the type II model.

Input : Z – Input data matrix
y – Vector of values (labels in the

classification case) for each data
point in Z

U1, . . . ,UL – Initial factor matrices for each label
(single in the regression case)

c1, . . . , cL – Initial weight vectors for each label
(single in the regression case)

T0,l – Initial scalar for each label (single in
the regression case)

epoch – Number of epochs
batchsize – Batch size

Output: U1, . . . ,UL – Optimized factor matrices for each
label (single in the regression case)

c1, . . . , cL – Optimized weight vectors for each
label (single in the regression case)

for each epoch do
Shuffle input data
for each batch do

l← 1
ifmulti-label classification then

l←
Randomly select label l to optimize fl , 0 < l ≤ L

end

Ul, cl,T0,l← Optimize fl using Algorithm 1

end

end

is given for the type II model for the ease of explanation. Slight
modifications are sufficient to obtain an algorithm for the type
I model.

We define the relative error as the relative difference in
l2 norm ||f − f̂||2/ ‖f‖2 with f̂ an estimate for a vector f,
and the signal-to-noise ratio (SNR) as 20 log10

(
‖f‖2/‖η‖2

)
,

where η = f̂− f.

4.1. Regression
In this experiment, we considered a low-rank smooth function
f (x) :RN → R, namely

f (x) =

Rf∑

r=1

αre
(aTr x), (28)

where x ∈ [−1, 1]N , Rf is the rank of the function f (x),
and the coefficients αr are scalars randomly chosen from the
standard normal distribution. We generated 5, 000 test samples
and 1, 000 training samples for N = 50 and Rf = 8. Each

vector ar ∈ R
N was a unit norm vector drawn from the

standard normal distribution. Each of the samples of xwas drawn
from the uniform distribution. We initialized each factor matrix
with a matrix whose elements were randomly drawn from the
standard normal distribution, and scaled it to unit norm. We

initialized each weight vector in the same way as the factor
matrices. We approximated f (x) by the type I and type II model
of degree 5 whose coefficient tensors were represented in the
rank-R symmetric CPD format. We set the batch size to 500
and the maximum number GN iterations to 5 for each batch.
In Figure 3, we show the median relative test and training errors
for R = {2, 4, 8, 16} as a function of the number of epochs for
100 trials. Each epoch corresponds to optimization over the full
training set. It is clear from Figure 3 that TeMPO produces more
accurate results and generalizes better when using higher rank
values, for both the type I and type II model. Good performance
is also observed for R = 16 > Rf = 8, meaning that TeMPO is
robust to over-estimation of the number of parameters. For low
rank values, i.e., R < Rf , the type I model produces better results
than the type II model because it involves more parameters that
can be tuned, cf. the discussion of Proposition 1.

In the second stage of the experiment, we trained the type I
and type II model for a multivariate polynomial of degree 5 with
noisy measurements. We added Gaussian noise to the function
values for a given SNR, i.e.,

f̃ (x) =

R∑

r=1

αre
(aTr x) + η, (29)

where η denotes the noise. We run our algorithm with the same
settings as in the noiseless case for an SNR ranging from 10 dB to
50 dB. In Figure 4, we show the median errors for 100 trials as a
function of SNR. We have similar observations as in the noiseless
case. Apart from these observations; although the accuracy of our
algorithm decreases for SNR ≤ 20 (dB), it still maintains good
accuracy for SNR > 20 (dB), as shown in Figure 4. Moreover, as
can be observed from the Figure 4 (left), the type I model overfits
for R = {8, 16} and SNR ≤ 20 (dB) in agreement with the result
of Proposition 1.

In our next experiment, we trained the type I and type IImodel
with larger-size samples, i.e., N = 250 and R = {8, 16, 32, 64}, to
assess how the CPU time depends on the rank. In Figure 5, we
show the median CPU time per epoch as a function of the rank.
It is evident from the figure that the computational complexity
of the type I model is d times the computational complexity of
the type II model (cf. Section 3.5). Moreover, Figure 5 confirms
that the computational complexity of our algorithm is linear in
the rank (cf. Section 3.5).

In our next experiment, we examined the generalization
abilities of the Gauss–Newton and ADAM [54] algorithms in
our framework. We trained the type I model for a multivariate
polynomial of degree 5 with both of these algorithms for different
number of training samples to fit the rank-8 function given as
in Equation (29). We set R = 8, N = 50, and SNR = 20(dB).
For the ADAM algorithm, we set the step size, the exponential
decay rate for the first momentum (β1), and the exponential
decay rate for the second momentum (β2) to 0.01, 0.9, and 0.99,
respectively. In Figure 6, we show the median training and test
accuracies of these algorithms for the number of training samples
ranging from 500 to 5, 000 as a function of the number of epochs
for 100 trials. It is evident from Figure 6 that the presented
Gauss–Newton algorithm produces more accurate results than

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 12 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 3 | (Left) The median test (dashed lines) and training (solid lines) errors of the type I model for 100 trials on the synthetic data for a rank-8 function given as in

Equation (28). The number of samples for the training dataset is set to 5, 000 and for the test dataset it is set to 1, 000. The batch size is set to 500 and the maximum

number of GN iterations is set to 5. (Right) The median test (dashed lines) and training (solid lines) errors of the type II model with the same algorithm settings. TeMPO

produces more accurate results and generalizes better for higher rank values for both the type I and type II model. The performance is robust to overparameterization

(R > Rf). The type I model produces better results for low rank values, i.e., R < Rf .

FIGURE 4 | (Left) The median test (dashed lines) and training (solid lines) errors of the type I model for 100 trials on the synthetic noisy data for a rank-8 function

given as in Equation (29). The number of samples for the training dataset is set to 5, 000 and for test dataset is set to 1, 000. The batch size is set to 500 and the

maximum number of GN iterations is set to 5. (Right) The median test (dashed lines) and training (solid lines) errors of the type II model with the same algorithm

settings. TeMPO produces more accurate results and generalizes better for higher rank values for both the type I and type II model in the presence of noise as well.

Again, the type I model produces better results for low rank values, i.e., R < Rf , because it involves more parameters than the type II model.

the ADAM algorithm and also requires fewer number of epochs
to converge in these experimental settings.

We also compared TeMPO with SVMs using a polynomial
kernel. We run the same experiment for a number of training
samples ranging from 500 to 5, 000. We set the rank to 8, i.e.,
R = Rf for TeMPO. We used the built-in Matlab routine
fitrsvm and LS-SVMlab toolbox [55, 56]. We set the degree
of polynomial kernel to 5, i.e., equal to the degree of the type I
and type II model for fitrsvm. LS-SVMlab automatically tunes
the degree to 3 to find the best fit. In Figure 7 (left), we show the
median test and training errors for SVM, the type I and type II

model. It is clear from Figure 7 (left) that the type I and type II
model generalize better than fitrsvm. A possible reason is the
dense parameterization of SVMs, while TeMPO uses low-rank
parameterization. Moreover, as shown in Figure 7 (right), our
algorithm is faster than SVMs for numbers of training samples
above 1, 000. This is due to the higher memory requirement of
SVMs. Typically, kernel based methods such as LS-SVM have
a storage and computational complexity of O

(
N2

)
[55], with

N the number of training samples. In contrast, Figure 7 (right)
confirms that the computational complexity of TeMPO is linear
in the number of training samples (cf. Section 3.5).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 13 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 5 | The median CPU time (seconds) per epoch for the type I and type II model as a function of the rank for a rank-8 function given as in Equation (28) for 100

trials. The number of samples for the training dataset is set to 5, 000 and for the test dataset it is set to 1, 000. The batch size is set to 500 and the maximum number

of GN iterations is set to 5. The figure confirms that the computational complexity of the type I model is d times the computational complexity of the type II model (cf.

Section 3.5). Moreover, the computational complexity of the algorithm is linear in the rank (cf. Section 3.5). The figure is in a logarithmic scale on the horizontal axis.

4.2. Blind Deconvolution of Constant
Modulus Signals
Blind deconvolution can be formulated as a multivariate
polynomial optimization (MPO) problem and hence it fits into
the TeMPO framework [15]. In this illustrative example, we limit
ourselves to an autoregressive single-input single-output (SISO)
system [57], given by

L∑

l=0

wl · y[k− l] = s[k]+ n[k], for k = 1, . . . ,K, (30)

where y[k], s[k], and n[k] are the measured output signal, the
input signal and the noise at the kth measurement, respectively,
and wl denotes the lth filter coefficient. Ignoring the noise for the
ease of derivation, (30) can be written as:

YTw = s, (31)

where Y ∈ C
L×K is a Toeplitz matrix and its rows are the

subsequent observations under the assumption that we have K +
L− 1 samples y[−L+ 1], . . . , y[K]. The vector w ∈ K

L contains
the filter coefficients and the kth entry of the source vector s ∈
C
K is the input signal at the kth time instance, i.e., sk = s[k].

In blind deconvolution, one attempts to find the original input
signal s and the filter coefficients w by only observing the output
signal Y. Thus, constraints on signals and/or channel have to be
imposed to obtain interpretable results. The constant modulus
(CM) criterion is a widely used input constraint [58]. The CM
property, which holds for phase- or frequency-modulated signals
[50, 59] can be written as:

|sk|
2 = c, for k = 1, 2, . . . ,K. (32)

Here, c is a constant scalar. By substituting sk defined in (31) into
(32), we obtain

(
Y⊙Y

)T
(w⊗w) = c · 1K . (33)

Following the same intuition as in [60], by multiplying (33) from
the left with a Householder reflector Q [61], generated for c · 1K ,
and removing the first equation3, we obtain

M(w⊗w) = 0. (34)

Here, M = Q̃
(
Y⊙Y

)T
, and Q̃ is obtained by removing the first

row of the Householder reflector Q. In applications, M(w⊗w)
will not vanish exactly due to the presence of noise. Hence, we
look for the solution which minimizes its l2 norm as

min
w,w

f (w,w) = min
w,w

1

2

∥∥M(w⊗w)
∥∥2
2
, subject to ‖w‖ = 1.

(35)
The objective function in (35) is a homogeneous multivariate
polynomial of degree 4 in which the coefficient tensorW is given
as a rank-1 Hermitian symmetric CPD, i.e.,

W = w ⊗ w ⊗ w ⊗ w : = Jw,w,w,wK . (36)

Exploiting the rank-1 Hermitian symmetric CPD structure in
(36) and the structure of M, which is a special case of Lemma
1 and Lemma 2, efficient expressions for the computation

3The first equation is only a normalization constraint.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 14 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 6 | Comparison of the median test (dashed lines) and training (solid lines) errors of the Gauss–Newton and the ADAM algorithms as a function of the number

of epochs for 100 trials. The type I model for a rank-8 function given as in Equation (29) in the presence of SNR 20 dB Gaussian noise is used to generate the training

and the test sets. The batch size is set to 10% of the training set size. For the Gauss–Newton algorithm, the maximum number of GN iterations and CG iterations is

set to 1 and 5, respectively. For the ADAM algorithm, the step size, β1 and β2 are set to 0.01, 0.9, and 0.99, respectively. The number of training samples is set to 500

(top-left), 1, 000 (top-right), 2, 000 (bottom-left), and 5, 000 (bottom-right). The presented Gauss–Newton algorithm produces more accurate results than the

ADAM algorithm and also requires fewer number of epochs to converge in these experimental settings.

of Jacobian-vector products for the problem (35) have been
presented in [15].

A number of algorithms have been developed to solve (33)
and (34). The analytical CM algorithm (ACMA) [50] writes (34)
as a generalized matrix eigenvalue problem in the absence of
noise, and under the assumption that the null space of M is one
dimensional, which makes ACMAmore restrictive than TeMPO.
In the presence of noise, ACMA writes (34) as the simultaneous
diagonalization of a number of matrices and solves it by extended
QZ iteration. Gradient descent and stochastic gradient descent
algorithms have also been proposed for the minimization of the
expected value of {(|yTnw| − c)2}. The optimal step-size CMA
(OSCMA) [51] algorithm uses a gradient descent algorithm,
which computes the step size algebraically. The problem in
(35) can also be interpreted as a linear system with a rank-1
constrained solution, which fits the LS-CPD framework in [52].
LS-CPD solves (33) by relaxing the complex conjugate w to
a possibly different vector v ∈ C

L and utilizing the second-
order GN algorithm using dogleg trust-region method. We solve
(35) by utilizing the complex GN algorithm using the conjugate
gradient Steihaug method implemented in TensorLab 3.0 [11].
We compare with these algorithms in terms of computation time
and accuracy.

We consider an autoregressive model of degree L = 10
with coefficients uniformly distributed on [0, 1], sample length
K = 600, and c = 1. We add scaled Gaussian noise to
the measurements to obtain a particular SNR. We run 50
experiments starting from the algebraic solution presented in
[52] for LS-CPD, OSCMA, and TeMPO. In Figure 8 (left), we
show the median relative error on w as a function of SNR. It is
clear from Figure 8 (left) that TeMPO achieves similar accuracy
as LS-CPD and OS-CMA, which are more accurate than ACMA.
In Figure 8 (right), we show the median CPU time in seconds as
a function of SNR. Clearly, TeMPO is faster than ACMA, OS-
CMA, and LS-CPD for SNR ≥ 10(dB) by exploiting the structure
of the data.

4.3. Image Classification
Multi-class image classification amounts to the determination
of a possibly nonlinear function f that maps input images Zk

to integer scalar labels yk, which are known for a training set.
In this study, we represent f by a multivariate polynomial p.
Following the one-versus-all strategy, we define a cost function
fl for each label that maps the input image Zk to a scalar
value as

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 15 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 7 | (Left) The median test (dashed lines) and training (solid lines) errors of SVMs with polynomial kernel, the type I and type II model for a rank-8 function

given as in Equation (29) in the presence of SNR 20 dB Gaussian noise as a function of the number of training samples for 100 trials. The batch size is equal to 10% of

the training set size. The maximum number of GN iterations is set to 5 for the type I and type II model. Specifically, for the SVMs, the built-in Matlab routine fitrsvm

and LS-SVMlab toolbox were used to obtain the results. The relative errors of LS-SVMLab for the sample sizes 500, 1, 000, and 2, 000 are 1.6e− 6, 2.2e− 6 and

3.3e− 6, respectively. The presented algorithm generalizes better than fitrsvm in these experimental settings. (Right) The median CPU times (seconds) with the

same setting. The computational complexity of our algorithm is linear in the problem size as expected, and it is faster than SVMs for numbers of training samples

above 1, 000. The figures are in a logarithmic scale on both the horizontal and vertical axes.

FIGURE 8 | (Left) The median relative errors (dB) of LS-CPD, OS-ACMA, ACMA, and TeMPO with respect to SNR (dB) for an autoregressive model of degree L = 10

with uniformly distributed coefficients between zero and one, sample length K = 600 for 50 trials. TeMPO obtains similar accuracy to LS-CPD, OS-CMA, while

obtaining more accurate results than ACMA. (Right) The median CPU times (seconds) with the same settings. TeMPO is faster than other algorithms for SNR > 10

(dB).

fl(pl, z1, . . . , zK) =
1

2

K∑

k=1

(
yk − pl(zk)

)2
,

where zk = vec(Zk) and where yk = 1 if zk is labeled as l
and yk = 0 otherwise. The polynomial pl can be chosen within
the type I or the type II model class. For the type I model, the

optimization problem can be written as

min
pl

fl(pl, z1, . . . , zK), subject to pl(zk) = Tl,0 +

d∑

j=1

Tl,jz
j

k
,

and Tl,j =
r
Ul,j, . . . ,Ul,j; c

T

l,j

z
, (37)

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 16 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 9 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1. TeMPO achieves high

accuracy even for low rank values, i.e., R = {10, 20}. Both the test and training accuracy increase mildly as the rank increases.

where d is the degree of the polynomial under consideration.
Note that we substitute the symmetric CPD structure given as a
constraint into the objective function, and hence obtain and solve
an unconstrained optimization problem. For the type II model,
the optimization problem can be written as

min
pl

fl(pl, z1, . . . , zK), subject to pl(zk) = Tlz
d
k ,

and Tl =
q
Ul, . . . ,Ul; c

T

l

y
.

After the optimization of fl for each label l, the classification is
done by computing each pl(s) for the data point s to be classified
and selecting the value of l for which |pl(s)| is largest.

4.3.1. Experiments
We performed several experiments by varying the parameters
rank and maximum number of GN iterations to illustrate the
TeMPO framework for the classification of the MNIST and
Fashion MNIST datasets. We kept the maximum number of CG
iterations equal to 10, the degree of the multivariate polynomial
to 3, the tolerance for the objective function and optimization
variables equal to 1e − 10, the inner solver tolerance equal to
1e − 10, and the trust-region radius equal to 0.1, throughout
the experiments.

We initialized each factor matrix with a matrix whose
elements were randomly drawn from the standard normal
distribution, and scaled it to unit norm. Similarly, we initialized
each weight vector cl with a vector whose elements were
randomly drawn from the standard normal distribution and
scaled it to unit norm.

Datasets
Modified National Institute of Standards and Technology
(MNIST) handwritten digit database [62] and the Fashion
MNIST database [63] are used for this study. Both datasets
contain gray scale images of size (28 × 28). The training sets
of both datasets are composed of 60, 000 images and test sets
are composed of 10, 000 images. The images have been size-
normalized and centered in a fixed-size image. We rescale images
such that every pixel value is in the interval [0, 1] and the
mean of each image is zero. Then, we vectorize, i.e., stack each
column vertically in a vector, each image to a vector of size
784. For the type II model, we augment the resulting vector by
the scalar 1. Similar pre-processing steps are necessary for also
tensor networks. Additionally, they may require the encoding
input data which increases the storage and the computational
resource requirement.

Results and Comparisons

Results of the Type I Model
We first trained the type I model on the total MNIST training
set for various rank values ranging from 10 to 150 to illustrate
the effect of rank on the accuracy. We set the batch size to 100
and the maximum number of GN iterations to 1. We show the
training history in Figure 9. It is evident from Figure 9 that
TeMPO achieves high accuracy even for low rank values, i.e.,
R = {10, 20}. Increasing the rank mildly improves both the test
and training accuracy, with the improvement getting smaller as
the rank increases.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 17 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 10 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the Fashion MNIST dataset with respect to the number of epochs. The full

training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1. Similar to the

MNIST dataset, TeMPO achieves good accuracy even for low rank values and both the test and training accuracy mildly increase as the rank increases.

We repeated the same experiments for the Fashion MNIST
dataset, which is harder to classify. We show the training history
in Figure 10. The observations made for the MNIST dataset
also apply to the Fashion MNIST dataset. However, the test and
training accuracy are lower for the Fashion MNIST dataset in
agreement with previous works. Also, our algorithm requires
more epochs to converge for the Fashion MNIST dataset.

In our next experiment, we set the maximum number of
GN iterations to 5. We observed that our algorithm needs
fewer epochs to converge and produces more accurate results
with this setting. The comparison for the MNIST and Fashion
MNIST dataset is shown in Figures 11, 12, respectively. The
improvement in the test accuracy for the Fashion MNIST dataset
is around 1% and more pronounced than the improvement
in the test accuracy for the MNIST dataset. TeMPO achieves
around 98.30% test accuracy for the MNIST dataset and
around 90% test accuracy for the Fashion MNIST dataset
with R = 150.

Results of the Type II Model
We repeated the same experiments for the type II model. We
used the same settings as in the type I model. However, we set
the batch size to 200 to obtain an accuracy similar to that of
the type I model. We show the training history in Figure 13.
Similar to previous experiments, our algorithm performs well
even for low rank values, and produces more accurate results for
higher rank values. TeMPO achieves around 98% test accuracy
and 100% training accuracy after 200 epochs with R = 150 for
the MNIST dataset.

In Figure 14, we show the training history for the Fashion
MNIST dataset. Similar to the type I model, the test
and training accuracy is lower than the MNIST dataset.
The algorithm converges around 100 epochs and achieves
around 89.30% test accuracy with R = 150. Moreover,
our algorithm achieves around 99% training accuracy after
400 epochs.

We repeated the same experiments with the maximum
number of GN iterations set to 5. The comparisons for the
MNIST and Fashion MNIST datasets are shown in Figure 15.
Contrary to our observation for the type I model, the
test accuracy now decreases for both datasets. A possible
reason is that when the residuals are big, doing more GN
iterations may not lead a better direction for minimizing (37).
A similar observation has been made in [53], for training
DNNs. It is experimentally shown that higher number of
CG iterations might not produce more accurate results if the
Hessian obtained by mini-batch is not reliable due to non-
representative batches and/or big residuals. On the other hand,
if the residuals are small, higher number of CG iterations
can produce more accurate results thanks to the curvature
information [53].

Comparisons
We now compare TeMPO with different models, namely: TT
tensor networks [21], TT structured tree tensor networks (TTN)
[64], multi-layer perceptron (MLP) with 784−1000−10 neurons,
MLPwith a convolution layer (CNN-MLP), PEPS, and PEPSwith

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 18 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 11 | Comparison of test accuracies of the type I model on the MNIST dataset for different maximum number of GN iterations as a function of the number of

epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN iterations is set to 1

(dashed lines) and to 5 (solid lines).

FIGURE 12 | Comparison of test accuracies of the type I model on the Fashion MNIST dataset for different maximum number of GN iterations as a function of the

number of epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 100 and the maximum number of GN

iterations is set to 1 (dashed lines) and to 5 (solid lines).

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 19 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 13 | Test (solid lines) and training (dashed lines) accuracies of the type II model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the maximum number of GN iterations is set to 1. Both the test and

training accuracy increase as the rank increases. The improvement in the accuracy gets smaller as the rank increases. The algorithm achieves around 100% training

accuracy after 200 epochs.

FIGURE 14 | Test (solid lines) and training (dashed lines) accuracies of the type I model for the MNIST dataset with respect to the number of epochs. The full training

set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the maximum number of GN iterations is set to 1. Both the test and

training accuracy increase as the rank increases. Also the improvement in the accuracy gets smaller as the rank increases. The algorithm achieves around 99%

training accuracy after 400 epochs.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 20 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

FIGURE 15 | Comparison of test accuracies of the type II model on the MNIST (top) and Fashion MNIST (bottom) datasets for different maximum number of GN

iterations as a function of the number of epochs. The full training set (60, 000 images) and test set (10, 000 images) are used. The batch size is set to 200 and the

maximum number of GN iterations is set to 1 (dashed lines) and to 5 (solid lines).

a convolution layer (CNN-PEPS) [22]. We compare in terms of
the test accuracy for the Fashion MNIST dataset. We summarize
the test accuracy of different models in Table 2. TeMPO achieves
better accuracy than TT, PEPS and MLP, while optimizing for
fewer parameters and using less memory (cf. Table 1). The
accuracy of TeMPO is lower than CNN-MLP and CNN-PEPS
as expected, since it does not use a convolution layer. Note
that the accuracy of TeMPO can further be improved by tuning
the parameters such as the rank, the number of CG iterations,
the trust-region radius, the batch size and the degree of the
multivariate polynomial.

5. CONCLUSION AND FUTURE WORK

We presented the TeMPO framework for use in nonlinear

optimization problems arising in signal processing, machine

learning, and artificial intelligence. We modeled the
nonlinearities in these problems by multivariate polynomials

represented by low rank tensors. In particular, we investigated
the symmetric CPD format in this study. By taking the advantage
of low rank symmetric CPD structure, we developed an efficient
second-order batch Gauss–Newton algorithm.We demonstrated
the efficiency of TeMPO with some illustrative examples, and

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 21 March 2022 | Volume 8 | Article 836433

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

TABLE 2 | The test accuracy of different models for the Fashion MNIST dataset.

Model Test accuracy (%)

TT 88.0

MLP 88.3

PEPS 88.3

TTN 89.0

TeMPO (Type II) 89.3

TeMPO (Type I) 89.9

CNN–MLP 91.0

CNN–PEPS 91.2

The bold values indicate the results from the proposed methods.

with the blind deconvolution of constant modulus signals. We
showed that TeMPO achieves similar or better classification rates
than MLPs, TT and PEPS tensor networks on the MNIST and
Fashion MNIST datasets while optimizing for fewer parameters
and using less memory space.

The non-symmetric and partially symmetric CPD formats
are fairly straightforward variants of the symmetric CPD format
in which the factor matrices can be mutually different. Efficient
algorithms can be developed for multivariate polynomials
in these formats by utilizing the derivations presented in
this study. We are investigating other tensor formats such
as HT and TT in our framework as well. HT and TT
require more parameters than the CPD format. However,
they break the curse of dimensionality in a numerically
stable way. We are also exploring other polynomial bases,
and more generally other nonlinear feature maps to
further improve the accuracy and numerical stability of our
framework.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This
data can be found at: http://yann.lecun.com/exdb/mnist/; https://
github.com/zalandoresearch/fashion-mnist.

AUTHOR CONTRIBUTIONS

MA developed the theory and Matlab implementation. He is the
main contributor to the numerical experiments and also wrote
the first draft of the manuscript. LD conceived the idea and
supervised the project. Both authors contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

Research supported by: (1) Flemish Government: This research
received funding from the Flemish Government (AI Research
Program). LD and MA are affiliated to Leuven. AI-KU Leuven
institute for AI, B-3000, Leuven, Belgium. This work was
supported by the Fonds de la Recherche Scientifique – FNRS
and the FondsWetenschappelijk Onderzoek – Vlaanderen under
EOS Project no G0F6718N (SeLMA). (2) KU Leuven Internal
Funds: C16/15/059, IDN/19/014.

ACKNOWLEDGMENTS

The authors would like to thank E. Evert, N. Govindarajan,
and S. Hendrikx for proofreading the manuscript and N.
Vervliet for valuable discussions. The authors also thank the
two referees whose comments/suggestions helped improve and
clarify this manuscript.

REFERENCES

1. Sidiropoulos N, De Lathauwer L, Fu X, Huang K, Papalexakis EE, Faloutsos

C. Tensor decomposition for signal processing and machine learning. IEEE

Trans Signal Process. (2017) 65:3551–82. doi: 10.1109/TSP.2017.2690524

2. Cichocki A, Mandic DP, De Lathauwer L, Zhou G, Zhao Q, Caiafa CF, et al.

Tensor decompositions for signal processing applications: from two-way to

multiway component analysis. IEEE Signal Process Mag. (2015) 32:145–63.

doi: 10.1109/MSP.2013.2297439

3. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev.

(2009) 51:455–500. doi: 10.1137/07070111X

4. Sorber L, Van Barel M, De Lathauwer L. Optimization-based algorithms for

tensor decompositions: Canonical polyadic decomposition, decomposition

in rank-(Lr , Lr , 1) terms, and a new generalization. SIAM J Optim. (2013)

23:695–720. doi: 10.1137/120868323

5. Sorber L, Van Barel M, De Lathauwer L. Unconstrained optimization of

real functions in complex variables. SIAM J Optim. (2012) 22:879–98.

doi: 10.1137/110832124

6. Vervliet N, De Lathauwer L. Numerical optimization based algorithms for

data fusion. In: Cocchi M, editor. Data Fusion Methodology and Applications.

Vol. 31. Amsterdam; Oxford; Cambridge: Elsevier (2019). p. 81–128.

doi: 10.1016/B978-0-444-63984-4.00004-1

7. Phan AH, Tichavský P, Cichocki A. Low Complexity Damped Gauss-

Newton Algorithms for CANDECOMP/PARAFAC. arXiv:1205.2584. (2013)

34:126–47. doi: 10.1137/100808034

8. Vervliet N, De Lathauwer L. A randomized block sampling approach to

canonical polyadic decomposition of large-scale tensors. IEEE J Selec Top Sign

Process. (2016) 10:284–95. doi: 10.1109/JSTSP.2015.2503260

9. Comon P, Jutten C. Handbook of Blind Source Separation: Independent

Component Analysis and Applications. Oxford; Burlington: Academic Press;

Elsevier (2009).

10. Vervliet N, Debals O, Sorber L, De Lathauwer L. Breaking the curse of

dimensionality using decompositions of incomplete tensors: tensor-based

scientific computing in big data analysis. IEEE Signal Process Mag. (2014)

31:71–9. doi: 10.1109/MSP.2014.2329429

11. Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L. Tensorlab

3.0. (2016). Available online at https://www.tensorlab.net (accessed December,

2021).

12. Vervliet N. Compressed Sensing Approaches to Large-Scale Tensor

Decompositions. Leuven: KU Leuven (2018).

13. Vandecappelle M, Vervliet N, Lathauwer LD. Inexact generalized gauss-

newton for scaling the canonical polyadic decomposition with non-least-

squares cost functions. IEEE J Selec Top Sign Process. (2021) 15:491–505.

doi: 10.1109/JSTSP.2020.3045911

14. Singh N, Zhang Z, Wu X, Zhang N, Zhang S, Solomonik E.

Distributed-memory tensor completion for generalized loss functions

in python using new sparse tensor kernels. arXiv:191002371. (2021).

doi: 10.48550/arXiv.1910.02371

15. Ayvaz M, De Lathauwer L. Tensor-based multivariate polynomial

optimization with application in blind identification. In: (2021)

29th Europian Signal Processing Conference, (EUSIPCO). Dublin

(2021). p. 1080–4. doi: 10.23919/EUSIPCO54536.2021.961

6070

16. Grasedyck L, Kressner D, Tobler C. A literature survey of low-rank

tensor approximation techniques. GAMM-Mitteil. (2013) 36:53–78.

doi: 10.1002/gamm.201310004

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 22 March 2022 | Volume 8 | Article 836433

http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://doi.org/10.1109/TSP.2017.2690524
https://doi.org/10.1109/MSP.2013.2297439
https://doi.org/10.1137/07070111X
https://doi.org/10.1137/120868323
https://doi.org/10.1137/110832124
https://doi.org/10.1016/B978-0-444-63984-4.00004-1
https://doi.org/10.1137/100808034
https://doi.org/10.1109/JSTSP.2015.2503260
https://doi.org/10.1109/MSP.2014.2329429
https://www.tensorlab.net
https://doi.org/10.1109/JSTSP.2020.3045911
https://doi.org/10.48550/arXiv.1910.02371
https://doi.org/10.23919/EUSIPCO54536.2021.9616070
https://doi.org/10.1002/gamm.201310004
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

17. Grasedyck L. Hierarchical singular value decomposition of tensors. SIAM J

Matrix Anal Appl. (2010) 31:2029–54. doi: 10.1137/090764189

18. Oseledets IV, Tyrtyshnikov EE. Breaking the curse of dimensionality, or how

to use SVD in many dimensions. SIAM J Sci Comput. (2009) 31:3744–59.

doi: 10.1137/090748330

19. Novikov A, Trofimov M, Oseledets IV. Exponential machines. In: 5th

International Conference on Learning Representations, ICLR 2017. Toulon

(2017). Available online at: https://openreview.net/forum?id=rkm1sE4tg

20. Stoudenmire EM, Schwab DJ. Supervised learning with tensor networks. In:

Lee D, Sugiyama M, Luxburg U, Guyon I, Garnett R, editors. Advances in

Neural Information Processing Systems. Vol. 29. Barcelona: Curran Associates,

Inc. (2016). Available online at: https://proceedings.neurips.cc/paper/2016/

file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf

21. Efthymiou S, Hidary J, Leichenauer S. TensorNetwork for machine learning.

arXiv: 190606329. (2019). doi: 10.48550/arXiv.1906.06329

22. Cheng S, Wang L, Zhang P. Supervised learning with projected entangled pair

states. Phys Rev B. (2021) 103:125117. doi: 10.1103/PhysRevB.103.125117

23. Guo W, Kotsia I, Patras I. Tensor learning for regression. IEEE Trans Image

Process. (2012) 21:816–27. doi: 10.1109/TIP.2011.2165291

24. Hendrikx S, Boussé M, Vervliet N, De Lathauwer L. Algebraic and

optimization based algorithms for multivariate regression using

symmetric tensor decomposition. In: Proceedings of the (2019)

IEEE International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP). Guadeloupe (2019). p. 475–9.

doi: 10.1109/CAMSAP45676.2019.9022662

25. Rabusseau G, Kadri H. Low-rank regression with tensor responses. In: Lee

D, Sugiyama M, Luxburg U, Guyon I, Garnett R, editors. Advances in Neural

Information Processing Systems. Vol. 29. Barcelona: Curran Associates, Inc.

(2016). Available online at: https://proceedings.neurips.cc/paper/2016/file/

3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf

26. Yu R, Liu Y. Learning from multiway data: simple and efficient tensor

regression. In: Balcan MF, Weinberger KQ, editors. Proceedings of the 33rd

International Conference on Machine Learning, Vol. 48 of Proceedings of

Machine Learning Research. New York, NY (2016). p. 373–81. Available online

at: https://proceedings.mlr.press/v48/yu16.html

27. Hou M, Chaib-Draa B. Hierarchical Tucker tensor regression: application to

brain imaging data analysis. In: Proceedings of the (2015) IEEE International

Conference on Image Processing (ICIP 2015). Québec, QC (2015). p. 1344–8.

doi: 10.1109/ICIP.2015.7351019

28. Kar P, Karnick H. Random feature maps for dot product kernels. In: Lawrence

ND, Girolami M, editors. Proceedings of the Fifteenth International Conference

on Artificial Intelligence and Statistics, Vol. 22 of Proceedings of Machine

Learning Research. La Palma (2012). p. 583–91. Available online at: https://

proceedings.mlr.press/v22/kar12.html

29. Yang J, Gittens A. Tensor machines for learning target-specific polynomial

features. arxiv: 150401697. (2015). doi: 10.48550/arXiv.1504.01697

30. Rendle S. Factorization machines. In: (2010) IEEE International Conference on

Data Mining. Sydney (2010). p. 995–1000. doi: 10.1109/ICDM.2010.127

31. Blondel M, Fujino A, Ueda N, Ishihata M. Higher-order factorization

machines. In: Proceedings of the 30th International Conference on Neural

Information Processing Systems, NIPS’16. Red Hook, NY: Curran Associates

Inc. (2016). p. 3359–67.

32. Blondel M, Ishihata M, Fujino A, Ueda N. Polynomial networks and

factorization machines: new insights and efficient training algorithms. In:

Proceedings of the 33rd International Conference on International Conference

on Machine Learning. Vol. 48. New York, NY (2016). p. 850–8.

33. Nocedal J, Wright S.Numerical Optimization. New York, NY: Springer (2006).

34. Kruskal JB. Three-way arrays: rank and uniqueness of trilinear

decompositions, with application to arithmetic complexity and statistics.

Linear Algeb Appl. (1977) 18:95–138. doi: 10.1016/0024-3795(77)90069-6

35. Sidiropoulos ND, Bro R. On the uniqueness of multilinear

decomposition of N-way arrays. J Chemometr. (2000) 14:229–39.

doi: 10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N

36. Domanov I, De Lathauwer L. On the uniqueness of the canonical

polyadic decomposition of third-order tensors – Part ii: uniqueness of

the overall decomposition. SIAM J Matrix Anal Appl. (2013) 34:876–903.

doi: 10.1137/120877258

37. Domanov I, De Lathauwer L. Canonical polyadic decomposition of third-

order tensors: relaxed uniqueness conditions and algebraic algorithm.

arXiv:1501.07251. (2017) 513:342–75. doi: 10.1016/j.laa.2016.10.019

38. Boyd JP, Ong JR. Exponentially-convergent strategies for defeating the Runge

phenomenon for the approximation of non-periodic functions, part I: single-

interval schemes. Commun Comput Phys. (2009) 5:484–97.

39. Trefethen LN. Approximation Theory and Approximation Practice, Extended

Edition. Philadelphia, PA: SIAM (2019). doi: 10.1137/1.9781611975949

40. De Lathauwer L, De Moor B, Vandewalle J. On the best rank-1 and rank-

(R1,R2, · · · ,RN) approximation of higher-order tensors. SIAM J Matrix Anal

Appl. (2000) 21:1324–42. doi: 10.1137/S0895479898346995

41. Zhang T, Golub G. Rank-one approximation to high order tensors. SIAM J

Matrix Anal Appl. (2001) 23:534–50. doi: 10.1137/S0895479899352045

42. Guan Y, Chu MT, Chu D. SVD-based algorithms for the best rank-1

approximation of a symmetric tensor. SIAM J Matrix Anal Appl. (2018)

39:1095–115. doi: 10.1137/17M1136699

43. Nie J,Wang L. Semidefinite relaxations for best rank-1 tensor approximations.

SIAM J Matrix Anal Appl. (2013) 35:1155–79. doi: 10.1137/130935112

44. Brachat J, Comon P, Mourrain B, Tsigaridas E. Symmetric

tensor decomposition. Linear Algeb Appl. (2010) 433:1851–72.

doi: 10.1016/j.laa.2010.06.046

45. Alexander J, Hirschowitz A. Polynomial interpolation in several variables.Adv

Comput Math. (1995) 4:201–22.

46. Debals O. Tensorization and Applications in Blind Source Separation. Leuven:

KU Leuven (2017).

47. Blondel M, Niculae V, Otsuka T, Ueda N. Multi-output Polynomial Networks

and Factorization Machines. In: Advances in Neural Information Processing

Systems 30: Annual Conference on Neural Information Processing Systems

2017. Long Beach, CA (2017). p. 3349–59.

48. Khoromskij BN. Tensor Numerical Methods in Scientific Computing. Berlin;

Boston: De Gruyter (2018). doi: 10.1515/9783110365917

49. Margossian CC. A review of automatic differentiation and its efficient

implementation. WIREs Data Mining Knowl Discov. (2019) 9:e1305.

doi: 10.1002/widm.1305

50. van der Veen AJ, Paulraj A. An analytical constant modulus algorithm. IEEE

Trans Signal Process. (1996) 44:1136–55. doi: 10.1109/78.502327

51. Zarzoso V, Comon P. Optimal step-size constant modulus algorithm. IEEE

Trans Commun. (2008) 56:10–3. doi: 10.1109/TCOMM.2008.050484

52. Boussé M, Vervliet N, Domanov I, Debals O, De Lathauwer L. Linear

systems with a canonical polyadic decomposition constrained solution:

algorithms and applications. Numer Linear Algeb Appl. (2018) 25:e2190.

doi: 10.1002/nla.2190

53. Gargiani M, Zanelli A, Diehl M, Hutter F. On the promise of the stochastic

generalized Gauss-Newton method for training DNNs. arXiv: 200602409.

(2020). doi: 10.48550/arXiv.2006.02409

54. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Bengio Y,

LeCun Y, editors. International Conference on Learning Representations, ICLR

2015. 3rd Edn. San Diego, CA (2015). Available online at: http://arxiv.org/abs/

1412.6980

55. De Brabanter K, Karsmakers P, Ojeda F, Alzate C, De Brabanter J, Pelckmans

K, et al. LS-SVMlab Toolbox User’s Guide Version 1.8. Leuven: ESAT-STADIUS

(2010). p. 10–46.

56. Suykens JAK, Van Gestel T, De Brabanter J, De Moor B, Vandewalle J.

Least Squares Support Vector Machines. Singapore: World Scientific (2002).

doi: 10.1142/5089

57. Ljung L. System Identification: Theory for the User. 2nd ed. Upper Saddle River,

NJ: Prentice Hall (1999). doi: 10.1002/047134608X.W1046

58. Johnson R, Schniter P, Endres TJ, Behm JD, Brown DR, Casas RA. Blind

equalization using the constant modulus criterion: a review. Proc IEEE. (1998)

86:1927–50. doi: 10.1109/5.720246

59. van der Veen AJ. Algebraic methods for deterministic blind beamforming.

Proc IEEE. (1998) 86:1987–2008. doi: 10.1109/5.720249

60. De Lathauwer L. Algebraic techniques for the blind deconvolution of

Constant Modulus signals. In: Proceedings of the 12th European Signal

Processing Conference (EUSIPCO 2004). Vienna (2004). p. 225–8.

61. Householder AS. Unitary triangularization of a nonsymmetric matrix. J ACM.

(1958) 5:339–42. doi: 10.1145/320941.320947

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 23 March 2022 | Volume 8 | Article 836433

https://doi.org/10.1137/090764189
https://doi.org/10.1137/090748330
https://openreview.net/forum?id=rkm1sE4tg
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/5314b9674c86e3f9d1ba25ef9bb32895-Paper.pdf
https://doi.org/10.48550/arXiv.1906.06329
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.1109/TIP.2011.2165291
https://doi.org/10.1109/CAMSAP45676.2019.9022662
https://proceedings.neurips.cc/paper/2016/file/3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/3806734b256c27e41ec2c6bffa26d9e7-Paper.pdf
https://proceedings.mlr.press/v48/yu16.html
https://doi.org/10.1109/ICIP.2015.7351019
https://proceedings.mlr.press/v22/kar12.html
https://proceedings.mlr.press/v22/kar12.html
https://doi.org/10.48550/arXiv.1504.01697
https://doi.org/10.1109/ICDM.2010.127
https://doi.org/10.1016/0024-3795(77)90069-6
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1137/120877258
https://doi.org/10.1016/j.laa.2016.10.019
https://doi.org/10.1137/1.9781611975949
https://doi.org/10.1137/S0895479898346995
https://doi.org/10.1137/S0895479899352045
https://doi.org/10.1137/17M1136699
https://doi.org/10.1137/130935112
https://doi.org/10.1016/j.laa.2010.06.046
https://doi.org/10.1515/9783110365917
https://doi.org/10.1002/widm.1305
https://doi.org/10.1109/78.502327
https://doi.org/10.1109/TCOMM.2008.050484
https://doi.org/10.1002/nla.2190
https://doi.org/10.48550/arXiv.2006.02409
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1142/5089
https://doi.org/10.1002/047134608X.W1046
https://doi.org/10.1109/5.720246
https://doi.org/10.1109/5.720249
https://doi.org/10.1145/320941.320947
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

Ayvaz and De Lathauwer CPD-Structured Multivariate Polynomial Optimization

62. Deng L. The MNIST database of handwritten digit images for

machine learning research. IEEE Sign Process Mag. (2012) 29:141–2.

doi: 10.1109/MSP.2012.2211477

63. Xiao H, Rasul K, Vollgraf R. Fashion-MNIST: a novel image dataset

for benchmarking machine learning algorithms arXiv:1708.07747. (2017).

doi: 10.48550/arXiv.1708.07747

64. Stoudenmire EM. Learning relevant features of data with multi-scale tensor

networks.Quant Sci Technol. (2018) 3:034003. doi: 10.1088/2058-9565/aaba1a

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict ofinterest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Ayvaz andDe Lathauwer. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Applied Mathematics and Statistics | www.frontiersin.org 24 March 2022 | Volume 8 | Article 836433

https://doi.org/10.1109/MSP.2012.2211477
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1088/2058-9565/aaba1a
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#articles

	CPD-Structured Multivariate Polynomial Optimization
	1. Introduction
	Related Work

	2. Preliminaries
	2.1. Notation
	2.2. Canonical Polyadic Decomposition

	3. Tensor-Based Multivariate Polynomial Optimization
	3.1. Scope of the TeMPO Framework
	3.2. Tensor Representation of Polynomials
	3.3. Gauss–Newton Algorithm
	3.4. Exploiting the Symmetric CPD Format
	3.4.1. Derivatives of the Multilinear Form in the Symmetric CPD Format
	3.4.2. Exploiting Structure in the Type I Model
	3.4.3. Exploiting Structure in the Type II Model

	3.5. Complexity Analysis

	4. Numerical Experiments
	4.1. Regression
	4.2. Blind Deconvolution of Constant Modulus Signals
	4.3. Image Classification
	4.3.1. Experiments
	Datasets
	Results and Comparisons
	Results of the Type I Model
	Results of the Type II Model
	Comparisons

	5. Conclusion and Future Work
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

