
TYPE Original Research

PUBLISHED 08 August 2022

DOI 10.3389/fams.2022.915294

OPEN ACCESS

EDITED BY

Vittorio Romano,

University of Catania, Italy

REVIEWED BY

Giovanni Nastasi,

University of Catania, Italy

Je�rey Varner,

Purdue University, United States

*CORRESPONDENCE

Graham West

gtw2i@mtmail.mtsu.edu

SPECIALTY SECTION

This article was submitted to

Optimization,

a section of the journal

Frontiers in Applied Mathematics and

Statistics

RECEIVED 07 April 2022

ACCEPTED 11 July 2022

PUBLISHED 08 August 2022

CITATION

West G, Sinkala Z and Wallin J (2022) A

kernel mixing strategy for use in

adaptive Markov chain Monte Carlo

and stochastic optimization contexts.

Front. Appl. Math. Stat. 8:915294.

doi: 10.3389/fams.2022.915294

COPYRIGHT

© 2022 West, Sinkala and Wallin. This is

an open-access article distributed

under the terms of the Creative

Commons Attribution License (CC BY).

The use, distribution or reproduction

in other forums is permitted, provided

the original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A kernel mixing strategy for use
in adaptive Markov chain Monte
Carlo and stochastic
optimization contexts

Graham West1*, Zachariah Sinkala2 and John Wallin1

1Ph.D. Program in Computational and Data Sciences, Middle Tennessee State University,

Murfreesboro, TN, United States, 2Department of Mathematics, Middle Tennessee State University,

Murfreesboro, TN, United States

Performing Markov chain Monte Carlo parameter estimation on complex

mathematical models can quickly lead to endless searching through highly

multimodal parameter spaces. For computationally complex models, one

rarely has prior knowledge of the optimal proposal distribution. In such cases,

the Markov chain can become trapped near a suboptimal mode, lowering the

computational e�ciency of the method. With these challenges in mind, we

present a novel MCMC kernel which incorporates both mixing and adaptation.

The method is flexible and robust enough to handle parameter spaces that

are highly multimodal. Other advantages include not having to locate a near-

optimalmodewith a di�erentmethod beforehand, as well as requiringminimal

computational and storage overhead from standard Metropolis. Additionally, it

can be applied in any stochastic optimization context which uses a Gaussian

kernel. We provide results from several benchmark problems, comparing the

kernel’s performance in both optimization and MCMC cases. For the former,

we incorporate the kernel into a simulated annealing method and real-coded

genetic algorithm. For the latter, we incorporate it into the standard Metropolis

and adaptive Metropolis methods.

KEYWORDS

parameter estimation, stochastic optimization, adaptive methods, kernel mixing,

Markov chain Monte Carlo, genetic algorithms, simulated annealing

1. Introduction

Mathematical models can be used to study the behavior of many physical systems

in the world. In most cases, however, these models contain many unknown parameters

which must be tuned in order for the model to accurately replicate the behavior of

the system of interest. This problem of fitting the parameters of a mathematical model

to data—as well as the related problem of uncertainty quantification of said model

parameters—is a staple problem in applied mathematics. We can represent it as an

optimization problem. Suppose we are given model f (θ) (with parameters θ) and data

y. We must solve the problem

min
θ

||f (θ)− y||, (1)

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2022.915294
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2022.915294&domain=pdf&date_stamp=2022-08-08
mailto:gtw2i@mtmail.mtsu.edu
https://doi.org/10.3389/fams.2022.915294
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2022.915294/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

where ||·|| is some chosen norm. The value of θ whichminimizes

this error can be found via various global optimization methods

and with subsequent analysis of uncertainty via sampling

methods. However, the efficiency of these methods depends

largely on various hyper-parameters (parameters that define the

behavior of the optimizer) which must be set. For this reason,

methods with robust adaptive features which are able to tune

themselves to the problem at hand are preferred.

In this paper, we will present a new local kernel

mixing method which can be implemented in various global

optimization methods and sampling methods. This method

mixes several Gaussian kernels with varying covariance matrices

so that an overall underestimation or overestimation of the

covariance matrix for the particular applied problem will have

less significant of an impact on performance. We specifically

test this mixing method’s performance in a simulated annealing

(SA), real-coded genetic algorithm (GA), and Markov chain

Monte Carlo (MCMC) context. All three of these methods have

a similar underlying scheme for generating new solutions from

Gaussian perturbations and are thus prime candidates for testing

our method.

We will begin with a brief overview of the MCMC, SA, and

GA algorithms. We will then discuss the kernel mixing method,

its properties, and how it can be implemented. We then test

the three algorithms performance with and without our kernel

mixing scheme on two popular benchmark problems: the Ackley

function and the thermal isomerization of α-pinene.

1.1. The Metropolis method

The Metropolis method—the original Markov Chain Monte

Carlo (MCMC) approach developed by Metropolis et al. [1]

and later generalized by Hastings [3]—is the foundation for all

subsequent MCMC approaches. Given some data y (often given

in the form of a time series or vector) and a model which can

reproduce them, the Metropolis method samples the posterior

distribution π(θ |y) of the model’s parameters. This distribution

describes the probability of the model parameters’ values given

the data. This distribution will have a peak at the values of the

model parameters which best approximate the data.

However, as its name would imply, we do not have a priori

knowledge of the posterior distribution. Therefore, we express

the posterior distribution in terms of distributions we know

using Bayes’s Theorem

π(θ |y) ∝ ℓ(y|θ)p(θ), (2)

where ℓ is the likelihood distribution and p is the prior

distribution. The likelihood ℓ(y|θ) tells us the probability of the

data given the parameters and is usually calculated from the

model-data error

ℓ(y|θ) ∝ exp
(

− ||f (θ)− y||2/(2σ 2)
)

, (3)

where || · || is the appropriate norm and σ is the measurement

error. This can be easily calculated via a single model evaluation

with the given parameters. We may also have additional

information about what parameter values are most likely to

be realized in the actual system. For example, perhaps the

parameters are uniformly distributed over a bounded space.

This information is incorporated via the prior distribution p.

Together, the likelihood and prior help us to reconstruct the

posterior distribution up to a scale factor.

Let us look at how Metropolis performs its sampling.

Given an initial state θ0 (superscript indices will refer to

the time step), Metropolis generates new candidate states

and probabilistically accepts or rejects them based on relative

posterior gains or losses with respect to that of current state.

Candidate state generation is performed via sampling of the

proposal distribution q(θ ′|θn), defined as the probability that

a new state θ ′ will be selected as a candidate for acceptance

given the current state θn. The most common choice of proposal

distribution is the standard multivariate Gaussian distribution.

Whether acceptance or rejection is performed is determined by

the acceptance probability α(θ ′|θn), defined as the probability

that the candidate state θ ′ will be accepted given the current

step θn (see Algorithm 1 for the calculation of the acceptance

probability). The unification of these candidate generation and

acceptance steps is the kernel of the method, which defines

the transition probabilities between states. Over time, the

distribution created from the samples will conform to the

posterior, at which point the method is said to have converged.

Algorithm 1 shows a pseudocode implementation ofMetropolis.

Algorithm 1 The Metropolis method.

1: Initialize: θ0 ,N

2: for n = 1 to N do

3: Generate θ ′ ∼ q(θ ′|θn−1)

4: Compute α(θ ′|θn−1) = min

(

1,
π(θ ′|y)

π(θn−1|y)

)

= min

(

1,
ℓ(y|θ ′)p(θ ′)

ℓ(y|θn−1)p(θn−1)

)

5: Set θn = θ ′ with probability α, else θn = θn−1

6: end for

Metropolis is ergodic and is therefore guaranteed to

converge to the correct stationary distribution if given sufficient

time. However, the time to converge depends largely on the

proposal distribution used. As stated, the preferred proposal

distribution is Gaussian, whose width is defined by a covariance

matrix (in fact, the term proposal width is often used in its

place). If one chooses too thin of a Gaussian, the chain may

have difficulty escaping suboptimal modes within a reasonable

amount of time. On the other hand, too wide and the chain

will have an excess of rejections. Fortunately, this problem of

Frontiers in AppliedMathematics and Statistics 02 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

the unknown proposal can be largely alleviated through clever

means such as kernel mixing and adaptive proposals.

Kernel mixing (or more precisely proposal mixing, since

kernel would refer to the composition of the proposal and

acceptance steps) is a technique where the proposal used at

each step in the chain may be chosen stochastically from a set.

Consider an example where we have two proposals Q1,Q2 and

we have a probability 0.5 of choosing either at any given step.

Then, the proposal used at each step is simply 0.5Q1 + 0.5Q2—

the linear combination of the kernels and their respective

probabilities. This is implemented by choosing either Q1 or Q2

at each step.

Another technique for improving the performance of

MCMC is to use so-called adaptive methods which allow the

proposal to adapt to the state space as more and more samples

are obtained. Likely the most widely used adaptive MCMC

method is Haario’s Adaptive Metropolis (AM) [2] method.

The core principle of adaptation is the use of a continuously

adapting Gaussian distribution as the proposal for the standard

Metropolis method. After beginning with an initial phase of

non-adaptation called the burn-in, the proposal becomes

qn(θ ′|θn) = N
(

θn,

(

2.382

M

)

6n + εI
)

, (4)

where M is the dimension of the space (i.e., number of

parameters), 6n is the covariance matrix computed from

samples generated over past steps, and ε is a small factor

multiplied by an M × M identity matrix included for

regularization to ensure positive-definiteness. This allows the

Gaussian to continually re-scale and re-orient itself as it “learns”

the state space.

The AM proposal can also be modified via kernel mixing.

A good example of this is the version developed by Roberts and

Rosenthal [4]

qn(θ ′|θn) = βN
(

θn,

(

2.382

M

)

6n
)

+ (1− β)N
(

θn, 6̂
)

, (5)

where 6̂ is a fixed covariance matrix and 0 ≤ β ≤ 1 [note that

our convention is different from theirs in that we have swapped

the β and (1− β) terms].

1.2. Simulated annealing

Simulated annealing [5] is a global optimization method

with many similar properties to the Metropolis method. Both

use proposal distributions to generate candidate solutions

followed by an acceptance criterion. The main difference is the

cooling aspect of SA which causes it to be more restrictive and

therefore less likely to accept candidates worse than the current

state. Instead of the likelihood function, SA converts the model-

data error into a fitness value which is then maximized (instead

of minimizing the error). This is given by

F(θ) = exp(−||f (θ)− y||/Tn), (6)

where Tn is the temperature which is cooled over time.

Various cooling schedules may be used, such as exponentially

or logarithmically decreasing schedules and schedules which

periodically raise and lower the temperature [6, 7]. For this paper

we use an exponential cooling schedule

Tn = T0exp(−n/τ), (7)

where τ is the cooling factor. SA can be described by

Algorithm 2. Note the directing analogy between this and

Algorithm 1.

Algorithm 2 Simulated annealing.

1: Initialize: θ0 ,N

2: for n = 1 to N do

3: Generate θ ′ ∼ q(θ ′|θn−1)

4: Compute α(θ ′|θn−1) = min

(

1,
F(θ ′)

F(θn−1)

)

5: Set θn = θ ′ with probability α, else θn = θn−1

6: end for

1.3. Real-coded genetic algorithms (GA)

For some complex optimization problems, simpler methods

such as gradient descent and even simulated annealing are

not robust enough to find the global optimum. In these cases,

a popular alternative is the genetic algorithm (GA) (see the

early paper by Holland [8]). Taking inspiration from biological

processes, GAs solve problems by tackling them with an entire

population of solutions which evolve and improve over time in a

survival-of-the-fittest fashion. Though the original GA proposed

by Holland used a binary encoding, many other researchers

have used real-coded or real-valued GAs (see [9–11]). We

will be using the real-coded scheme. Algorithm 3 shows the

architecture of a canonical GA, which is very modular by nature.

In the Algorithm, we define Pj,i as the i-th solution in the j-th

generation. Let us look more closely at each of these steps.

The GA’s representation is simply how solutions to the

problem are encoded in the individuals in the population. In the

case of real-coded GAs, the representation is simply a vector of

the model parameters.

Selection is the process by which individuals are paired

off as parents for mating. The most popular techniques

for accomplishing this are roulette selection [8] (where an

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

Algorithm 3 Real-coded genetic algorithm for image similarity

optimization

1: Initialize: Npop ,Ngen ,Nph ,ψp ,ψs

2: Initialize population: Pj,0 ,∀j = 1, · · · ,Npop

3: Evaluate population to obtain fitness scores: F(Pj,0), ∀j

4: for n = 1 to Ngen do

5: Perform selection

6: Perform crossover

7: Perform mutation (obtaining new population Pj,n ,∀j)

8: Evaluate population to obtain fitness scores: F(Pj,n), ∀j

9: end for

individual’s selection probability is proportional to its fitness)

and rank selection [12] (where an individual’s selection

probability is proportional to its rank). Each of these operators

has its own pros and cons. In roulette selection, solutions

with significantly higher fitness have a proportionately higher

selection probability. This can help speed up convergence.

However, anomalously high fit individuals can saturate the

population with their genetic material, while anomalously low

fit individuals will rarely be selected. Both of these phenomena

result in a decrease in genetic diversity, likely leading to

premature convergence to local optima. Rank selection solves

this problem by making the selection probabilities very stable

(with fixed upper and lower bounds on the probabilities

throughout an entire run). The question of which selection

operator is optimal is highly problem-dependent and there is no

clear answer. We used roulette selection in all of our GA tests.

An additional feature whichmay be included in the selection

step is elitism [13]. This feature ensures that the best solutions

are retained to the next generation by explicitly preserving them

across generations. We also use elitism for our GA tests.

Next, the GA’s crossover operator breeds child solutions from

the selected parent pairs. This operator creates these children

by combining the genetic material of the parents. Depending

on preference, one can create a single child from each parent

pair or two which replace both parents in the population (in

second case, half as many parent pairs are selected). For the case

of real-coded GAs, all of the binary coded crossover operators

are available (such as single-point, multi-point, and uniform

crossover) with additional options due to the nature of the

encoding. A common one is arithmetic crossover [14]

C1 = αP1 + (1− α)P2, (8)

C2 = (1− α)P1 + αP2, (9)

where P1, P2 are the two parent solutions, C1,C2 are the two

child solutions, and α ∈ [0, 1] is uniformly distributed. Many

different versions of this scheme exist with various types of

weighted means and distributions from which α may be drawn.

For our purposes, we use a version of arithmetic crossover with

the parents weighted by their fitnesses:

C = F̂(P1)P1 + F̂(P2)P2. (10)

Here, F̂(P1) = F(P1)/(F(P1) + F(P2)) and F̂(P2) =

F(P2)/(F(P1)+ F(P2)).

Finally, the mutation operator is performed on the resulting

child solutions. This operators applies a stochastic perturbation

to the child chromosomes in order to preserve a sufficient level

of genetic diversity in the population throughout the evolution

of the population. This perturbation is done via a chosen

kernel distribution. Various choices are available for this kernel.

Examples include Eshelmen et al.’s blend crossover operator

(BLX-α) [15] and Ono and Kobayashi’s unimodal normal

distribution crossover operator (UNDX) [16]. One popular

technique is to introduce a degree of determinism by directing

mutation along the some particular direction determined by,

say, the gradient of the objective function or the momentum

of the population in parameter space [17–19]. We use an

adaptive mixture of multiple multivariate normal distributions

with varying covariance matrices as our chosen kernel.

2. Kernel mixing method

We now discuss our kernel mixing method. We will

begin with a discussion of the motivation and advantages

our using this method. We then discuss the mathematics and

implementation of the method in case of both diagonal and

non-diagonal covariance matrices.

2.1. Motivation and advantages

Incorporation of our kernel mixing method into either

stochastic optimization or MCMC contexts results in several

advantages. First, as we have discussed, it isn’t possible in

general to know a priori what the optimal proposal width

should be for a given problem. This makes adaptive methods

attractive. However, even if one were to choose the optimal

“global” proposal width, this by no means guarantees that

certain regions of parameter space might not have a superior

“local” optimal proposal width. By applying our kernel mixing

method, the proposal can cover a range of widths for

different parameters.

A second advantage is that when used in an MCMC context,

no initial greedy search is required find a good starting point in

parameter space. This is because our mixing method provides

an increase in performance in optimization contexts. This

performance gain is inherited by MCMC implementations of

the method.

Additional advantages that our method has over some

more complex methods are its trivial implementation and

Frontiers in AppliedMathematics and Statistics 04 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 1

(Left) Standard Gaussian proposal. (Right) Mixed proposal.

the minimal overhead it requires. The only significant

computational overhead encountered is the diagonalization

of non-diagonal covariance matrices. This overhead is

only relevant when there is a very large number of

parameters and the covariance matrices is adaptive, requiring

constant diagonalization.

2.2. The method

Our mixing strategy allows for the selection of one

of three proposals: (1) the original, fixed proposal, (2)

a thinned proposal, and (3) a widened proposal. We

included both the thinner and wider proposals since

overestimation and underestimation the proposal width

are both possible. Additionally, the thin proposal allows

the chain to squeeze into thinner modes while the wide

proposal allows the chain to escape suboptimal modes and

traverse parameter space quickly. The resulting proposal for

a simple problem with one parameter has the form of the

linear combination

q(θ ′|θn) = ptN
(

θn, (Atσ)
2)+pfN

(

θn, (σ)2
)

+pwN
(

θn, (Awσ)
2),

(11)

where σ is the fixed proposal width, 0 < At < 1 <

Aw are the mixing amplitudes, and pt , pf , pw are the mixing

probabilities. This resulting mixture of Gaussians (each with a

different variance) will not necessarily have the same variance

as the original fixed variance σ 2. However, given the thinning

and widening amplitudes At ,Aw, the mixing probabilities can

be set so that the mixed proposal will have identical variance as

the fixed proposal. This is useful if one desires to have control

over the variance of the mixed proposal. The probabilities that

accomplish this are given by

(pt , pf , pw) =

(

(A2
w − 1)(1− pf)

(A2
w − A2

t)
, pf ,

(1− A2
t)(1− pf)

(A2
w − A2

t)

)

,

(12)

where the fixed probability pf is a free parameter, i.e., any value

0 ≤ pf ≤ 1 will result in the same fixed variance.

Figure 1 illustrates a standard 2D Gaussian distribution and

a mixture of Gaussians according to the method described

above. We have mixing probabilities of (1/3, 1/3, 1/3) and

mixing amplitudes of (1/3, 1, 3). There are two main features to

notice in the mixed plot. First, is the overall cross shape of the

distribution, with a high probability density along and near the

parameter axes. Second is that the peak density in the center is

higher in the mixed kernel than the standard Gaussian.

In the case of M parameters, each one is mixed

independently (i.e., one parameter could be thinned while

another is widened). Therefore, one must account for all

combinations of each parameter being mixing in each of the

three ways:

q(θ ′|θn) =
∑

i1∈{t,f ,w}

· · ·
∑

iM∈{t,f ,w}

pi1 · · · piMN(θn, (Ai1σ1)
2,

· · · , (AiMσM)2). (13)

For convenience in the above, we define Af = 1 and

N(µ, σ 21 , · · · , σ
2
M) as an M-dimensional normal distribution

with diagonal covariance matrix given by (σ 21 , · · · , σ
2
M).

2.3. Implementation

Regarding implementation, mixing for diagonal covariance

matrices is applied according to Algorithm 4. Given a fixed

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

Algorithm 4 Mixing implementation for diagonal covariance

matrices
1: Initialize: pt , pf , pw ,At ,Aw ,6,6′ = I

2: for m = 1 toM do

3: Choose (thinning, fixing, widening) from the distribution (pt , pf , pw)

4: if thinning then

5: 6′
m,m = 6m,mA

2
t

6: else if fixing then

7: 6′
m,m = 6m,m

8: else if widening then

9: 6′
m,m = 6m,mA

2
w

10: end if

11: end for

Algorithm 5 Mixing implementation for non-diagonal

covariance matrices
1: Initialize: pt , pf , pw ,At ,Aw ,6,D′ = I

2: Diagonalize: D = V6V−1

3: for m = 1 toM do

4: Choose (thinning, fixing, widening) from the distribution (pt , pf , pw)

5: if thinning then

6: D′
m,m = Dm,mA

2
t

7: else if fixing then

8: D′
m,m = Dm,m

9: else if widening then

10: D′
m,m = Dm,mA

2
w

11: end if

12: end for

13: 6′ = V−1D′V

diagonal covariance matrix 6, a new covariance matrix 6′

(initially the identity matrix I) is constructed by multiplying

the diagonal elements of 6 by the square of the chosen mixing

amplitude. Note that this is equivalent to multiplying the

eigenvalues by the amplitudes.

For general, non-diagonal covariance matrices, Algorithm 5

is used. The significant differences are the diagonalization

steps (2, 13) to obtain the eigenvalues. In the diagonal

case, these were already given, but in the non-diagonal

case, they must be calculated. The ability to apply this

mixing procedure to non-diagonal matrices implies that

it may be used in optimization and MCMC algorithms

with adaptive covariance matrices, such as Haario’s

Adaptive Metropolis algorithm [2]. This merely requires

the diagonalization of the covariance matrix at each step in

the algorithm.

We developed a Python implementation of our method

which can be accessed at https://github.com/gtw2i/Adaptive-

Kernel-Mixing-for-MCMC-and-SO. It includes all codes which

were used to obtain the results in the following section, as well

as the α-pinene reaction data.

3. Numerical experiments and results

We now present tests of our mixing technique in SA, GA,

and MCMC contexts. In the SA case, we compare both standard

SA and mixed SA with modified versions using an adaptive

proposal (following the pattern of AM). Solonen [20] illustrates

the difficulties in weighting the samples when applying the

AM technique in the SA context (the changing temperature

affects a change in the posterior). They proposemultiple possible

solutions to this challenge. Since our goal was to propose a

mixing method rather than an adaptive method, we take a very

simplistic approach to adaptation. Like AM, we accumulate

samples over a burn-in period, after which their covariance

matrix is calculated. However, we do not continue to adapt the

matrix any further. We leave it to others to decide what the

proper adaptive method for their application should be. In the

GA case, we compare a real-coded GAwith a Gaussian mutation

operator to one which uses our mixing technique, as well as their

adaptive counterparts. Like the SA implementation of proposal

adaptation, we accumulate samples (the entire population at

each generation) until the burn-in time is reached, at which

point the covariance matrix is evaluated and subsequently held

fixed. In the MCMC case, we compare Metropolis and Adaptive

Metropolis with versions which use our mixing technique. Tests

on all three methods are done via two benchmark problems,

which will be discussed below.

We perform one test in the SA and GA cases and two in

the MCMC case, each of which uses an ensemble of runs over

a range of proposal widths. This will allow us to check for both

best-case and average performance for each method. The test for

the SA and GA cases is a simple averaging of the best fitness

at each time step over an ensemble of runs. By “best” fitness,

we mean to say we keep track of the highest fitness achieved

by the method at each step, rendering the sequence of fitnesses

non-decreasing. This allows us to examine the average rate at

which the fitness improves across a broad range of proposal

widths. What we will see is that each method has an optimal

range of proposal widths at which fitness increases most quickly.

Deviations from this optimal region slow performance. The

mixing and adaptation techniques implemented serve to extend

this range so that performance is less sensitive to one’s choice of

proposal width.

The first MCMC test calculates a lower bound of the

integrated auto-correlation time (IAC) for the chain. The IAC is a

measure of the length of time (in steps) required for later steps in

the chain to become de-correlated with earlier steps. It is given

by the formula

τint = 1+ 2

N′
∑

ℓ=0

rℓ, (14)

where rℓ is the autocorrelation of the chain at lag ℓ (an index

offset) and N′ is some number of steps in the chain (usually the

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://github.com/gtw2i/Adaptive-Kernel-Mixing-for-MCMC-and-SO
https://github.com/gtw2i/Adaptive-Kernel-Mixing-for-MCMC-and-SO
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 2

Results of SA test on the 5D Ackley function. (Top left) Standard SA. (Top right) Mixed SA. (Bottom left) Adaptive SA. (Bottom right)

Mixed/adaptive SA. The horizontal axis displays the step number while the vertical axis represents the the proposal width (increases downward).

The color axis displays the average fitness across the 50 runs of each method.

step at which rℓ reaches zero). This only measures a lower bound

since—in many cases—N′ is prohibitively large. For this reason,

we simply choose the value of the IAC at some preset value of

N′ (usually Nstep/8). By generating an ensemble of chains, we

obtain statistics on this lower bound for the IAC across a range

of proposal widths.

The second test uses the scale reduction factor (SRF) [21].

This tests utilizes an ensemble of chains initialized at random

locations and compares the values of the between-chain variance

B and the within-chain varianceW. GivenM chains of lengthN,

the SRF is given by R =

√

V̂/W where

B =
N

M − 1

M
∑

m=1

(θ̂m − θ̂)2 W =
1

M

M
∑

m=1

σ̂m, (15)

V̂ =
N − 1

N
W +

M + 1

MN
B, (16)

where θ̂m, σ̂m are the sample mean and variance of the m-th

chain and θ̂ is the overall sample mean across allm chains. Since

the test itself requires an ensemble of chains, we do not obtain

statistics for the SRF. However, we do still calculate it over a

range of proposal widths.

3.1. Benchmark 1: Ackley function

For our first benchmark, we use the Ackley function, given

by

f (θ) = a

(

1− exp
(

− 0.2

√

√

√

√

M
∑

m=1

θ2m/M
)

)

+b

(

e− exp
(

M
∑

m=1

cos(2πθm)/M
)

)

, (17)

Frontiers in AppliedMathematics and Statistics 07 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 3

Results of GA test on 5D Ackley function. (Top left) Standard GA. (Top right) Mixed GA. (Bottom left) adaptive GA. (Bottom right) Mixed/adaptive

GA. The horizontal axis displays the step number while the vertical axis represents the the proposal width (increases downward). The color axis

displays the average fitness across the 20 runs of each method.

TABLE 1 Summary of peak average fitness between all four SA and GA

cases on the 5D Ackley benchmark problem.

Standard Mixed Adaptive Mixed/adaptive

SA 0.8592 0.9990 0.8174 0.9986

GA 0.9698 0.9707 0.9832 0.9764

where a = 20, b = 4, and M = 5 is the number of dimensions.

This is a common benchmark function in optimization contexts

since it has a large number of false minima in which chains may

become stuck. For the SA and GA cases, we calculate fitness F

via

F(θ) =
1

1+ f (θ)2
. (18)

For the MCMC case, we used a uniform prior distribution over

the entire search space and used the likelihood function

ℓ(y|θ) = exp
(

−
f (θ)2

2σ 2

)

, (19)

where σ = 5 (this value was chosen since it resulted in an

acceptance rate of between 0.25 and 0.5).

3.1.1. Simulated annealing

Now, we present the results of the SA test on the 5D

Ackley function (see Figure 2). We have standard SA, mixed

SA, adaptive SA, and mixed/adaptive SA. The parameter space

is set to θm ∈ [−10, 10] for m = 1, · · · , 5. In each case,

we ran 50 randomly initialized instances of the particular SA

implementation over 40 evenly-spaced proposal widths. The

mixing amplitudes used were (At ,Aw) = (1/3, 3) and the

Frontiers in AppliedMathematics and Statistics 08 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 4

IAC results of MCMC test on the 5D Ackley function. The horizontal axis displays the proposal width (logarithmic scale). The vertical axis is the

average lower bound of the IAC.

FIGURE 5

SRF results of MCMC test on the 5D Ackley function. The horizontal axis displays the proposal width (logarithmic scale). The vertical axis is the

SRF (logarithmic scale).

mixing probabilities used were (pt , pf , pw) = (3/5, 1/3, 1/15).

The choice of amplitudes spans roughly an order of magnitude

while the probabilities were derived by setting pf = 1/3 and

deriving the other two from Equation (12). Also, both the

cooling constant τ and the burn-in time were set to be half the

total number of time steps.

Comparing the results from the test, we see that standard SA

achieves its highest average fitness (0.8592) at a proposal width

of 0.5462, with performance dropping as the width is either

increased or decreased. In the mixed SA case, we have a higher

average fitness (0.9990) at a width of 0.1744. The mixed case also

has the added benefit that it achieves a higher average fitness

Frontiers in AppliedMathematics and Statistics 09 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

TABLE 2 Data for α−pinene concentrations from Fuguitt and Hawkins

[22].

t y1 y2 y3 y4 y5

1,230 88.35 7.3 2.3 0.4 1.75

3,060 76.4 15.6 4.5 0.7 2.8

4,920 65.1 23.1 5.3 1.1 5.8

7,800 50.4 32.9 6.0 1.5 9.3

10,680 37.5 42.7 6.0 1.9 12.0

15,030 25.9 49.1 5.9 2.2 17.0

22,620 14.0 57.4 5.1 2.6 21.0

36,420 4.5 63.1 3.8 2.9 25.7

over the entire range of tested widths. This is especially true of

the smallest widths under which standard SA made no progress

while mixed SA achieved high fitness. Moving on to the adaptive

case, the method achieved a highest average fitness of 0.8174

at a width of 0.9923, which is lower than that of the standard

case. However, it had a significantly higher performance for

proposal widths larger than the standard SA’s optimal value,

making it much more robust. Finally, the mixed/adaptive case

seems to inherit the best aspects of both the mixed case

(high peak performance) and adaptive case (robust performance

across a range of widths). It achieved a highest average fitness

of 0.9986 (marginally lower than the mixed case) at a width

of 0.1746.

3.1.2. Genetic algorithm

Moving on to the results of the application of GAs to

the 5D Ackley function, we have standard GA, mixed GA,

adaptive GA, and mixed/adaptive GA. The results are displayed

in Figure 3. The parameter space was again set to θm ∈

[−10, 10] for m = 1, · · · , 5 with 30 randomly initialized

instances over 25 different proposal widths. Identical values

of the mixing amplitudes, probabilities, and burn-in time

were used.

We see a similar increase in performance from the

standard case to the mixed case as was seen in the SA case.

The standard GA case achieved a highest average fitness of

0.9698 at a width of 0.1520 while the mixed case achieved

a highest average fitness of 0.9707 at a width of 0.0971.

Unlike the SA cases, adaptation did not make significant

improvement in performance. Though the adaptive case did

achieve a marginally higher average fitness (0.9832) than the

standard GA, it did not have the effect of achieving a robust

level of performance across a range of widths. Similarly,

the mixed/adaptive case merely performs marginally better

with a highest average fitness of 0.9764. See Table 1 for a

comparison of the peak performance of the various SA and

GA methods.

3.1.3. Markov chain Monte Carlo

We now present the results of the IAC and SRF tests on the

MCMC implementation of our mixing method in the context

of the Ackley benchmark. We compare results from standard

Metropolis (MH), mixed Metropolis (MX), adaptive Metropolis

(AM), and adaptive-mixed Metropolis (AX). We used identical

parameter ranges, mixing amplitudes, and mixing probabilities.

The number of steps was set to Nstep = 211 with Nburn =

Nstep/2. We tested a range of 20 proposal widths with 100 chains

generated for each in order to obtain reliable averages. Also,

recall that in the Ackley function, all parameters are identical,

so we should not see a significant difference in any of the plots of

each parameter.

Figure 4 shows the results of the IAC test. Examining any

of the five plots, we see that for proposal widths smaller

than 2, there is a clear ordering of method performance. In

decreasing order we have AX, AM, MX, then MH. For these

widths, we see that the mixed methods are superior to their

unmixed counterpart. For width values larger than 2, we see

that the two mixed methods become poorer than their unmixed

counterparts. Both of these phenomena can be explained by the

presence of the widening option in the mixing scheme.

Figure 5 shows the results of the SRF test. We see similar

results in this test as the previous one. For widths below 1, the

mixed methods are superior. This is reasonable, since without

the widening option, the chain has difficulties escaping the local

minima of the Ackley function. Also, for widths>1, all methods

achieve roughly the same SRF. At these widths, the chain can

already escape the local minima and does not need help from

the widened proposal.

3.2. Benchmark 2: Thermal isomerization
of α-pinene

For our second benchmark test, we apply our method to

the more realistic case of the thermal isomerization of α-pinene

(y1) into dipentene (y2) and alloocimene (y3), which then

yields α- and β-pyronene (y4) and a dimer (y5) [22]. This is

a popular benchmark problem that has seen much attention in

the literature [23–26]. This is because it suffers significantly from

structural non-identifiablility due to certain linear dependencies

inherent within the data and model [27].

Assuming first-order kinetics, the ODE’s for the system are

given by

ẏ1 = −(θ1 + θ2)y1,

ẏ2 = θ1y1,

ẏ3 = θ2y1 − (θ3 + θ4)y3 + θ5y5,

ẏ4 = θ3y3,

ẏ5 = θ4y3 − θ5y5,

(20)

Frontiers in AppliedMathematics and Statistics 10 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 6

Results of SA test on the α−pinene application. (Top left) Standard SA. (Top right) Mixed SA. (Bottom left) Adaptive SA. (Bottom right)

Mixed/adaptive SA. The horizontal axis displays the step number while the vertical axis represents the the proposal width (increases downward).

The color axis displays the average fitness across the 100 runs of each method.

with analytical solutions available in [27]. The data to which the

above model must be fit is shown in Table 2 and was obtained by

Fuguitt and Hawkins [22], who reported concentrations for the

reactant and four products at 8 different times. The best known

solution [28] is θ∗ = (5.9256 · 10−5, 2.9632 · 10−5, 2.0450 ·

10−5, 2.7473 · 10−4, 4.0073 · 10−5).

Themost straightforward way to calculate a form of error for

this problem would be to simply calculate the sum of squared

differences (between the data and the model) in concentration

of the chemical species at the given times. Initial testing with

this error calculation led to poor convergence, likely due to

parameter space being littered with local maxima. Therefore, we

instead choose to calculate the sum of squared differences in the

derivatives

ǫ(θ)2 =

Nint−1
∑

i=2

||f (yi, θ)− (yi+1 − yi−1)/(2dt)||
2, (21)

where dt is the timestep, f is the vectorized right-hand side of

Equation (20) and the yi are linearly interpolated from the data

in Table 2. For the SA and GA cases, we calculate fitness via

F(θ) =

(

1

1+ ǫ(θ)1/2

)

. (22)

The square root was added from the previous test since the errors

can reach up to the order of 105. Squaring and inverting such

large number can lead to negligible fitnesses. For the MCMC

case, we again used a uniform prior distribution over the entire

search space and used the likelihood function

ℓ(y|θ) = exp

(

−
ǫ(θ)2

2σ 2

)

, (23)

where σ = 15 (again chosen to achieve an acceptance rate of

between 0.25 and 0.5).

3.2.1. Simulated annealing

Now, we present the results of the SA test on the

α−pinene application (see Figure 6). We again use the 100

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 7

Results of GA test on the α−pinene application. (Top left) Standard GA. (Top right) Mixed GA. (Bottom left) Adaptive GA. (Bottom right)

Mixed/adaptive GA. The horizontal axis displays the step number while the vertical axis represents the the proposal width (increases downward).

The color axis displays the average fitness across the 25 runs of each method.

TABLE 3 Summary of peak average fitness between all four SA and GA

cases on the α−pinene application.

Standard Mixed Adaptive Mixed/adaptive

SA 0.9891 0.9999 0.9136 0.9994

GA 0.9989 0.9994 0.9995 0.9994

samples and 30 proposal width values as in the previous

problem. The parameter space is set to θm ∈ [0, 0.2] for

m = 1, · · · , 5. The mixing amplitudes used were (At ,Aw) =

(1/10, 2) and the mixing probabilities used were (pt , pf , pw) =

(0.501253, 0.333333, 0.165414). Since the reaction coefficients

which must be estimated are very small, we choose smaller

amplitudes than in the Ackley case. Again, both the cooling

constant τ and the burn-in time were set to be half the total

number of time steps.

Reviewing the plot, we see very similar results to that

of the Ackley test. We see that the standard SA achieved

a maximum average fitness of 0.9891 at a width of 0.0010

with a significant drop in performance for larger widths.

Moving on to the mixed case, the highest average fitness

achieved was 0.9999 at a fixed width of 0.0001 (no smaller

widths were tested). Like in the previous Ackley test, the

mixed method’s performance does not decrease as rapidly

when widths far from the optimal are chosen. In the adaptive

case, the highest average fitness (a value of 0.9136 at a

width of 0.0010) was lower than in the standard case, yet

it was more robust in that it did not perform as poorly

with proposal widths far from the optimal. Lastly, the

mixed/adaptive case has a marginaly lower highest average

fitness (a value of 0.9994 at a width of 0.0010) than the mixed

case. However, it was the most robust by far, consistently

achieving high fitness across the entire range of tested

proposal widths.

Frontiers in AppliedMathematics and Statistics 12 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

FIGURE 8

IAC results of MCMC test on the α−pinene problem. The horizontal axis displays the proposal width (logarithmic scale). The vertical axis is the

average lower bound of the IAC.

FIGURE 9

SRF results of MCMC test on the α−pinene problem. The horizontal axis displays the proposal width (logarithmic scale). The vertical axis is the

SRF (logarithmic scale).

3.2.2. Genetic algorithm

Moving on to the results of the application of GAs to the

α−pinene problem, we again have standard GA, mixed GA,

adaptive GA, and mixed/adaptive GA. The results are displayed

in Figure 7. The parameter space was again set to θm ∈ [0, 1]

for m = 1, · · · , 5 with 30 randomly initialized instances over

25 different proposal widths. Identical values of the mixing

amplitudes, probabilities, and burn-in time were used.

The results of this test are unique across all of the

experiments we performed since there is very little performance

difference between the four different methods (with all methods

achieving a fitness of 0.9989 or greater). Perhaps the most

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

noticeable feature of the plots is the superior performance

for the adaptive and mixed/adaptive cases (over their non-

adaptive counterparts) for very small widths. Table 3 compares

the peak performance of the various SA and GAmethods on the

α−pinene application.

3.2.3. Markov chain Monte Carlo

We now present the results of the IAC and SRF tests on the

MCMC implementation of our mixing method in the context

of the α−pinene problem. We compare results from standard

Metropolis (MH), mixed Metropolis (MX), adaptive Metropolis

(AM), and adaptive-mixed Metropolis (AX). We used identical

parameter ranges, mixing amplitudes, and mixing probabilities.

The number of steps was set to Nstep = 211 with Nburn =

Nstep/2. We tested a range of 20 proposal widths with 100 chains

generated for each in order to obtain reliable averages. Also,

recall that in the Ackley function, all parameters are identical,

so we should not see a significant difference in any of the plots of

each parameter.

Figure 8 shows the results of the IAC test. Examining any

of the five plots, we see that for proposal widths smaller

than 2, there is a clear ordering of method performance. In

decreasing order we have AX, AM, MX, then MH. For these

widths, we see that the mixed methods are superior to their

unmixed counterpart. For width values larger than 2, we see

that the two mixed methods become poorer than their unmixed

counterparts. Both of these phenomena can be explained by the

presence of the widening option in the mixing scheme.

Figure 9 shows the results of the SRF test. We see similar

results in this test as the previous one. For widths below 1, the

mixed methods are superior. This is reasonable, since without

the widening option, the chain has difficulties escaping the local

minima of the Ackley function. Also, for widths>1, all methods

achieve roughly the same SRF. At these widths, the chain can

already escape the local minima and does not need help from

the widened proposal.

4. Conclusions

In this paper, we have proposed and tested a Gaussian

kernel mixing method that can be easily implemented in a

variety of stochastic optimization and Markov chain Monte

Carlo contexts. In the majority of test cases, the method served

to provide a substantial increase in performance when combined

with the chosen base method. Regarding its use in SA, significant

improvement was seen in both test problems. Similarly, in the

MCMC implementation, our mixed method performed either

as well or slightly better than standard Metropolis or AM in

both the IAC and SRF tests. For the GA case, improvement

was seen in the Ackley test problem. However, in the α−pinene

problem, a small reduction in performance was seen. Further

testing on more varied types of benchmark functions would

be beneficial for determining for which types of problems our

mixing method is best suited. Additionally, an extension of

the method to beyond three discrete possibilities for mixing

should be investigated. More possible mixing amplitudes could

be added. Also, a continuous mixing of the form

q(θ ′|θn) =

∫ b

a
ρ(A)N

(

θn, (Aσ)2
)

dA, (24)

(with a < 1 < b) which preserves the variance σ 2 would be a

reasonable option.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

The idea for themethod was developed by GW and JWwhile

working on a separate project. When it was determined that the

method might deserve its own paper, ZS was brought onto the

project for his expertise in the field. GW was responsible for the

coding and testing of the method and all members were involved

in the analysis of the results. All authors contributed to the article

and approved the submitted version.

Acknowledgments

We would like to thank Middle Tennessee State University,

the College of Basic and Applied Sciences, the Computational

and Data Sciences Ph.D. Program, and the Department of

Mathematics.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

West et al. 10.3389/fams.2022.915294

References

1. Metropolis N, Rosenbluth AW, RosenbluthMN, Teller AH, Teller E. Equation
of state calculations by fast computing machines. J Chem Phys. (1953) 21:1087–92.
doi: 10.1063/1.1699114

2. Haario H, Saksman E, Tamminen J. An adaptive metropolis algorithm.
Bernoulli. (2001) 7:223–42. doi: 10.2307/3318737

3. Hastings WK. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika. (1970) 57:97–109. doi: 10.1093/biomet/57.1.97

4. Roberts GO, Rosenthal JS. Examples of adaptiveMCMC. J Comput Graph Stat.
(2012) 18:349–67. doi: 10.1198/jcgs.2009.06134

5. Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing.
Science. (1983) 220:671–80. doi: 10.1126/science.220.4598.671

6. Aarts EHL, Korst JHM. Simulated annealing and Boltzmann machines -
a stochastic approach to combinatorial optimization and neural computing. In:
Wiley-Interscience Series in Discrete Mathematics and Optimization. (1990).

7. Thompson J, Dowsland KA. General cooling schedules for a simulated
annealing based timetabling system. In: Edmund KB, Peter R, editors. Practice and
Theory of Automated Timetabling. Berlin; Heidelberg: Springer (1996). p. 345–63.
doi: 10.1007/3-540-61794-9_70

8. Holland JH. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT
Press (1992). doi: 10.7551/mitpress/1090.001.0001

9. Pedersen JT, Moult J. Genetic algorithms for protein structure prediction. Curr
Opin Struct Biol. (1996) 6:227–31. doi: 10.1016/S0959-440X(96)80079-0

10. Montana DJ, Davis L. Training feedforward neural networks using genetic
algorithms. In: Proceedings of the 11th International Joint Conference on Artificial
Intelligence -Volume 1, IJCAI’89. San Francisco, CA:Morgan Kaufmann Publishers
Inc. (1989). p. 762–7.

11. Meyer TP. Local Forecasting of High-Dimensional Chaotic Dynamics.
Addison-Wesley (1992). p. 249–63.

12. Baker JE. Adaptive selection methods for genetic algorithms. In: ICGA.
(1985).

13. De Jong KA.AnAnalysis of the Behavior of a Class of Genetic Adaptive Systems
(Ph. D. thesis). University of Michigan, Ann Arbor, MI, United States. (1975).

14. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution
Programs. 3rd Edn. Berlin; Heidelberg: Springer (1996). doi: 10.1007/978-3-662-
03315-9

15. Eshelman LJ, Schaffer JD. Real-coded genetic algorithms and interval-
schemata. In: Second Workshop on Foundations of Genetic Algorithms.

San Mateo, CA: Morgan Kaufmann Publishers Inc. (1993). p. 187–202.
doi: 10.1016/B978-0-08-094832-4.50018-0

16. I O, S K. A real-coded genetic algorithm for functional optimization using
unimodal normal distribution crossover. In: Proceedings of the 7th International
Conference on Genetic Algorithms. East Lansing, MI: Morgan Kaufmann Publishers
Inc. (1997). p. 246–53.

17. Bhandari D, Pal NR, Pal SK. Directed mutation in genetic algorithms. Inform
Sci. (1994) 79:251–70. doi: 10.1016/0020-0255(94)90123-6

18. Zhou Q, Li Y. Directed variation in evolutionary strategies. IEEE Trans Evol
Comput. (2003) 7:356–66. doi: 10.1109/TEVC.2003.812215

19. Temby L, Vamplew P, Berry A. Accelerating real valued genetic algorithms
using mutation-with-momentum. In: The 18th Australian Joint Conference on
Artificial Intelligence. (2005). p. 1108–11. doi: 10.1007/11589990_149

20. Solonen A. Proposal adaptation in simulated annealing for
continuous optimization problems. Comput Stat. (2013) 10:28.
doi: 10.1007/s00180-013-0395-8

21. Gelman A, Rubin DB. Inference from iterative simulation using multiple
sequences. Stat Sci. (1992) 7:457–72. doi: 10.1214/ss/1177011136

22. Fuguitt RE, Hawkins JE. Rate of the thermal isomerization of α-pinene in the
liquid phase1. J Am Chem Soc. (1947) 69:319–22. doi: 10.1021/ja01194a047

23. Tjoa IB, Biegler LT. Simultaneous solution and optimization strategies for
parameter estimation of differential-algebraic equation systems. Indus Eng Chem
Res. (1998) 30:376–85. doi: 10.1021/ie00050a015

24. Rodriguez-Fernandez M, Egea JA, Banga JP. Novel metaheuristic
for parameter estimation in nonlinear dynamic biological systems. BMC
Bioinformatics. (2006) 7:483. doi: 10.1186/1471-2105-7-483

25. Brunel NJB, Clairon Q. A tracking approach to parameter estimation
in linear ordinary differential equations. Electr J Stat. (2015) 9:2903–49.
doi: 10.1214/15-EJS1086

26. Miro A, Pozo C, Guillen-Gosalbez G, Egea JA, Jimenez L. A tracking
approach to parameter estimation in linear ordinary differential equations. BMC
Bioinformatics. (2012) 13:90. doi: 10.1186/1471-2105-13-90

27. Box GEP, Hunter WG, Macgregor JF, Erjavec J. Some problems associated
with the analysis of multiresponse data. Technometrics. (1973) 15:33–51.
doi: 10.1080/00401706.1973.10489009

28. Egea JA, Rodriguez-Fernandez M, Banga J, Marti R. scatter search for
chemical and bio-process optimization. J Global Optim. (2007) 37:481–503.
doi: 10.1007/s10898-006-9075-3

Frontiers in AppliedMathematics and Statistics 15 frontiersin.org

https://doi.org/10.3389/fams.2022.915294
https://doi.org/10.1063/1.1699114
https://doi.org/10.2307/3318737
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/3-540-61794-9_70
https://doi.org/10.7551/mitpress/1090.001.0001
https://doi.org/10.1016/S0959-440X(96)80079-0
https://doi.org/10.1007/978-3-662-03315-9
https://doi.org/10.1016/B978-0-08-094832-4.50018-0
https://doi.org/10.1016/0020-0255(94)90123-6
https://doi.org/10.1109/TEVC.2003.812215
https://doi.org/10.1007/11589990_149
https://doi.org/10.1007/s00180-013-0395-8
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1021/ja01194a047
https://doi.org/10.1021/ie00050a015
https://doi.org/10.1186/1471-2105-7-483
https://doi.org/10.1214/15-EJS1086
https://doi.org/10.1186/1471-2105-13-90
https://doi.org/10.1080/00401706.1973.10489009
https://doi.org/10.1007/s10898-006-9075-3
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org

	A kernel mixing strategy for use in adaptive Markov chain Monte Carlo and stochastic optimization contexts
	1. Introduction
	1.1. The Metropolis method
	1.2. Simulated annealing
	1.3. Real-coded genetic algorithms (GA)

	2. Kernel mixing method
	2.1. Motivation and advantages
	2.2. The method
	2.3. Implementation

	3. Numerical experiments and results
	3.1. Benchmark 1: Ackley function
	3.1.1. Simulated annealing
	3.1.2. Genetic algorithm
	3.1.3. Markov chain Monte Carlo

	3.2. Benchmark 2: Thermal isomerization of α-pinene
	3.2.1. Simulated annealing
	3.2.2. Genetic algorithm
	3.2.3. Markov chain Monte Carlo

	4. Conclusions
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher's note
	References

