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Urban-population growth model has attracted attention over the last few

decades due to its usefulness in representing population dynamics, virus

dynamics, and epidemics. Researchers have included stochastic perturbation

in the urban-population growth model to improve the model, attempting to

capture the random nature of real-time dynamics. When doing so, researchers

have presented conditions to ensure that the corresponding stochastic

solution is both positive and unique (in probability). This paper advances

that knowledge by showing that the stochastic di�usion constant can be

both positive and negative—previous results in the literature have required

that such a constant be positive only. A numerical simulation illustrates the

paper’s findings.
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1. Introduction

The Hokkaido prefecture, in Japan, had experienced a severe economic crisis that hit

hard the social and living situation in that region [1]. Searching for better opportunities,

individuals living in the countryside of that region started moving to the Sapporo city,

capital of the Hokkaido prefecture. This migration led to an unbalance in Hokkaido’s

population distribution and created all kinds of social problems [1].

In an attempt to understand the population dynamics within the Hokkaido

prefecture, a group of researchers has applied real-time population data to the so-called

dynamic self-organization theory [see [1]]. This theory was first developed by Nicolis and

Prigogine [2] in the classical monograph; this theory tries to explain a phenomenon in

which a system organizes itself through internal and external interactions within the local

population. The key idea is to let the interactions between two local populations be driven

by a system of two deterministic differential equations. In formal terms, the deterministic

differential equations are [e.g., [1]]

dx1(t)

dt
= k1x1(t)

(

N1 − x1(t)− βx2(t)
)

− d1x1(t),

dx2(t)

dt
= k2x2(t)

(

N2 − x2(t)− βx1(t)
)

− d2x2(t), (1)
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where x1(t) and x2(t) are positive terms that represent the

population on the first and second region, respectively, and

the constants ki, Ni, and di, i = 1, 2, are positive and known

constants. The constant β > 0 sets the interdependence level

between the two regions [cf., [1]].

The authors of [1] have considered a linearization of the

model (1) at the point (x̄1, x̄2) = (N1 − d1/k1, 0), finding

conditions for local stability, valid only around the point

(x̄1, x̄2). Another study has shown that (1) has four different

equilibrium points and that xi(t), i = 1, 2, converges to

one of these points as t increases to infinity [see [3]]. When

reaching a convergence point, the two regions’ population

enters into equilibrium [cf., [3]]. In other words, the asymptotic

stability of the system (1) is completely characterized by the

authors of [3]. However, as pointed out in [[4], Chapter 5],

the model in (1) remains incomplete because (1) does not

account for random fluctuations that usually drive the behavior

of population dynamics.

Researchers have become interested in stochastic differential

equations for modeling population dynamics because these

equations have proved to be useful in a variety of applications,

such as in epidemics [5–7], fish population [8], phytoplankton

concentration [9], HIV (virus) dynamics [10, 11], dengue

[12], and tumor cell growth [13]. Researchers have even

considered the stochastic version of the deterministic two-

region population dynamics shown in (1) [e.g., [14–16]]. What

researchers have proposed is, in fact, a stochastic model that

simply adds the term σixi(t)dBi(t), i = 1, 2, in (1), where

Bi(t) denotes the standard unidimensional Brownian motion.

The resulting stochastic differential equation is then studied in

a way that the corresponding solution is unique [14–16]. To

ensure uniqueness, the authors of [14–16] require that σi > 0,

i = 1, 2; however, as we show in this paper, that condition is

unnecessary—we show that σi, i = 1, 2, can be both positive

and negative. This finding represents the main contribution of

this paper.

The main contribution of this paper is to show the

conditions that guarantee the stochastic urban-population

growth model have a unique, positive solution. What

this paper advances with respect to the previous results

from the literature [e.g., [14–16]] is that this paper shows

uniqueness and positiveness of solution without the

classical assumption that σi > 0, i = 1, 2. This paper

then expands the application of the result in [14–16] for

the two-dimensional stochastic urban-population growth

model. The main result of this paper is illustrated through a

numerical simulation.

Notation: The set of (positive) real numbers is denoted

by R (R+), and the corresponding n-th dimensional (positive

orthant) Euclidean space is denoted by R
n (Rn

+). Given two

scalars x1 and x2, we define x1∨x2 = max(x1, x2) and x1∧x2 =

min(x1, x2). The symbol |x| computes the Euclidean norm of

x ∈ R
n. The symbol 11{·} stands for the Dirac measure. Every

stochastic process studied in this paper evolves upon a fixed,

filtered probability space (�,F , P).

2. Existence and uniqueness of the
stochastic urban-population growth
model

This section shows conditions to ensure the existence and

uniqueness of solutions for the stochastic urban-population

growth model. We emphasize that this paper is not the first

to characterize the existence and uniqueness of solutions for

such a system [e.g., [14–16]]; however, we show that a condition

required by the authors of [14–16] is unnecessary, as detailed in

the sequence.

The stochastic model studied in this paper arises from the

Itô’s extension of the system (1) with αi = Ni − di/ki, i = 1, 2,

which equals

dxi(t) = ki

(

αixi(t)− βx1(t)x2(t)− x2i (t)
)

dt + σixi(t)dBi(t),

i = 1, 2, (2)

where ki, αi, xi(0), i = 1, 2, and β are positive, given scalars. In

this paper, the constants σi ∈ R, i = 1, 2, have no specific sign,

in contrast to the studies in [14–16] that require σi > 0, i = 1, 2.

Now we recall the meaning of a solution for the system (2).

Definition 2.1 ([17], p. 48; [18], Definition 6.1.3, p. 101). We

say xi(t), i = 1, 2, is a solution for the system (2) if (i) {xi(t)} is

continuous and Ft-adapted, and (ii) the equation in (2) is valid

for all t > 0 with probability one.

Remark 1. As proved in the monograph [[18], Coro. 6.3.2, p.

112] any stochastic differential equation with both drift term

and diffusion term satisfying the locally Lipschitz condition has

a solution within a bounded time frame [see also the proof of

Theorem. 2.1 in [15] for a discussion]. As for the stochastic system

(1), both the drift terms xi 7→ kiαixi − kiβx1x2 − kix
2
i , i = 1, 2,

and the diffusion terms xi 7→ σixi, i = 1, 2, satisfy the local

Lipschitz condition. Thus, the result in [[18], Coro. 6.3.2, p. 112]

ensures that (2) has a solution xi(t), i = 1, 2.

Definition 2.2. We say a solution xi(t), i = 1, 2, is unique if

any other solution x̃i(t), i = 1, 2, is indistinguishable from xi(t),

i = 1, 2, that is,

Pr[xi(t) = x̃i(t) : i = 1, 2, ∀t > 0] = 1.

Next, we introduce the concept of positive solution for the

stochastic population model in (2).

Definition 2.3. We say the solution xi(t), i = 1, 2, from (2) is

positive if, given any initial condition xi(0) ∈ R+, i = 1, 2,

there holds

Pr
[

xi(t) ∈ R+ : i = 1, 2, ∀t > 0
]

= 1.
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FIGURE 1

Mean (black) and standard deviation (light gray) curves of one

thousand sample paths.

Now we can present the main result of this paper.

Theorem 2.1. The solution xi(t), i = 1, 2, from (2) is both

positive and unique.

The proof of Theorem 2.1 is postponed to Section 2.2.

Remark 2. The authors of [14–16] have attained the same result

of Theorem 2.1 under the assumption that σi > 0, i = 1, 2;

however, as stated in Theorem 2.1, this assumption is unnecessary.

For this reason, Theorem 2.1 expands the usefulness of the result

from [14–16] for the stochastic urban-population growth model as

in (2).

2.1. Numerical simulation

This section illustrates the result of Theorem 2.1 through

a simulation. In (1), we set xi(0) = 0.5, σi = −1, i = 1, 2,

k1 = 0.2, k2 = 0.3, α1 = 0.6, α2 = 0.5, and β = 0.5. We

performed a Monte-Carlo simulation on (1) with one-thousand

sample paths, each simulation taking 120 seconds. To simulate

(1), we employed the Euler-Maruyama procedure as in [19] with

step size of 10−5.

For all the Monte-Carlo samples taken randomly, we

observed that both x1(t) and x2(t) were positive—this numerical

evidence confirms the positiveness of the solution xi(t), i =

1, 2, as discussed in Remark 1. Even though this positiveness is

already characterized in the results of [14–16], these results apply

only under the condition that σi > 0, i = 1, 2. This condition is

unnecessary, as discussed in Remark 2; note that the numerical

simulation suggested the result hold with σi = −1, i = 1, 2.

Figure 1 shows the corresponding mean and standard

deviation taken for the minimum value between x1(t) and x2(t).

The corresponding data indicate that both x1(t) and x2(t) are

positive and unique, in accordance with Theorem 2.1.

2.2. Proof of Theorem 2.1

Proof. The proof of Theorem 2.1 is divided into two parts. In the

first part, we show that xi(t), i = 1, 2, is positive; in the second

part, we show that xi(t), i = 1, 2, is unique.

Part I: the solution xi(t), i = 1, 2, from (2) is positive for

all t > 0.

To see that any solution xi(t), i = 1, 2, satisfying (2) is

positive, set i = 1 in (2) to write the identity

(

exp

(

−

∫ t

0
(k1α1 − βk1x2(r)− k1x1(r))dr

−σ1

∫ t

0
dB1(r)

))

dx1(t)

dt

= x1(t)

(

k1α1 − k1βx2(t)− k1x1(t)+ σ1
dB1(t)

dt

)

× exp

(

−

∫ t

0
(k1α1 − βk1x2(r)− k1x1(r))dr − σ1

∫ t

0
dB1(r)

)

.

Therefore,

d

dt

(

x1(t) exp

(

−

∫ t

0
(k1α1 − βk1x2(r)− k1x1(r))dr

−σ1

∫ t

0
dB1(r)

))

= 0,

which yields

x1(t) = x1(0) exp

(∫ t

0
(k1α1 − βk1x2(r)− k1x1(r))dr

−σ1B1(t)
)

. (3)

It then follows from (3) that x1(t) ∈ R+ for all t > 0

provided that x1(0) ∈ R+. A similar reasoning applied in (2)

with i = 2 shows that x2(t) ∈ R+ for all t > 0 provided that

x2(0) ∈ R+. This argument proves that the stochastic system (2)

has a positive solution provided that xi(t) ∈ R+, i = 1, 2.

Part II: the solution xi(t), i = 1, 2, from (2) is unique.

To prove the assertion of Part II, we begin with a change of

variable upon (2). Namely, set ui(t) = ln xi(t), i = 1, 2, and apply

upon them the Itô’s formula [e.g., [17], p. 36, Theorem 6.4; [20],

p. 48, Theorem 4.2.1] to obtain

dui(t) = d ln xi(t)

=



kiαi −
σ 2
i

2
− βki

2
∑

j=1

11i 6=jxj(t)− kixi(t)



 dt

+σidBi(t), (4)

with i = 1, 2. It follows that the solution ui(t), i = 1, 2, from

(4) is unique if and only if the solution xi(t), i = 1, 2, from (2)
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is unique. From now on, we focus our analysis on the solution

ui(t), i = 1, 2, from (4).

Define fi :R
2 7→ R, i = 1, 2, as

fi(u1, u2) = kiαi −
σ 2
i

2
− βki

2
∑

j=1

11i 6=j exp(uj)− ki exp(ui),

i = 1, 2. (5)

As a result, the dynamics in (4) is identical to

dui(t) = fi(u1(t), u2(t))dt + σidBi(t), i = 1, 2, (6)

with ui(0) = ln xi(0), i = 1, 2.

Now our task is to ensure that the solution ui(t) has a finite

growth whenever the time t > 0 is finite. To see that this finite

growth holds, let us consider a constant η > 0 that satisfies

|u|∨|v|≤ η, where u = (u1, u2) ∈ R
2 and v = (v1, v2) ∈ R

2. As

shown in the Appendix, there exists some constant c = c(η) > 0

such that

max
i=1,2

|fi(u1, u2)− fi(v1, v2)|
2≤ c(η)|u− v|2, (7)

that is, fi, i = 1, 2, are locally Lipschitz continuous. Let ui(t),

vi(t), i = 1, 2, be two solutions taken from (6). It follows from

(6) that

ui(t)− vi(t) =

∫ t

t0

(

fi(u(s))− f (v(s)
)

ds, ∀t ≥ t0. (8)

Applying the expected value operator on both sides of (8),

together with the inequality in (7), we obtain (for all t ∈ [0,T]

with given T > 0)

E

[

sup
t0≤s≤t

|u(s)− v(s)|2

]

≤ 2c(η)(T + 4)E

[

∫ t

0
sup

t0≤r≤s
|u(r)− v(r)|2

]

ds. (9)

Finally, the Grönwall’s inequality applied in (9) yields [see

[17], p. 53]

E

[

sup
0≤t≤T

|u(t)− v(t)|2

]

= 0. (10)

The identity in (10) means that u(t) = v(t) for all t ∈ [0,T],

which means that the system (4) has a unique solution on the

interval [0,T]. As a result, the solution xi(t), i = 1, 2, from (2) is

unique when t belongs to the interval [0,T].

It remains to show that xi(t), i = 1, 2, is unique for all

t > T when T increases toward infinity. To show this result,

we consider the Lyapunov-like function V :R
2
+ 7→ R+ as

V(x) = x1 − ln(x1)+ x2 − ln(x2), ∀x ∈ R
2
+. (11)

The idea is to use V(·) as in (11) to show that the solution

xi(t), i = 1, 2, from (2) cannot diverge to infinity while t is finite.

Using the Itô’s formula [e.g., [17], p. 36, Theorem 6.4; [20],

p. 48, Theorem 4.2.1] in both (2) and (11) yields

dV(x(t)) =

2
∑

i=1

(

(xi(t)− 1)

(

kiαi − kixi(t)

− βki

2
∑

j=1

11i 6=jxj(t)

)

+
σ 2
i

2

)

dt

+σi(xi(t)− 1)dBi(t). (12)

Since both x1(t) and x2(t) are positive (see Part I), we can see

that the right-hand side of (12) is bounded from above by

ᾱ(x1(t)+ x2(t)+ 1)dt +

2
∑

i=1

σi(xi(t)− 1)dBi(t),

where

ᾱ : = max

{

1,

2
∑

i=1

ki

(

αi + 1+ β +
σ 2
i

2

)}

.

Taking the expected value operator on both sides of (12),

we obtain

dE[V(x(t))] ≤ ᾱ
(

E[x1(t)+ x2(t)]+ 1
)

dt, ∀t ≥ 0. (13)

Since the expression x− 2 ln(x) is positive when x is positive

(see Figure 2), we can write

2
∑

i=1

E[xi(t)] ≤

2
∑

i=1

E[2xi(t)− 2 ln(xi(t))]. (14)

Substituting (14) into the right-hand side of (13), and

considering the definition of V(·) in (12), we can conclude that

dE[V(x(t))] ≤ 2ᾱ
(

E[V(x(t))]+ 1/2
)

dt, ∀t ≥ 0. (15)

Finally, the solution of (15) satisfies

E[V(x(t))] ≤ exp(2ᾱt)V(x(0))+
1

2ᾱ
(exp(2ᾱt)− 1),

∀t ≥ 0. (16)

Even though the term E[V(x(t))] can increase when t

increases, we now know from (16) that the growth of E[V(x(t))]

is limited from above by an exponentially increasing curve. This

curve ensures that (2) has a solution xi(t), i = 1, 2, which cannot

to diverge to infinity in finite time, as the next argument proves.

To complete the proof, we proceed with a contradiction

argument. Suppose fromnow on that there exists a finite number

Te > 0 such that maxi=1,2 xi(t) tends to infinity when t

approaches Te. Let t0 > 0 be the time in which at least either

x1(t0) or x2(t0) is greater than one. Define the stopping times

Tn = inf
{

t ∈ [t0,Te) : xi(t) /∈ (0, n] for some i = 1, 2
}

,

∀n > 1. (17)
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FIGURE 2

The curve indicates that x− 2 ln(x) is positive when x is positive.

It follows from (17) that

max
i=1,2

xi(Tn) → ∞ as n → ∞, (18)

almost surely. Note that each stopping time Tn belongs to the

interval [t0,Te) and Te > 0 is assumed to be finite. In the next

argument, we show that the sequence {Tn} diverges to infinity

(almost surely) and, as a consequence, that Te = ∞. Note that

Te = ∞ contradicts our initial assumption that Te > 0 is finite.

Let us keep our initial assumption that Te > 0 is finite. The

fact that Tn < Te for all n > 1 (almost surely) means that

Pr[Tn < Te] = 1, ∀n > 1. (19)

Any realization (i.e., sample-path) of Tn, taken from the

underlying sample space �, results from (17) that x(Tn)) >

n− ln(n) for each n > 1. Thus,

V(x(Tn)) > n− ln(n), ∀n > 1. (20)

Combining (16), (19), and (20) yields

n − ln(n) < E[V(x(Tn))] ≤ exp(2ᾱTe)V(x(0))

+
1

2ᾱ
exp(2ᾱTe), ∀n > 1, (21)

which is absurd because the term on the left-hand side of

(21) tends to infinity when n tends to infinity, while the term

on the right-hand side of (21) remains finite. This contradiction

proves that Te = ∞, and as a result, the solution xi(t), i = 1, 2,

from (2) is unique for all t > 0.

3. Concluding remarks

This paper has shown conditions that ensure the positiveness

and uniqueness of a stochastic urban-population growth model.

This stochastic system has been studied in the literature for n-

th dimensional systems [e.g., [14–16]], yet the results available

so far require the diffusion constant σi be positive. As we have

shown in Theorem 2.1, σi can be both positive and negative for

two-dimensional systems (i.e., n = 2). For this reason, Theorem

2.1 can be seen as an extension of the results from [14–16] for

two-dimensional systems.

The usefulness of Theorem 2.1 is illustrated through a

Monte-Carlo simulation. The simulation was performed for

the stochastic urban-population growth model with σi = −1,

i = 1, 2 (see Section 2.1), and the corresponding data indicate

that the system trajectories are both positive and unique—this

numerical evidence confirms the novelty of Theorem 2.1.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further inquiries

can be directed to the corresponding author/s.

Author contributions

LB, HB, and MD made substantial contributions to the

design of the work and generated the data. AV made the

interpretation of data and revision of the text. All authors have

read and approved the final manuscript.

Funding

Research supported in part by the Brazilian agencies CAPES

grant 88881.030423/2013-01 and CNPq grant 305158/2017-1

and 401572/2016-1.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Frontiers in AppliedMathematics and Statistics 05 frontiersin.org

https://doi.org/10.3389/fams.2022.960399
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Boulaasair et al. 10.3389/fams.2022.960399

References

1. Miyata Y, Yamaguchi S. A study on Evolution of Regional Population
Distribution Based on the Dynamic of Self-Organization Theory. Environmental
Science, Hokkaido University (1990). p. 1–33.

2. Nicolis G, Prigogine I. Self-Organization in Nonequilibrium Systems. Hoboken,
NJ: John Wiley and Sons, Inc. (1977).

3. El Ghordaf J, Hbid ML, Arino O. A mathematical study of a two-
regional population growth model. Compt Rendus Biol. (2004) 327:977–82.
doi: 10.1016/j.crvi.2004.09.006

4. May RM. Stability and Complexity in Model Ecosystems. Princeton, NJ:
Princeton University Press (2019).

5. Cai S, Cai Y, Mao X. A stochastic differential equation SIS epidemic model
with two independent Brownian motions. J Math Anal Appl. (2019) 474:1536–50.
doi: 10.1016/j.jmaa.2019.02.039

6. Zhao Y, Jiang D. The threshold of a stochastic SIS epidemic
model with vaccination. Appl Math Comput. (2014) 243:718–27.
doi: 10.1016/j.amc.2014.05.124

7. Lu C, Liu H, Zhang D. Dynamics and simulations of a second order
stochastically perturbed SEIQV epidemic model with saturated incidence rate.
Chaos Solitons Fract. (2021) 152:111312. doi: 10.1016/j.chaos.2021.111312

8. Yoshioka H, Yaegashi Y. Stochastic optimization model of aquacultured
fish for sale and ecological education. J Math Indus. (2017) 7:1–23.
doi: 10.1186/s13362-017-0038-8

9. Møller JK, Madsen H, Carstensen J. Parameter estimation in a simple
stochastic differential equation for phytoplankton modelling. Ecol Model. (2011)
222:1793–9. doi: 10.1016/j.ecolmodel.2011.03.025

10. Dalal N, Greenhalgh D, Mao X. A stochastic model for internal HIV
dynamics. J Math Anal Appl. (2008) 341:1084–101. doi: 10.1016/j.jmaa.2007.
11.005

11. Djordjevic J, Silva CJ, Torres DFM. A stochastic SICA epidemic
model for HIV transmission. Appl Math Lett. (2018) 84:168–75.
doi: 10.1016/j.aml.2018.05.005

12. Din A, Khan T, Li Y, Tahir H, Khan A, Khan WA. Mathematical
analysis of dengue stochastic epidemic model. Results Phys. (2021) 20:103719.
doi: 10.1016/j.rinp.2020.103719

13. Liu X, Li Q, Pan J. A deterministic and stochastic model for the system
dynamics of tumor-immune responses to chemotherapy. Phys A Stat Mech Appl.
(2018) 500:162–76. doi: 10.1016/j.physa.2018.02.118

14. Du NH, Sam VH. Dynamics of a stochastic Lotka-Volterra
model perturbed by white noise. J Math Anal Appl. (2006) 324:82–97.
doi: 10.1016/j.jmaa.2005.11.064

15. Mao X, Marion G, Renshaw E. Environmental Brownian noise suppresses
explosions in population dynamics. Stochast Process Appl. (2002) 97:95–110.
doi: 10.1016/S0304-4149(01)00126-0

16. Mao X, Sabanis S, Renshaw E. Asymptotic behaviour of the
stochastic Lotka-Volterra model. J Math Anal Appl. (2003) 287:141–56.
doi: 10.1016/S0022-247X(03)00539-0

17. Mao X. Stochastic Differential Equations and Applications. Cambridge:
Woodhead Publishing (2008). doi: 10.1533/9780857099402

18. Arnold L. Stochastic Differential Equations: Theory and Applications.
Hoboken, NJ: Wiley-Interscience (1974).

19. Higham DJ. An algorithmic introduction to numerical simulation
of stochastic differential equations. SIAM Rev. (2001) 43:525–46.
doi: 10.1137/S0036144500378302

20. Oksendal B. Stochastic Differential Equations: An Introduction With
Applications (Universitext). 5th Edn. Heidelberg; New York, NY: Springer-Verlag
(2010).

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2022.960399
https://doi.org/10.1016/j.crvi.2004.09.006
https://doi.org/10.1016/j.jmaa.2019.02.039
https://doi.org/10.1016/j.amc.2014.05.124
https://doi.org/10.1016/j.chaos.2021.111312
https://doi.org/10.1186/s13362-017-0038-8
https://doi.org/10.1016/j.ecolmodel.2011.03.025
https://doi.org/10.1016/j.jmaa.2007.11.005
https://doi.org/10.1016/j.aml.2018.05.005
https://doi.org/10.1016/j.rinp.2020.103719
https://doi.org/10.1016/j.physa.2018.02.118
https://doi.org/10.1016/j.jmaa.2005.11.064
https://doi.org/10.1016/S0304-4149(01)00126-0
https://doi.org/10.1016/S0022-247X(03)00539-0
https://doi.org/10.1533/9780857099402
https://doi.org/10.1137/S0036144500378302
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Boulaasair et al. 10.3389/fams.2022.960399

Appendix

The function fi :R
2 7→ R, i = 1, 2, defined in (5), reads as

fi(u1, u2) = kiαi −
k2i σ

2
i

2
− βki

2
∑

j=1

11i 6=j exp(uj)− k2i exp(ui),

i = 1, 2.

Hence,

max
i=1,2

|fi(u1, u2)− fi(v1, v2)|
2≤ β2k21(exp(v2)− exp(u2))

2

+k41(exp(v1)− exp(u1))
2 + 2βk31(exp(v1)− exp(u1))

(exp(v2)− exp(u2))

+β2k22(exp(v1)− exp(u1))
2 + k42(exp(v2)− exp(u2))

2

+2βk32(exp(v1)− exp(u1))(exp(v2)− exp(u2)).

After a simple algebraic manipulation, we can show that

max
i=1,2

|fi(u1, u2)− fi(v1, v2)|
2

≤
[

β(k31 + k32)+ (β2k22 + k41)
]

(exp(v1)− exp(u1))
2

+
[

β(k31 + k32)+ (β2k21 + k42)
]

(exp(v2)− exp(u2))
2. (22)

Consider a constant η > 0 that satisfies |u|∨|v|≤ η, where

u = (u1, u2) ∈ R
2 and v = (v1, v2) ∈ R

2. According

to the Lagrange finite-increments formula, there exists some

constant ξ ∈ R within the interval from mini=1,2(ui ∧ vi) to

maxi=1,2(ui ∨ vi) such that | exp(vi) − exp(ui)|= exp(ξ ) |vi −

ui|. This fact, together with the inequality in (22), allows us

to ensure the existence of some constant c = c(η) > 0

such that

max
i=1,2

|fi(u1, u2)− fi(v1, v2)|
2≤ c(η)|u− v|2. (23)

The inequality in (23) means that fi, i = 1, 2, are locally

Lipschitz continuous.
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