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Editorial on the Research Topic

Statistical Data Science - Theory and Applications in Analyzing Omics Data

Recent advancement in statistical data science empowers researchers to extract insights from
high-dimensional omics data and connect them with health outcomes to prevent diseases and
improve treatments. More and more research studies have been conducted focusing on statistics
methodological development and its application to omics data. During the editorial process,
we collected a number of research submissions and supported publications of eight excellent
papers. Those papers cover a whole spectrum of omics data, including DNA count data, bulk and
single-cell RNA sequencing data, DNA methylation data, and microbiome data, and a wide range
of disease outcomes, such as COVID-19 disease, Crohn’s disease, Hepatocellular Carcinoma, and
Low-Grade Glioma. The types of research in those papers are also diversified, including theoretical
development in novel statistical testing for DNA counts, a systematic literature review of statistical
methods inmicrobiome data, a benchmark study of single-cell auto-annotationmethods to provide
guidelines to users, and all sorts of constructive data science method applications.

Those papers demonstrate that data science methods have significantly contributed to the
growth of research involving omics data analysis. Since the sizes of omics data are usually big
and their intrinsic structures are rather complex, those challenges in the data prohibit the use of
traditional statistical methods. On the other side, data science methods have certain advantages in
dealing with big and complex data. We would like to emphasize the importance of data science
methods in omics data analysis from the following three aspects.

First, omics data usually contain big data matrices with massive columns of omics information
but relatively fewer samples (the small-n-big-p problem). For example, Human has 20,000
protein-coding genes and 60,000 pseudogenes and non-coding genes [1]. So, for RNA sequencing
data, the number of columns/genes is counted in thousands. In a Genome-wide association
study, participants are genotyped for the most common known single-nucleotide polymorphisms,
typically one million or more [2]. As for the microbiome, which includes bacteria, viruses
and fungi living on and in humans, their estimated number is 10–100 trillion [3]. Such
a large data size could also easily be gotten squared. Especially nowadays, the sample size
keeps expanding. For example, the UK biobank study has recruited half-million participants.
Data science methods provide our handful of tools for dealing with big data. Since the
neural network gets the most recognition in the industry, it is also popular for omics
data analysis [4]. In addition to the neural network, a black box type tool, the statistical
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learning methods, such as penalized regression, random forest,
and boosting methods, are also capable of dealing with big data
and making reasonable interpretations and predictions [5].

Second, structures and connections among omics
measurements are complex and cannot be exploited by
traditional regression models. Network-based pathway
analysis can illustrate the intrinsic relationships between
omics measurements, help find pathways, and conduct causal
inference [6]. Intensive research has been undertaken in the areas
of network and pathway analysis. For example, based on the gene
co-expression network, we can find the gene modules containing
coregulated genes to aid causal inference [7, 8]. We can also
generate new research hypotheses for diseases based on network
analysis via their intensive communication sub-community [9].

Third, the volume of omics data continues to expand at a faster
and faster speed due to the technologies’ advancements [10]. At
the same time, industrial development also pushes data science
methods to grow at a fantastic rate. Therefore, our statisticians’
tasks are twofold: (1) developing novel methods mainly designed
for omics data; and (2) innovative borrowingmethods from other
fields and adapting them to omics data analysis. Both are feasible
and beneficial to move the omics data research field forward.

The next era’s targets in data science method development
and application to omics data should be aligned with the
following two interconnected aims: (1) integrated analysis of
multi-omics data. We request novel analysis pipelines, which
could employ the collected measurements from all levels of

the human body, incorporate multi-omics information, and
link them with health outcomes. It could provide helpful
and comprehensive information to assist disease diagnosis and
improve treatment. (2) Building a user-friendly platform to
facilitate auto extraction of data from their storage and the online
use of the analysis pipeline. Since the data often requires cloud
storage, the platform should be designed to easily access data in
the cloud server and perform online analysis by pushing buttons.
In summary, we need more advanced integrated methods and a
more convenient application platform for omics data to move the
fields forwards.
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