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A transformational measurement model for structural equation modeling (SEM)

of asymmetric non-normal data is proposed. This measurement model aligns

with the expectation-maximization (EM) algorithm of the maximum likelihood

estimation (MLE) method, creating adaptability to data that deviate from

normality. Distinctive properties of the connection of the measurement model

and EM algorithm are maintenance of the normality assumption, which is at

the core of EM algorithm, and applicability to asymmetric non-normality of

observed data mediated by distortion coe�cients. An evaluation using a mixture

of normal and severely asymmetric non-normal data analyzed by MLE for

asymmetric non-normal data (MLE for ASN) demonstrated e�ciency of themodel.

Comparisons with robust DWLS and WLS yielded better fit results under MLE for

ASN estimation.
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Introduction

A popular method for parameter estimation in structural equation modeling (SEM) is

the maximum likelihood estimation (MLE) method which was introduced in the late 1960’s

[1]. A major component of this estimation technique is the maximum likelihood function

derived from the density function of a multivariate normal distribution. Recently, the

long-standing popularity of this estimation method has been hampered, as the estimator has

come under scrutiny because the validity of MLE outcomes is impaired when investigating

non-normal data [2–4]. These outcomes suggest the restriction of MLE to investigations of

data which closely follows a normal distribution.

Since much of the data investigated in applied situation are non-normally distributed,

replacement and modification of MLE are options to explore. There are multiple ways

to conduct alternative MLE including modified fitting functions [5, 6] and post-hoc

corrections which take data characteristics into consideration (e.g., Satorra-Bentler method

[7]). Furthermore, estimation methods based on a least-square approach are available [8, 9].

Recent studies compare two popular approaches: robust MLE with diagonally weighted

least square estimation [10, 11]. These methods perform equally well in the presence of

data commonly encountered by researchers such as: number of ordinal categories between

four and ten, sample sizes between 200 and 1,000, and symmetric as well as asymmetric

distributions. But, aside from the overall similarity in many situations, when MLE was

applied to non-normal (asymmetrically distributed) data, parameter estimates by MLE

yielded larger bias.
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This essay reports on another possible modification of MLE

for the purpose of improving its performance when analyzing

data showing various degrees of non-normality. It takes the

individual deviation of each observed variable into consideration

and is not restricted to estimates of model fit. This modification

is accomplished by a transformational measurement model that

exerts influence on parameter estimation by use of the expectation-

maximization (EM) algorithm [12, 13]. We characterize it as

transformational because it is expected to shift the range of

applicability from normally distributed data to asymmetric non-

normal data.

In a way, the modification brought about by the

transformational measurement model narrows the gap between

MLE in factor analysis (including SEM) and outside of factor

analysis where normality is rarely observed [14]. While in the

context of factor analysis, MLE expects normally distributed

data; however, in other applications MLE is recommended for

dealing with non-normality [15]. An elaboration in line with this

recommendation, for example, is an adaptation of MLE to the

Rayleigh distribution [16].

For establishing the transformational measurement model as

source of influence on EM algorithm, components of the model of

the covariance matrix of MLE have to be related to corresponding

components of the EM algorithm. This means re-parametrization

of EM algorithm [17, 18]. In the course of re-parametrization it is

necessary to assure that the performance of the algorithm is not

impaired and that at the same time deviation from normality is

taken into consideration.

Since non-normality as descriptive term applies to a variety

of different distributions that may require different treatments,

we restrict our research to a subset of non-normal distributions.

The focus is on distributions that can be perceived as derived

from a normal distribution by distortion (e.g., due to a scale

restriction) in such a way that some properties are retained:

the continuous scale, the existence of a major (i.e., global) peak

as well as a mostly monotone increase up to this peak and a

mostly monotone decrease following the peak. A major difference

between original normal and non-normal data distributions is lack

of symmetry. We characterize such distributions as asymmetric

non-normal, abbreviated as asn (see Tables 1–3). The version

of MLE described in this paper is optimized for investigating

asn data.

The specification for asymmetric non-normal data is a

characteristic that distinguishes the proposed version of MLE from

other versions that are considered for non-normal data in general.

Another characteristic is that parameters and fit statistics are

estimated in the framework of a model reflecting the deviation

of data from normality. This means that there is no post-hoc

correction as found in other MLE versions. We refer to the

proposed version of MLE as MLE for ASN.

The research reported in this paper was guided by two

aims: (1) conceptualization of a version of MLE for asymmetric

non-normal data within the framework of regular MLE for

SEM by combining it with a transformational measurement

model, and (2) demonstrating the efficiency of this version in

investigating the structure of asymmetric non-normal data. MLE

for ASN was also applied to asymmetric non-normal data with

one-dimensional and two-dimensional underlying structures and

compared with weighted least squares and diagonally weighted

least squares methods.

The theoretical argument shows the following structure: at first,

the model of the covariance matrix of MLE [19] is related to

corresponding components of EM algorithm [13]. Subsequently,

changes are introduced to fit the model to asymmetric non-normal

data. Finally, the transformationalmeasurementmodel is extracted.

The outset

We begin this investigation by considering the MLE fitting

function, F, that is proposed for fitting the parameters of the

theoretical model to data via the maximum likelihood criterion

[1, 9, 15, 17]. This outset is selected since it provides information

on what must be taken into consideration in order to demonstrate

acceptable model-data fit. Let S
(

S ∈ ℜp×p
)

be the p × p

empirical covariance matrix, 6
(

6 ∈ ℜp×p
)

the p × p model-

implied covariance matrix that is specified by assigning value(s)

to parameter(s), ϑ , and F() the MLE fitting function for model

evaluation. MLE by definition refers to an iterative search for ϑ

which provides the best fit of 6 to S on the basis of

F [6 (ϑ) , S] (1)

Whereas S is given and 6 reflects the assumptions of the tested

model, ϑ is estimated while minimizing F in a succession of cycles

of EM algorithm [12].

The model-implied covariance matrix, 6
(

6 ∈ ℜp×p
)

, can

show different degrees of complexity. For the purpose of the

present study, we concentrate on the basic version with one

latent variable for centered data associated with the congeneric

measurement model [20] typically used with confirmatory factor

analysis and structural equationmodeling. This model includes two

components that are expected to account for common and unique

variation of data, respectively:

6 = λφλ′ + 2, (2)

with p × 1 vector λ
(

λ ∈ ℜp×1
)

of factor loadings on the latent

variable of the corresponding measurement model, ξ [ξ ∼ N(0,

σ∗)], variance parameter ϕ
(

ϕ ∈ ℜ+
)

, and p × p diagonal matrix

of residual variances 2
(

2 ∈ ℜp×p
)

. Since λ and φ cannot be

estimated at the same time, scaling is necessary [21]. This is

frequently done by setting φ = 1.

6 can also be viewed as a matrix composed of variances

and covariances. Since variances are the more complex entries,

which include two components, it is sufficient to concentrate the

discussion on these components. The variance of ith manifest

variable, σii
(

σii ∈ ℜ+
)

(i= 1, . . . , p), is defined as

σii = λiφλi + θi (3)

where λi (λi ∈ ℜ) is the factor loading of the ith manifest variable

on latent variable ξ , φ
(

ϕ ∈ ℜ+
)

the variance parameter and

θi
(

θi ∈ ℜ+
)

the residual variance. In this model, φ measures

the dispersion of the latent variable that is common to all

manifest variables and, θi, the dispersion that is unique for the ith

manifest variable.
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In MLE the estimation of parameters is conducted by the EM

algorithm. This method is a tool for the iterative estimation of

parameters according to the maximum likelihood principle [22].

It is employed in situations such as missing information under

the normal distribution assumption andmixture distributions [23].

The EM algorithm is considered important throughout statistics.

Of importance for the present research is its application to factor

analysis [13]. Employed as part of MLE, EM performs parameter

estimation under the assumption of the normal distribution.

Therefore, in the present study the consequences of deviations from

normality reflected by the transformational measurement model

for parameter estimation by EM algorithm need to be analyzed in

some detail.

As the EM algorithm for factor analysis plays a major role in

MLE for ASN, we proceed by recognizing the relationship between

the parameters of Equation 3 and the parameters of EM algorithm.

Furthermore, distributional assumptions need to be taken into

consideration. EM-theory for factor analysis [13] assumes latent

variables (i.e., factors) established by unobservable factor scores,

which are symbolized as Z
(

Z ∈ ℜn×p
)

. These factor scores are

assumed to follow a normal distribution. This means that latent

variables can be considered as normal through factor scores. EM

theory also considers observed scores that are symbolized by Y
(

Y ∈ ℜn×q
)

. In MLE they are also assumed to follow a normal

distribution [1, 19].

Adaptation of the model described by Equation 3 to the

notation of EM algorithm requires linking parameters λ, θ and φ

of λ, φ and 2 to parameters of β , τ 2 and R [13] in corresponding

order. Matrix β is defined as the “regression coefficient matrix”

that “is commonly called factor-loading matrix” (p. 70), and

matrix τ 2 as matrix “of residual variances . . . commonly called

the uniquenesses” (p. 70). Furthermore, matrix R is defined as

correlation matrix of the unobservable factor scores. We assume

dimensionalities and data types for the EMmatrices corresponding

to thematrices of Equation 2. The symbol equivalent to φ isR∗ since

in a one-factormodel R reduces to a 1× 1matrix, i.e., a scalar that is

signified by the added star. It can be set free for estimation (see [13],

Case 3). After a few EM cycles, this free parameter is likely to no

more demonstrate the property of a (Pearson) correlation but may

serve as estimate of common latent variation. Finally, σii (Equation

3) is re-written using parameters of β , τ 2 and R as

σii = βiR ∗ βi + τ 2ii . (4)

The preparation of EM algorithm for data
non-normality

In this section, the model for normally distributed data is

slightly modified to make it suitable for investigating asymmetric

non-normal data while the basic definitions and assumptions of EM

algorithm except of the ones regarding Y are retained.

The investigation of asymmetric non-normal data requires

the establishment of a relationship between normally distributed

data and asymmetric non-normal data. Recall at this point that

asymmetric non-normal data are assumed to originate from

normally distributed data by distortion (see Introductory section).

We consider such a relationship at the level of variances (and

covariances) since variances (and covariances) serve as input to

SEM. We assume that the effect of distortion is reflected by

distortion coefficient αi
2

(

αi ∈ ℜ+
)

(i = 1, . . . , p) linking the

variance of the manifest variable representing asymmetric non-

normal data [σii(asn)] to the variance of the (corresponding)

manifest variable representing normally distributed data [σii(n)]:

σii(asn) = α2
i σii(n). (5)

In the following several transformations are described that are

necessary for performing parameter estimation that is in line with

Equation 5 by available SEM software including EM algorithm. In

the first step, σii(n) is replaced by its constituents (see Equation 3) so

that its common and residual components can be treated separately.

In the next step, the distortion coefficient is associated with each

one of the two components so that

σii(asn) = α2
i (λiφλi)ii(n) + α2

i θi. (6)

In the following steps, αi
2 and θi are merged to give θi(asn) on

one hand and on the other hand scalar αi
2
(

αi ∈ ℜ+
)

is subdivided

and used for multiplying the common component included in

parentheses from the left-hand side and the right-hand side. Since

φ represents the dispersion of normally distributed latent variable

ξ , this is signified by adding a subscript; it is written as φ(n):

σii(asn) = αi

(

λiφ(n)λi
)

αi + θi(asn). (7)

Finally, we introduce an assumption that enables equal

treatments of all manifest variables. It is assumed that the latent

variable equally contributes to all manifest variables. This is a useful

assumption for simulation studies and can also apply to empirical

data under appropriate conditions. It allows setting λi = 1 (i = 1,

. . . , p) so that the product of variance parameter and factor loadings,

λiφλi, can be replaced by φcommon(n) (= 1φ(n)1) that is the same for

all manifest variables (i= 1, . . . , p):

σii(asn) = αiφcommon(n)αi + θi(asn). (8)

This expression includes a parameter that reflects normality of

the latent variable, φcommon(n), and distinguishes parts that relate

to asymmetric non-normality, αi, or are influenced by it, θi(asn). It

implies re-scaling: φ is set free while the replacement of the factor

loading is fixed.

Following the final transformation we note the compatibility

with EM algorithm. According to Case 3 of EM algorithm [13], βi of

βiR
∗βi (see Equation 4) can be fixed while R∗ be free. Therefore, we

set βi equal to αi (Equation 8) and R
∗ equal to φcommon(n) (Equation

8). Furthermore, since the description of EM algorithm does not

includes a distributional assumption regarding τ 2, τ 2 is set equal to

θi(asn). Writing Equation 8 accordingly gives

σii(asn) = β(EM, fixed)iR
∗
(EM,estimated)β(EM, fixed)i + τ 2(EM,estimated)i (9)

that is in line with Equation 4. Subscripts added; parentheses

indicate a role in EM algorithm and whether the element is

estimated or fixed.

Parameter estimation by EM algorithm occurs in cycles. Within

each cycle R∗ under the condition of Case 3 is estimated by
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means of a regression coefficient, δ, applied to the empirical

covariance matrix. Here, δ is determined by β as well as the

previous estimate of R∗ [13]. Furthermore, residual matrix, 1,

with β and the previous estimate of R∗ as components also

exerts influence on revised R∗ [13]. This means that the fixed

β (i.e., α2) parameter upholds the relationship between what is

expected to follow the normal distribution and what appears as

distributional distortion.

Quantification of deviation from normality

This section presents a description of quantifying distortion

coefficients, αi
2 (i = 1, . . . , p) (see Equation 5). Distortion

coefficients are assumed to reflect the effect of distorting normally

distributed data regarding their variances. Since σii(n) and σii(asn)

of Equation 5 are unknown, αi
2 is not obtainable by rearranging

the ingredients of Equation 5. Here, what is possible is using the

possible proportionality of αi
2 (i = 1, . . . , p) and σii(asn) (i = 1, . . . ,

p). For this purpose all αs and σ (asn)s are arranged as p×1 vectors.

They show proportionality if σii(n) (i= 1, . . . , p) can be assumed to

be constant:

















α2
1

α2
2

α2
3
...

α2
p

















∝

















σ11(asn)

σ22(asn)

σ33(asn)
...

σpp(asn)

















. (10)

The equality assumption of factor loadings leading to Equation 8

justifies Equation 10.

Although σ (asn)s are unknown, they demonstrate a property

that can be employed for arriving at values that approximate αs.

This property is that each σii(asn) (i= 1, . . . , p) is expected to reflect

the observed variance of corresponding asymmetric non-normal

data, sii (i = 1, . . . , p) of S. This expectation implies that σii(asn)

shows a size similar to the size of sii:

σii(asn) ≈ Sii. (11)

Together Equations 10 and 11 suggest a vector of variances

obtained from distorted data for adjusting the statistical model to

the effect of distortion. Furthermore, Equations 8 and 9 suggest the

replacement of α2s by their square roots as well as ss by their square

roots: let α̂
(

α̂ ∈ ℜp×1
)

be the p × 1 vector of observation-based

distortion coefficients corresponding to the standard deviations

observed in distorted data. Then

α̂ =
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p

























. (12)

The hat (∧) on top of α and αs is added to signify that observations

serve as source.

The transformational measurement model
for asymmetric non-normal data

Finally, the transformational measurement model is achieved

by determining the measurement model associated with Equation

8 (i.e., finding the measurement model giving rise to Equation 8)

with deviation coefficients according to Equation 12:

x = α̂ξ + δ (13)

including p× 1 vector x
(

x ∈ ℜp×1
)

of centered manifest variables,

p × 1 vector α̂
(

α̂ ∈ ℜp×1
)

of distortion-reflecting fixations

replacing fixed factor loadings (see Equation 12), latent variable ξ

and p × 1 vector δ
(

δ ∈ ℜp×1
)

of residual variables. This model

is proposed for investigating the hypothesis that the systematic

variation of data is due to one underlying dimension (i.e., structural

validity) if data show asymmetric non-normality.

Checking the compatibility with fitting
function F

This section addresses the question whether fitting function F

(Equation 1) is appropriate for asymmetric non-normal data. There

is the original version of F derived from the density function of

normally distributed data [1, 15]. Furthermore, there is an extended

version that is implemented in current SEM software. It is an

extended version that shows a special characteristic which broadens

the field of application. It is defined as

F = log |6| + tr
(

S6−1
)

− log |S| − p (14)

where 6
(

6 ∈ ℜp×p
)

and S
(

S ∈ ℜp×p
)

represent the p× pmodel-

implied and empirical covariance matrices in corresponding order

and positive integer p the number of manifest variables [9, 17].

The special characteristic of this version is that in the case of

a correct model (including correct parameter estimates), 6c, and

data (an empirical covariance matrix) free of random influences, Sf:

log|6c| = log|Sf|, so that their difference is zero. Furthermore, in

this case: Sf × 6c
−1 = I and tr(I) = p. Moreover, the difference of

the trace of Sf × 6 c
−1 and p is also zero so that,

F [6c,Sf] = log |6c| + tr
(

Sf6c
−1

)

− log |Sf| − p = 0. (15)

In sum, in the case a correct model and data with no error

influence, F can be expected to arrive at a value of zero, and it is

not necessary to make assumptions regarding the distribution of

data (but, the matrices involved in the equation must allow for the

computation of a determinant and inverse).

The presence of random influences may not invalidate the

previous reasoning. In this case the model has to correctly account

for the systematic variation of data so that only unsystematic

variation due to random influences remains that is reflected by the

outcome of F. If there is reason for assuming that deviations from

expectations due to random influences follow normal distributions,

the outcome can be considered as a χ2 statistic, as is in investigating

normally distributed data.

Although the fitting function, F, was developed for normally

distributed data, its extended version appears to be applicable

to a wider range of data types if the described characteristics
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hold. This means that there is the possibility that 6 accounts

for systematic variation of S computed from asymmetric non-

normal data because of the adjustment by α̂. When there are also

remainders due to random influences, the outcome of computing F

may follow a χ2 distribution.

It should be noted that the F-based χ2 is currently only of

importance as a component for the calculation of some fit indices.

Furthermore, model fit may also be evaluated by fit indices that do

not include χ2 as a primary ingredient (e.g., SRMR).

An evaluation using simulated data

The major aim of the evaluation was to demonstrate that

the described measurement model in combination with MLE will

improve performance in investigating the latent structure of data in

the presence of asymmetric non-normality. This premise gave rise

to two hypotheses: first, we hypothesized that when analyzing data

illustrating asymmetric non-normality MLE for ASN would lead to

better overall model fit compared to regular MLE. This hypothesis

is based on the expectation that only MLE for ASN, but not regular

MLE, could account for all systematic variation in distorted data.

Second, we hypothesized that MLE for ASN would not provide an

advantage over regular MLE in accounting for systematic variation

unrelated to asymmetric non-normality. This hypothesis aimed

at systematic variation that was neither reached by an incorrect

model nor related to distributional deviation.MLE for ASNwas not

expected to account for this kind of systematic variation. Another

aim was the comparison of MLE for ASN with two established

estimation methods suggested to account to non-normality: robust

DWLS and WLS.

To evaluate our claims, we conducted a simulation study.

Structured random data with and without skewness manipulation

were investigated by a measurement model corresponding to

the model for data generation, that is a model assuming

equal contributions of a common source to all items. For this

purpose we generated normally distributed random data showing

an underlying structure and manipulated their distribution for

obtaining asymmetric non-normal data. In most investigations the

structure of data was unidimensional. In additional investigations

with incorrect (and corresponding correct) models the underlying

structure was two-dimensional.

Method

Data generation started with three sets of 500 × 20 matrices

of continuous and normally distributed data [N(0,1)] using a

generation method described by [24]. Either one or two unrelated

underlying dimensions characterized the matrices. The expected

factor loading of the first set was 0.40, in the second set 0.35 and in

the third set 0.30. We refer to these as data with expected first-level

factor loadings, expected second-level factor loadings and expected

third-level factor loadings in corresponding order. The expected

residuals were set to the difference between 1 and the common

variation of items (the squares of the corresponding expected factor

loadings). Data matrices with two underlying dimensions were

realized as the combination of two subsets of columns. In this case,

columns 1–10 of a matrix were associated with the first dimension

and columns 11–20 with the second one.

When analyzing real data outside of the current research

project, the typical observation was that the items’ deviation from

a symmetric distribution varied. We attempted to simulate this

characteristic of real data by restricting deviation from symmetry to

10 of the 20 columns and generated different degrees of deviation.

This transformation from symmetric to asymmetric was conducted

according to the following formula: xasn = (x×k)1/2/k, where x> 0.

That is, that the data of a column were multiplied by integer k in the

first step. Then the square root was computed and the result divided

by k. The integer, k, was set to 4 in transforming two columns of a

matrix, to 16 in another two, to 64 in further two, and also to 256

and 1,024 in two plus two more columns such that the amount of

non-normality varied across columns.

The measurement model for the statistical investigation

included one latent variable with fixed factor loadings (see Equation

13) whereas the variance parameter of the corresponding model-

implied covariance matrix was set free for estimation, as also were

the parameters included in the main diagonal of 2 (see Equations

8, 9). The factor loadings were fixed according to Equation. 12.

Parameter estimation was conducted by means of the MLE

option in LISREL [25] (regular MLE and MLE for ASN).

In addition to MLE, DWLS and WLS were employed for

parameter estimation. The LISREL version of DWLS additionally

performed robust estimation according to a Satorra-Bentler post-

hoc correction method.

Results

In the following the results of investigating model fit are

reported for the different data conditions (data with no ASN

and data with ASN) using regular MLE and MLE for ASN (first

section), for correct and incorrect models (second section), and

for different estimation methods (MLE for ASN, DWLS, andWLS)

(third section).

E�ects of MLE versions in normal and
non-normal data (hypothesis 1)

Fit results for normally distributed and asymmetric non-

normal data investigated by regular MLE and MLE for ASN are

included in Table 1.

The three sections of this table comprise fit results observed

when investigating data with an expected factor loading of 0.40

(expected first-level factor loadings), of 0.35 (expected second-level

factor loadings) and of 0.30 (expected third-level factor loadings).

The first row of the upper section includes the mean χ2,

RMSEA, SRMR, NNFI, CFI, and AIC for the one-factor model with

regular MLE applied to normally distributed data and the second

row corresponding standard deviations (SD). Using commonly

accepted guidelines (e.g., RMSEA ≤ 0.6, SRMR ≤ 0.8, NNFI

≥ 0.95, and CFI ≥ 0.95), all model fit indices indicated good
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TABLE 1 Mean fit results and SDs (in italics) observed in investigating data showing (no) asymmetric non-normality (ASN) by one-factor models using

regular MLE and MLE for ASN (N = 500).

Characteristics of data (and estimation) χ2 RMSEA SRMR NNFI CFI AIC

Expected first-level factor loadings (0.40)

No ASN (MLE) Mean 258.0 0.021 0.057 0.97 0.97 300.0

SD 78.3 0.018 0.016 0.03 0.03 78.3

ASN (MLE) Mean 300.3 0.034 0.069 0.95 0.95 342.3

SD 33.0 0.005 0.005 0.01 0.01 33.0

ASN (MLE for ASN) Mean 229.9 0.019 0.054 0.98 0.98 271.9

SD 25.7 0.008 0.005 0.01 0.01 25.7

Expected second-level factor loadings (0.35)

No ASN (MLE) Mean 235.5 0.018 0.052 0.96 0.96 277.5

SD 56.6 0.015 0.011 0.04 0.04 56.6

ASN (MLE) Mean 262.7 0.027 0.059 0.94 0.94 304.7

SD 27.9 0.005 0.004 0.02 0.02 27.9

ASN (MLE for ASN) Mean 216.0 0.015 0.049 0.97 0.97 258.0

SD 24.0 0.008 0.004 0.02 0.02 24.0

Expected third-level factor loadings (0.30)

No ASN (MLE) Mean 217.6 0.014 0.048 0.96 0.95 259.6

SD 39.8 0.012 0.007 0.06 0.05 39.8

ASN (MLE) Mean 234.7 0.021 0.052 0.93 0.93 276.7

SD 24.2 0.006 0.003 0.03 0.03 24.2

ASN (MLA for ASN) Mean 205.6 0.012 0.046 0.97 0.97 247.6

SD 22.2 0.008 0.003 0.03 0.03 22.2

model fit [26]. The third row provides the mean results observed

in investigating asymmetric non-normal data also using regular

MLE and the fourth row corresponding SDs. All statistics showed

a numeric impairment in comparison to values presented in

the first row; however, only NNFI and CFI values were down

to the cutoff for good model fit. The mean results obtained

by MLE for ASN applied to asymmetric non-normal data are

included in the fifth row and the corresponding SDs in the

sixth rows. All fit indices obtained by MLE for ASN indicated

good model fit (i.e., were lower respectively larger than the

corresponding cutoffs).

The fit results reported in the second and third sections

(expected second-level and third-level factor loadings) of Table 1

showed similar patterns as in the first one although numerically

slightly worse degrees of model fit were signified. In these sections,

asymmetric non-normal data led to the switch from good to

acceptable model fit according to NNFI and CFI when there was

noMLE for ASN. In contrast, MLE for ASN yielded good model fit.

In sum, investigations by regular MLE revealed the expected

decrease in model fit in the presence of asymmetric non-normality

while adjustment to asymmetric non-normality resulted in the

return to the original degree of model fit (confirmation of

hypothesis 1).

E�ects of MLE versions in unrelated
systematic variation (hypothesis 2)

Fit results for correct and incorrect models used in investigating

normally distributed and asymmetric non-normal data with regular

MLE and MLE for ASN are reported in Table 2.

The first to fourth rows of this table include fit results for

the correctly specified model and the remaining rows for the

misspecified (i.e., incorrectly specified) model. The fit results

for the correct model, but with no adaptation to asymmetric

non-normality (first row), signified good model fit according to

RMSEA and SRMR whereas NNFI and CFI illustrated model

misfit. The report for the correct model with adaptation to

asymmetric non-normality (third row) revealed improvement

regarding NNFI and CFI to the level of acceptable model fit.

All fit results for the incorrect models (see fifth to eights rows)

were numerically worse than the fit results for the correct models

(see first to fourth rows). The impairment in model fit was

very obvious in NNFI and CFI results. These values were far

below of what was considered as acceptable. Furthermore, in

misspecified models, there was virtually no fit improvement due to

adaptation to asymmetric non-normality, as was suggested by the

second hypothesis.

Frontiers in AppliedMathematics and Statistics 06 frontiersin.org

https://doi.org/10.3389/fams.2023.1095769
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Schweizer et al. 10.3389/fams.2023.1095769

TABLE 2 Mean fit results and SDs (in italics) observed in investigating data showing (no) asymmetric non-normality (ASN) by one-factor and two-factor

models using regular MLE and MLE for ASN (N = 500).

Characteristics of model χ2 RMSEA SRMR NNFI CFI AIC

Two factors, MLE Mean 266.2 0.029 0.055 0.86 0.86 312.2

SD 26.6 0.005 0.003 0.04 0.04 26.6

Two factors, MLE for ASN Mean 236.8 0.022 0.051 0.91 0.91 282.8

SD 25.2 0.007 0.003 0.04 0.04 25.2

One factor, MLE Mean 534.3 0.06 0.07 0.59 0.59 576.3

SD 71 0.006 0.005 0.05 0.05 71

One factor, MLE for ASN Mean 524.8 0.059 0.069 0.62 0.62 566.8

SD 72.5 0.006 0.005 0.05 0.05 72.5

TABLE 3 Mean fit results and SDs (in italics) observed for MLE for ASN, DWLS and WLS in investigating data showing asymmetric non-normality (ASN)

(N = 500).

Estimation method NT SB RMSEA SRMR NNFI CFI AIC

χ2 χ2

Expected first-level factor loadings (0.40)

MLE for ASN Mean 229.4 – 0.019 0.054 0.98 0.98 271.4

SD 26.1 – 0.008 0.004 0.01 0.01 26.1

DWLS Mean 300.7 288.5 0.032 0.066 0.95 0.95 330.5

SD 30.2 28.8 0.005 0.005 0.01 0.01 28.8

WLS Mean 428.7a – 0.050 0.126 0.38 0.38 470.7

SD 44.5 – 0.004 0.015 0.08 0.08 44.5

Expected second-level factor loadings (0.35)

MLE for ASN Mean 216.0 0.015 0.049 0.97 0.97 258.0

SD 24.0 0.008 0.004 0.02 0.02 24.0

DWLS Mean 262.6 255.7 0.026 0.057 0.94 0.94 297.7

SD 26.4 26.0 0.005 0.004 0.02 0.02 26.0

WLS Mean 400.0a 0.047 0.101 0.40 0.40 442.0

SD 45.1 0.005 0.012 0.09 0.09 45.1

Expected third-level factor loadings (0.30)

MLE for ASN Mean 205.4 0.011 0.046 0.97 0.97 247.4

SD 22.9 0.008 0.003 0.04 0.03 22.9

DWLS Mean 235.5 231.8 0.020 0.051 0.93 0.93 273.5

SD 23.1 23.0 0.006 0.003 0.03 0.03 20.0

WLS Mean 373.7a 0.044 0.086 0.40 0.40 415.7

SD 39.3 0.005 0.009 0.09 0.09 39.3

aLISREL reports minimum fit function χ2 for WLS.

In sum, MLE for ASN did improve model fit when the model

was correct. In contrast, in incorrect models there was virtually no

improvement (results in line with hypothesis 2).

Comparison of estimation methods

Finally, when analyzing asymmetric non-normal data, model

fit was compared under MLE for ASN and alternative estimation

methods, DWLS and WLS. In order to establish comparability,

the alternative estimation methods were applied in combination

with the one-factor model showing factor loadings fixed to the

value of one, i.e., factor loadings reflecting the assumption of equal

contributions of the latent source to all manifest variables.

Table 3 provides the mean fit results.

Results presented in Table 3 follow the same structure as

Table 1. There are three parts according to the expected factor

loadings considered in data generation: expected factor loading
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of 0.40 (expected first-level factor loadings), of 0.35 (expected

second-level factor loadings) and of 0.30 (expected third-level

factor loadings). In each part the first and second rows repeat fit

results of Table 1 for MLE for ASN, followed by DWLS and WLS

results in corresponding order.

In each part, the fit results observed in investigating the data

by MLE for ASN signified the numerically best model fit, DWLS

the second best fit and the one obtained by WLS, ranked third.

Furthermore, we investigated the difference between the statistics

using the reported SDs. In data characterized by expected first-

level factor loadings the difference between MLE for ASN and

DWLS was larger than two SDs for χ2, NNFI, CFI and AIC,

and it was exactly two SDs for SRMR in data characterized

by expected second-order factor loadings. WLS differed from

MLE for ASN and from DWLS by more than two SDs in all

comparison. Moreover, comparisons by CFI difference test [27]

revealed substantial differences between all estimation methods for

all data types.

Discussion

The maximum likelihood estimation method for factor analysis

is closely linked to the concept of a multivariate normal

distribution. The density function of a multivariate normal

distribution provided the outset for creating the maximum

likelihood fitting function [1], and unobservable data as the core

component of parameter estimation by EM algorithm are assumed

to follow a normal distribution [13]. Furthermore, normality of the

remainders of fitting 6 to S is necessary to justify the assumption

that the output of the maximum likelihood fitting function follows

a χ2 distribution [19]. Therefore, it is no surprise that analyzing

non-normal data by regular MLE may not yield expected fit results.

Although the primary output of MLE, the χ2 statistic, is

currently rarely used in evaluating model fit, many alternative fit

indices that are preferred instead [26] include the χ2 statistic as

ingredient in their calculations. The fit indices with cutoffs used

in evaluating model fit show different degrees of sensitivity for

deviation from a normal distribution in the reported study. NNFI

and CFI showed considerable sensitivity for deviation whereas

RMSEA and SRMR indicated good model fit under all conditions.

The replacement of MLE by the other estimation methods revealed

that SRMR was also to some degree sensitive to deviation from

normality. Although RMSEA showed numeric impairment due

to deviation from normality, there was no substantial difference

according to the corresponding cutoff [27]. The mean RMSEA

always signified good model fit, even in incorrect models.

The modification of MLE by using the transformational

measurement model for the investigation of asymmetric non-

normal data led to the expected improvement in model fit over

regular MLE. When analyzing data in a variety of data types,

the CFI difference [27] signified fit improvement. A substantial

improvement was also observed by the RMSEA difference [27] in

data with expected first-level factor loadings. Both MLE versions

discriminated virtually equally well between correct and incorrect

models. But there was no improvement due to MLE for ASN if

systematic variation that was not otherwise reached was unrelated

to distributional deviation.

To arrive at general statements regarding the performances of

the estimation methods, we base the comparisons among these

methods on themeans reported in Tables 1–3 for one-factormodels

regarding the cutoffs for good model-data fit (RMSEA ≤ 0.6,

SRMR ≤ 0.8, NNFI ≥ 0.95, and CFI ≥ 0.95). The percentages of

reaching these cutoffs were 100 for MLE ASN, 66.6 for regular

MLE, 66.6 for DWLS and 25 forWLS. The similar performances for

regular MLE and DWLS are overall in line with results reported for

these methods observed in investigating data showing less strong

deviation from normality [10, 11]. The better performance of MLE

for ASN is presumably restricted to data showing considerable

deviation from normality. It is likely to do less well in overall

normally distributed data.

An important but restricting assumption of MLE for ASN is

the assumption of equal contributions of the latent source to all

responses that justifies setting the factor loadings to equal sizes.

The assumption of one latent variable as the source of responding

is characteristic of customary confirmatory factor analysis [20]

and the version of EM algorithm for confirmatory factor analysis

[13]. But, in applied research, equal contributions of the latent

source are rarely assumed so that factor loadings are mostly free

for estimation. In investigating simulated data with expected factor

loadings of the same size for all manifest variables, fixed factor

loadings do not mean a disadvantage in comparison to free factor

loadings [28]. Under appropriate conditions it may also apply for

empirical data. Nevertheless, a version allowing for free factor

loadings is desirable that, however, would require a more basic

change of EM algorithm.

One limitation of the present study is the restriction to data

distributions derived from a normal distribution by distortion.

We concentrated on such asymmetric non-normal data because of

our experiences with empirical research. The reason was that we

observed that problems in reaching good model fit were frequently

associated with data showing asymmetric non-normality. Another

limitation is that distributions related to the normal distribution

like beta, binomial and gamma distributions [29] are not taken

into consideration. A further limitation is that we concentrated

on model fit and omitted investigating bias in estimates. Future

studies may include different simulation conditions to examine

the viability of MLE for ASN under additional distribution and

model conditions while including a variety of outcomes (e.g.,

parameter bias).

In summary, we present an alternative version of the

maximum likelihood estimation (MLE) method for confirmatory

factor analysis which includes a transformational measurement

model. This transformational measurement model enables the

investigation of the latent structure of asymmetric non-normal

data. Furthermore, a simulation study is reported that demonstrates

the efficiency of the method. An advantage in investigating

asymmetric non-normal data over otherwise efficient robust DWLS

and WLS is made apparent. We look forward to future research

studies addressing these strengths and limitations of MLE for ASN.

Conclusion

The transformational measurement model opens up maximum

likelihood estimation to data that deviate from a normal
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distribution that is otherwise a precondition for maximum

likelihood estimation in factor analysis.
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