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A robust numerical scheme for
singularly perturbed di�erential
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In this article, we proposed and analyzed a numerical scheme for singularly

perturbed di�erential equations with both spatial and temporal delays. The

presence of the perturbation parameter exhibits strong boundary layers, and the

large negative shift gives rise to a strong interior layer in the solution. The abruptly

changing behaviors of the solution in the layers make it di�cult to solve the

problem analytically. Standard numerical methods do not give satisfactory results,

unless a large mesh number is considered, which needs a massive computational

cost. We treated such problemby proposing a numerical scheme using the implicit

Euler method in the temporal variable and the nonstandard finite di�erence

method in the spatial variable on uniform meshes. The stability and uniform

convergence of the proposed scheme have been investigated and proved. To

demonstrate the theoretical results, numerical experiments are carried out. From

the theoretical and numerical results, we observed that the method is uniformly

convergent of order one in time and of order two in space.

KEYWORDS

singularly perturbed problem, spatio-temporal delays, nonstandard finite di�erence,

implicit Euler method, uniform convergence

1. Introduction

Delay differential equations are equations that are dependent on the previous states and

have been used in various dynamical systems. For instance, in robotics, delays occur through

the manipulation of information or feedback control [1]. A surface acoustic wave sensor is

modeled using a delay differential equation [2]. In chemical kinetics, the reaction time and

the time taken for mixing the reactants are modeled by delay differential equations [3]. Apart

from these, delayed dynamical systems have also been found useful in modeling musical

instruments [4], traffic dynamics [5], models of HIV infection [6], population dynamics [7],

economic cycles [8], and others.

A subclass of differential equations in which the term with the highest order derivative is

multiplied by a small positive parameter (ε) and involves one or more shift arguments is said

to be a singularly perturbed differential equation with delay [9]. Such problems frequently

arise in the modeling of various physical systems, such as the human pupil-light reflex

[10], the study of bistable devices in digital electronics [11], variational problem in control

theory [12], immune response modeling [13], mathematical modeling in ecology [14],

models to stabilize rotating and frozen waves [15], models for the physiological process [16].
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The presence of the small positive number causes boundary layers

and the spatial delay gives rise to an interior layer in the solution

of the problem. The layers are asymptotically narrow regions in the

neighborhood of the end points of the domain, where the gradient

of the solution decreases as ε approaches zero [17]. The rapidly

changing behavior of the solution in the layers causes a significant

error in the solution, and hence, it is almost impossible to solve the

problem analytically. On the contrary, standard numerical methods

do not give satisfactory solutions, unless a large number of mesh

points are considered, which requires a massive computational cost

[18]. To overcome such drawbacks, there is a need of developing a

numerical scheme, independent of the perturbation parameter.

Various research works are available in the literature to address

the aforementioned limitations. For instance, Erdogan and Cen

[19] solved a singularly perturbed convection–diffusion with delay

by constructing a hybrid finite difference scheme on a Shishkin-

type mesh and obtained a uniformly convergent method with

respect to ε. In [20], a class of turning point singularly perturbed

boundary value problems is treated by constructing a numerical

scheme based on the trigonometric quintic B-spline basis functions

on a piece-wise uniformmesh. Themethod is obtained to be almost

first-order convergent irrespective of ε. In [21], a time-dependent

singularly perturbed differential equation with delay is solved

by constructing a numerical scheme using the Euler scheme on

uniform time mesh and a hybrid finite difference scheme on piece-

wise uniform Shishkin mesh in the spatial direction. In [22], two-

dimensional singularly perturbed semi-linear convection–diffusion

problems have been treated using the nonstandard finite difference

approach. The authors linearized the continuous problem and

then discretized it using the nonstandard finite difference methods.

Mbroh and Munyakazi [23] solved singularly perturbed one- and

two-dimensional problems by constructing a scheme using the

method of lines by using the fitted operator finite differencemethod

for the space discretization and the Crank–Nicolsonmethod for the

time discretization. In [24], a singularly perturbed problem with

time lag is treated by constructing a numerical method using the

standard finite difference operators centered in space and implicit

in time on a piece-wise uniformmesh. Sahoo and Gupta [25] solved

a singularly perturbed problem involving discontinuous convective

and source terms by developing a numerical scheme using a

first-order accurate, simple upwind scheme on specially designed

piece-wise uniform Shishkin meshes. Appadu and Tijani [26]

treated a one-dimensional generalized Burgers–Huxley equation

by proposing two solutions using the classical finite difference

scheme and nonstandard finite difference scheme and obtained

that one of the proposed solutions contains a minor error. In [27],

a singularly perturbed ordinary differential equation with a large

negative shift is treated by developing a numerical scheme using

the fitted operator method via domain decomposition.

Singularly perturbed differential equations involving large

delays in the spatial variable have been solved by few authors. In

[28], a singularly perturbed problem with a large delay is solved

by developing a scheme using the Crank–Nicolson method on a

temporal mesh and the central difference method on nonuniform

Shishkin meshes. Bansal and Sharma [29] formulated a scheme for

a singularly perturbed with delay using the implicit Euler on the

temporal meshes and standard central difference on nonuniform

spatial meshes. Ejere et al. [30] developed a numerical scheme

for a time-dependent singularly perturbed differential equation

with large spatial delays using the weighted-average method in

the temporal direction and the central difference method in the

spatial direction on piece-wise uniform Shishkin meshes. Alam

and Khan [31] proposed a new numerical algorithm for singularly

perturbed differential equations involving the shift and the advance

parameters. They used Crank–Nicolson in the time direction and

cubic B-spline basis functions on generalized Shishkin mesh in the

spatial direction, and by this, they obtained a uniformly convergent

scheme of order four in time and almost of order four in space.

In this article, we proposed a robust numerical scheme to

solve singularly perturbed differential equations involving spatial

and temporal delays. The scheme is developed using the implicit

Euler method for the temporal variable and the nonstandard finite

difference method for the spatial variable on uniform meshes. To

handle the temporal delay, we used the Taylor series approximation,

and the spatial delay is handled by choosing special meshes,

in such a way that the term with the spatial delay coincides

with the mesh point xi = 1. Error estimate and uniform

convergence analysis are investigated and proved for the proposed

method. Model numerical examples are also solved to support the

theoretical results.

The remaining sections of the article are organized as follows:

The description of the continuous problem is presented in Section

2. The time semi-discrete scheme and the fully discrete scheme

are briefly discussed in Section 3. To support the validity of the

proposed scheme, numerical examples, results, and discussions are

provided in Section 4, and the study is concluded in Section 5.

Notations: Throughout this article, we used C as a generic positive

number, independent of ε and the mesh numbers. If w is the

smooth function in D̄, then we used the maximum norm as ‖w‖ =
max(s,t)∈D̄ |w(s, t)|.

2. Description of the continuous
problem

We considered a singularly perturbed delay differential

equation given by



































Lεw(s, t) =
(

∂
∂t − ε

∂2

∂s2
+ α(s)

)

w(s, t)

= γ (s, t)− β(s)w(s− 1, t − τ ), (s, t) ∈ D,

w(s, t) = w0(s, t), (s, t) ∈ D0 = {(s, t) : s ∈ [0, 2], t ∈ [−τ , 0]},
w(s, t) = ψ(s, t), (s, t) ∈ DL = {(s, t) : s ∈ [−1, 0], t ∈ [0,T]},
w(2, t) = ϕ(t), (2, t) ∈ DR = {(2, t), t ∈ [0,T]},

(1)

Where D̄ = [0, 2]×[0,T], 0 < ε≪1, a temporal shift τ > 0 of o(ε)

and a finite timeT.We assumed that the functions α(s), β(s), γ (s, t),

w0(s, t), ψ(s, t), and ϕ(t) are smooth enough and bounded on the

considered domain. Moreover, to avoid oscillation in the solution

for arbitrary positive constant λ, the coefficient functions α(s) and

β(s) satisfy the conditions [29]

α(s)+ β(s) ≥ 2λ > 0 and β(s) < 0, s ∈ [0, 2]. (2)
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Setting ε = 0, the associated reduced problem is given by

L0w(s, t) =























(

∂
∂t + α(s)

)

w0(s, t) = γ (s, t)− β(s)ψ0(s− 1, t − τ ),
(s, t) ∈ DL,

(

∂
∂t + α(s)

)

w0(s, t) = γ (s, t)− β(s)w0(s− 1, t − τ ),
(s, t) ∈ DR.

Since w0 need not satisfy the conditions w0(0, t− τ ) = ψ(0, t− τ ),
w0(0, t−τ ) = ψ(0, 0),w0(2, t−τ ) = ϕ(2, t),w0(1

−, t) = w0(1
+, t),

and (w0)s(1
−, t) = (w0)s(1

+, t), the solution exhibits two boundary

layers and an interior layer at s = 1 [28, 32]. The functions involved

in the continuous problem (1) should satisfy Holder continuity and

compatibility conditions are imposed at the corner points as

{

w0(0, 0) = ψ(0, 0),

w0(2, 0) = ϕ(0)
(3)

and

{

∂ψ(0,0)
∂t − ε ∂2w0(0,0)

∂s2
+ α(0)w0(0, 0)+ β(0)w0(−1,−τ ) = γ (0, 0),

∂ϕ(2,0)
∂t − ε ∂2w0(2,0)

∂s2
+ α(2)w0(2, 0)+ β(2)w0(1,−τ ) = γ (2, 0).

(4)

From the aforementioned assumptions and conditions, we observe

that the solution involves layers and there exists a constant C

independent of ε [33]. So for (s, t) ∈ D̄, we have |w(s, t)−w0(s, 0)| =
|w(s, t)− w0(s)| ≤ Ct. Applying Taylor’s series expansion, we have

w(s− 1, t − τ ) = w(s− 1, t)− τ ∂w(s− 1, t)

∂t
+ O(τ 2) (5)

Inserting Equations (5) into (1) gives

Lεw(s, t) = ϑ(s, t) (s, t) ∈ D̄ (6)

subjected to















w(s, t) = w0(s, t), (s, t) ∈ D̄

w(s, t) = ψ(s, t), (s, t) ∈ DL = {(s, t) : s ∈ [−1, 0], t ∈ [0,T]}
w(2, t) = ϕ(t), (2, t) ∈ DR = {(2, t), t ∈ [0,T]},

(7)

where

Lεw(s, t) =
∂w(s, t)

∂t
− ε ∂

2w(s, t)

∂s2
+ α(s)w(s, t)

ϑ(s, t) =
{

γ (s, t)− β(s)ψ(s− 1, t)+ τβ(s) ∂ψ(s−1, t)
∂t , s ∈ (0, 1]

γ (s, t)− β(s)w(s− 1, t)+ τβ(s) ∂w(s−1, t)
∂t , s ∈ (1, 2).

Lemma 1. Suppose z(s, t) is a smooth function in D̄. If z(s, t) ≥ 0,

(s, t) ∈ ∂D and Lεz(s, t) ≥ 0, (s, t) ∈ D, then Lεz(s, t) ≥ 0,

(s, t) ∈ D̄.

Proof. For (ŝ, t̂) ∈ D̄, suppose that z(ŝ, t̂) = min
D̄
z(s, t) < 0. From

the considered hypothesis (ŝ, t̂) /∈ ∂D. By extreme value theorem,

we have zt(ŝ, t̂) = 0, zs(ŝ, t̂) = 0, and zss(ŝ, t̂) > 0. Then,

Case 1: For s ∈ (0, 1], Lεz(ŝ, t̂) = ∂z(ŝ,t̂)
∂t − ε ∂2z(ŝ,t̂)

∂s2
+ α(ŝ, t̂) < 0.

Case 2: For s ∈ (1, 2),Lεz(ŝ, t̂) = ∂z(ŝ,t̂)
∂t −ε ∂2z(ŝ,t̂)

∂s2
+α(ŝ)+β(ŝ)z(ŝ−

1, t̂) − τβ(ŝ) ∂z(ŝ−1,t̂)
∂t ≤ ∂z(ŝ,t̂)

∂t − ε
∂2z(ŝ,t̂)
∂s2

+ [α(ŝ) + β(ŝ)]z(ŝ, t̂) −
τβ(ŝ) ∂z(ŝ,t̂)

∂t < 0.

Thus, Lεz(ŝ, t̂) < 0, which contradicts the given condition.

Therefore, our supposition fails, so that z(ŝ, t̂) ≥ 0, which implies

that z(s, t) ≥ 0, (s, t) ∈ D̄.

Lemma 2. The solution of the continuous problem (6)-(7) is

estimated as follows:

|w(s, t)| ≤ ‖ϑ‖
λ

+max{|∂D|}

Proof. Let us define z±(s, t) = ‖ϑ‖
λ

+ max{|∂D|} ± w(s, t). Then,

we have z±(0, t) ≥ 0 and z±(0, t) ≥ 0. Moreover,

For s ∈ (0, 1], t ∈ [0,T],

Lεz
±(s, t) =

(

∂

∂t
− ε ∂

∂s2
+ α(s)

)

z±(s, t)

= α(s)

(‖ϑ‖
λ

+max{|∂D|}
)

± ϑ(x, t) ≥ 0.

For s ∈ (1, 2), t ∈ [0,T],

Lεz
±(s, t) =

(

∂

∂t
− ε ∂

∂s2
+ α(s)

)

z±(s, t)

+ β(s)z±(s− 1, t)− τβ(s)∂z
±(s− 1, t)

∂t

≥[α(s)+ β(s)]max{|∂D|} ≥ 0.

Thus, Lεz
±(s, t) ≥ 0 and by Lemma 1, we have z±(s, t) ≥ 0,

(s, t) ∈ D̄, which yields the stability estimate.

Lemma 3. The derivatives of the solution w(x, t) of Equations (6),

(7) are bounded as follows:

∣

∣

∣

∣

∣

∂k+lw(s, t)

∂sk∂tl

∣

∣

∣

∣

∣

≤



























C
(

1+ ε−k/2[e−s
√
λ/ε + e−(1−s)

√
λ/ε]

)

, (s, t) ∈ DL,

C
(

1+ ε−k/2[e−(s−1)
√
λ/ε + e−(2−s)

√
λ/ε]

)

,

(s, t) ∈ DR

for all nonnegative integer k, l such that 0 ≤ k+ 2l ≤ 4.

Proof. For k = 0 and l = 0, it is to show the bound of the

solution w(s, t), which is Lemma 2. For k = 0, l 6= 0, we show the

bound of derivatives of w(s, t) with respect to t. For k 6= 0, l = 0,

it is to show the bound of derivatives of the solution w(s, t) with

respect to s and for the cases when (k, l) 6= 0, we determine

the bound of its derivatives of the solution w(s, t) with respect

to s and t. Let qε,1(s) = e−s
√
λ/ε + e−(1−s)

√
λ/ε , s ∈ (0, 1] and

qε,2(s) = e−(s−1)
√
λ/ε + e−(2−s)

√
λ/ε , s ∈ (1, 2). For a fixed value

of λ, following the approaches of Kellogg and Tsan [34], we can get

that |qε,ι(s)| ≤ c, for constant c and ι = 1, 2. For the case k = 0,

Equation (6) becomes

∂w(s, t)

∂t
= ε

∂2w(s, t)

∂s2
− α(s)w(s, t)

+
{

γ (s, t)− β(s)ψ(s− 1, t)+ τβ(s) ∂ψ(s−1, t)
∂t , s ∈ (0, 1]

γ (s, t)− β(s)w(s− 1, t)+ τβ(s) ∂w(s−1, t)
∂t , s ∈ (1, 2).

(8)
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Along the sides t = 0, we have w = 0, which implies that ∂
2w(s,t)
∂s2

=
0. Then from Equation (8), we get

∂w(s, 0)

∂t
= ε

∂2w(s, 0)

∂s2
− α(s)w(s, 0)

+
{

γ (s, 0)− β(s)ψ(s− 1, 0)+ τβ(s) ∂ψ(s−1, 0)
∂t , s ∈ (0, 1]

γ (s, 0)− β(s)w(s− 1, 0)+ τβ(s) ∂w(s−1, 0)
∂t , s ∈ (1, 2).

(9)

Without loss of generality, assuming that all the values considered

in Equation (7) are zero, we have w(s − 1, 0) = ψ(s − 1, 0) =
0, s ∈ [0, 1] and w(s − 1, 0) = w0(s − 1, 0) = 0, s ∈ (1, 2].

Then, Equation (9) becomes ∂w(s,0)
∂t = γ (s, 0). Since γ is a smooth

function, it implies
∣

∣

∣

∂w(s,t)
∂t

∣

∣

∣
≤ C, for sufficiently chosen C on ∂D.

Applying the operatorLε given in Equation (6) on
∂w(s,t)
∂t , we obtain

|Lεwt(s, t)| = |ϑt(s, t)| ≤ C on D. Thus, applying Lemma 1 gives
∣

∣

∣

∂w(s,t)
∂t

∣

∣

∣
≤ C on D̄. For l = 2, differentiating Equation (8) with

respect to t gives

∂2w(s, t)

∂t2
= ε

∂3w(s, t)

∂s2∂t
− α(s)∂w(s, t)

∂t

+
{

∂γ (s,t)
∂t − β(s) ∂ψ(s−1,t)

∂t + τβ(s) ∂
2ψ(s−1, t)
∂t2

, s ∈ (0, 1]
∂γ (s,t)
∂t − β(s) ∂w(s−1,t)

∂t + τβ(s) ∂2w(s−1, t)
∂t2

, s ∈ (1, 2).
(10)

Along s = 0 and s = 2, we have ∂2w(s,t)
∂t2

= 0, and along t=0,

we have w = 0 and ∂2w(s,0)
∂s2

= 0. From ∂w(s,0)
∂t = γ (s, 0), we

have ∂3w(s,0)
∂s2∂t

= ∂2γ (s,0)
∂s2

. Assuming that the initial and boundary

conditions are identically zero, we havewt(s−1, 0) = ψt(s−1, 0) =
0, s ∈ (0, 1] and wt(s− 1, 0) = (w0)t(s− 1, 0) = 0, s ∈ (1, 2]. Then

from Equation (10), we get

∂2w(s, 0)

∂t2
= ε

∂2γ (s, 0)

∂s2
− α(s)∂γ (s, 0)

∂t

+
{

∂γ (s,0)
∂t , s ∈ (0, 1]

∂γ (s,0)
∂t + τβ(s) ∂2w(s−1, 0)

∂t2
, s ∈ (1, 2).

(11)

From Equation (11), along t = 0, we obtain that
∣

∣

∣

∂2w(s,0)
∂t2

∣

∣

∣
≤ 0 on

∂D and the operator Lε implies |Lε ∂
2w(s,t)
∂t2

| = | ∂2ϑ(s,t)
∂t2

| ≤ C on

D and applying Lemma 1 yields
∣

∣

∣

∂2w(s,t)
∂t2

∣

∣

∣
≤ C on D̄. The bound

of derivatives of the solution w(s, t) for the cases k 6= 0 can be

determined by similar procedures asmentioned earlier. For the case

k = 1, let s ∈ D and consider a neighborhood R = (e, e+√
ε), ∀s ∈

R. For some q ∈ R̄ and t ∈ (0,T], the mean value theorem gives

∣

∣

∣

∣

∂w(q, t)

∂s

∣

∣

∣

∣

= ε
−1
2 |w(e+

√
ε, t)− w(e, t)| ≤ 2ε

−1
2 ‖w‖. (12)

For s ∈ R̄, we can get

∂w(s, t)

∂s
=∂w(q, t)

∂s
+ ∂w(s, t)

∂s
− ∂w(q, t)

∂s

=∂w(q, t)
∂s

+
∫ s

q

∂w(x, t)

∂x
dx = ∂w(q, t)

∂s

+ ε−1

∫ s

q

(

∂w(x, t)

∂x
+ α(x)w(x, t)

+ β(x)w(x− 1, t)− γ (x, t)
)

dx.

⇒
∣

∣

∣

∣

∂w(s, t)

∂s

∣

∣

∣

∣

≤
∣

∣

∣

∣

∂w(q, t)

∂s

∣

∣

∣

∣

+ Cε−1

∫ s

q
(‖w‖ + ‖γ ‖) dx

=
∣

∣

∣

∣

∂w(q, t)

∂s

∣

∣

∣

∣

+ Cε−1 (‖w‖ + ‖γ ‖) ε 1
2 .

Putting Equation (12) into the aforementioned result, we obtain
∣

∣

∣

∂w(s,t)
∂s

∣

∣

∣
≤ C(1 + ε

−1
2 qε,ι), (s, t) ∈ D̄ for sufficiently large chosen

C. For k = 2, by rearranging Equation (1) we get

∂2w(s, t)

∂s2
= ε−1

[

∂w(s, t)

∂t
+ α(s)w(s, t)+ β(s)w(s− 1, t)− γ (s, t)

]

.

(13)

For a fixed time t ∈ [0,T] and for s ∈ [0, 2], since |w| ≤ C,
∣

∣

∣

∂w(s,t)
∂t

∣

∣

∣
≤ C, and γ is a smooth function, | ∂2w(s,t)

∂s2
| ≤ C(1+ε−1qε,ι).

The derivative of Equation (13) with respect to t gives

∂3w(s, t)

∂s2∂t
= ε−1

(

∂2w(s, t)

∂t2
+ α(s)∂w(s, t)

∂t

+ β(s)∂w(s− 1, t)

∂t
− ∂γ (s, t)

∂t

)

.

Since
∣

∣

∣

∂w(s,t)
∂t

∣

∣

∣
≤ C,

∣

∣

∣

∂2w(s,t)
∂t2

∣

∣

∣
≤ C, and |γt(s, t)| ≤ C, we get

| ∂3w(s,t)
∂s2∂t

| ≤ C(1 + ε−1qε,ι). In a similar procedure, the bounds

on the derivatives of the solution can be easily determined for the

remaining values of k and l with 0 ≤ k+ 2l ≤ 4.

3. Numerical scheme

3.1. Semi-discrete scheme in time direction

Let m be a uniform mesh number on [0,T] with step size 1t.

Then, the uniform temporal discretization is given as D̄m
t = {tj =

j1t, 1t = T/m, j = 0(1)m}. Using the implicit Euler method, we

obtain a semi-discrete scheme as

L
m
ε W

j+1(s) = ϑ j+1(s), (14)

where

L
m
ε W

j+1(s) =















−ε d2Wj+1(s)
ds2

+ ( 1
1t + α(s))Wj+1(s), 0 < s ≤ 1,

−ε d2Wj+1(s)
ds2

+ ( 1
1t + α(s))Wj+1(s)

+(1− τ
1t )β(s)W

j+1(s− 1), 1 < s < 2

and

ϑ j+1(s) =















γ j+1(s)+ Wj(s)
1t − (1− τ

1t )β(s)ψ
j+1(s− 1)

− τβ(s)
1t ψ

j(s− 1), s ∈ (0, 1],

γ j+1(s)+ Wj(s)
1t − τβ(s)

1t Wj(s− 1), s ∈ (1, 2)

with the initial and boundary conditions















W0(s) = w0(s), s ∈ [0, 2],

Wj+1(s) = ψ j+1(s), s ∈ (0, 1],

Wj+1(2) = ϕj+1(2), s ∈ (1, 2).

(15)

Lemma 4. For a smooth function zj+1(s), suppose that zj+1(s) ≥ 0,

s ∈ ∂D and L
m
ε z

j+1(s) ≥ 0, s ∈ D. Then, zj+1(s) ≥ 0, s ∈ D̄.
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Proof. Let s∗ ∈ [0, 2] and suppose that zj+1(s∗) = min
D̄
zj+1(s) <

0. By the considered hypothesis, s∗ /∈ ∂D and by the extreme value

theorem, we have dzj+1(s∗)
ds

= 0 and d2zj+1(s∗)
ds2

≥ 0.

Case 1: For s∗ ∈ (0, 1], Lm
ε z

j+1(s∗) = −ε d2zj+1(s∗)
ds2

+ ( 1
1t +

α(s∗))zj+1(s∗) < 0.

Case 2: For s∗ ∈ (1, 2), L
m
ε z

j+1(s∗) = (−ε d2

ds2
+ 1

1t +
α(s∗))zj+1(s∗)+ (1− τ

1t )β(s
∗)zj+1(s∗ − 1) ≤ −ε d2zj+1(s∗)

ds2
+ ( 1

1t +
α(s∗)+ (1− τ

1t )β(s
∗))zj+1(s∗) < 0.

The two cases contradict the given condition. Therefore, our

assumption is wrong, which implies that zj+1(s) ≥ 0, s ∈ D̄. As

a result for the operator Lm
ε , we have

∥

∥(Lm
ε )

−1
∥

∥ ≤ (1+ λ1t)−1, (16)

which is used in estimating the truncation error.

Lemma 5. (Semi-discrete stability estimate) The solution Wj+1(s)

of Equations (14), (15) can be estimated as |Wj+1(s)| ≤ ‖Lm
ε W‖

1+λ1t +
max{|∂Dm|}, s ∈ [0, 2].

Proof. Define two barrier functions as Z
j+1
± (s) = ‖Lm

ε W‖
1+λ1t +

max{|∂Dm|}±Wj+1(s), fromwhich we can obtain that Z
j+1
± (0) ≥ 0

and Z
j+1
± (2) ≥ 0.

Case 1: For 0 < s ≤ 1, we have

L
m
ε Z

j+1
± (s) =− ε d

2Z
j+1
±

ds2
+
(

1

1t
+ α(s)

)

Z
j+1
± (s)

=± ϑ j+1(s)+
(

1

1t
+ α(s)

)[‖Lm
ε W‖

1+ λ1t
+max{|∂Dm|}

]

≥
(

1

1t
+ α(s)

)

max{|∂Dm|} ≥ 0.

Case 2: For 1 < s < 2, we have

L
m
ε Z

j+1
± (s) =− ε d

2Z
j+1
±

ds2
+
(

1

1t
+ α(s)

)

Z
j+1
± (s)

+
(

1− τ

1t

)

β(s)Z
j+1
± (s− 1)

≥− ε d
2Z

j+1
±

ds2
+
(

1

1t
+ α(s)

)

Z
j+1
± (s)

+
(

1− τ

1t

)

β(s)Z
j+1
± (s)

=± ϑ j+1(s)+
(

1

1t
+ α(s)+

[

1− τ

1t

]

β(s)

)

[‖Lm
ε W‖

1+ λ1t
+max{|∂Dm|}

]

≥
(

1

1t
+ α(s)+

[

1− τ

1t

]

β(s)

)

max{|∂Dm|} ≥ 0.

Thus, applying Lemma 4 yields Z
j+1
± (s) ≥ 0, s ∈ [0, 2], which

implies the required estimation.

The local error committed in the semi-discrete scheme is

the difference between the exact solution w(s, tj+1) and the

approximate solution Wj+1(s) of Equation (14). That is, ej+1(s) =
w(s, tj+1)−Wj+1(s) and the global error Ej+1 is the contribution of

the local error up to the (j+ 1)th time level. The bound of error for

the semi-discrete scheme is estimated as follows.

Lemma 6. Suppose that | ∂kw(s,t)
∂tk

| ≤ C, (s, t) ∈ D̄, k = 0, 1, 2.

The local error is estimated as ‖ej+1‖ ≤ C(1t)2, and with this

condition, the global error is estimated as ‖Ej+1‖ ≤ C(1t), j+1=1,

2, ..., m.

Proof. From the Taylor series expansion, we havewj+1(s) = wj(s)+
1t

dw(s,tj)

dt
+ O((1t)2) and from this we obtain

wj+1(s)− wj(s)

1t
=
∂wt(s, tj)

∂t
+ O((1t)2). (17)

Using Equations (17) into (6) gives

L
m
ε w

j+1(s)+ O((1t)2) = ϑ j+1(s) (18)

From Equations (14), (18), we can obtain the boundary value

problem of the form

L
m
ε e

j+1(s) = O((1t)2), ej+1(0) = 0 = ej+1(2) (19)

Using Equations (16) into (19) yields ‖ej+1‖ ≤ C(1t)2. Using the

estimation of ej+1, we have

‖Ej+1‖ =
∥

∥

∥

∥

j
∑

ξ=1

eξ
∥

∥

∥

∥

, j(1t) ≤ T

=‖e1 + e2 + ...+ ej‖
≤‖e1‖ + ‖e2‖ + ...+ ‖ej+1‖
≤C′T(1t) ≤ C(1t), j+ 1 = 1, 2, ...,m.

Thus, the semi-discrete scheme is convergent of order one

in time.

Lemma 7. Let the solution of Equation (14) be Wj+1(s). Then, its

derivatives can be bounded as follows:

∣

∣

∣

∣

∣

dkWj+1

dsk

∣

∣

∣

∣

∣

≤















































C

[

1+ ε−k/2

(

exp(−√
λ/εs)

+ exp(−√
λ/ε(1− s))

)]

, s ∈ [0, 1],

C

[

1+ ε−k/2

(

exp(−√
λ/ε(s− 1))

+ exp(−√
λ/ε(2− s))

)]

, s ∈ (1, 2],

where k = 0, 1, 2, 3, 4.

Proof. The proof can be calculated by applying the procedures in

the proof of Lemma 3 for the spatial domain. Furthermore, we refer

to Clavero and Gracia [35].

3.2. Fully-discrete scheme

Let us sub-divide the domain [0, 2] into n uniform meshes of

size h, such that DN
s = {0 = s0, s1, ..., sn/2 = 1, sn/2+1, ..., sn =

2, si = s0 + ih, i = 0(1)n, h = 2/n}. According to the

procedures in [36], we consider a constant coefficient sub-equation

from Equation (14) as

− ε d
2Wj+1(s)

ds2
+ λWj+1(s) = 0, (20)
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Where 1
1t + α(s) ≥ λ > 0. The characteristic of Equation (20)

has two distinct roots r1 = e

√

λ
ε
s
and r2 = e

−
√

λ
ε
s
. Denoting

W
j+1
i as the approximation ofWj+1(s) at the grid point si, we have

W
j+1
i = c1e

√

λ
ε
si + c2e

−
√

λ
ε
si and

∣

∣

∣

∣

∣

∣

∣

∣

∣

W
j+1
i−1 e

√

λ
ε
si−1 e

−
√

λ
ε
si−1

W
j+1
i e

√

λ
ε
si e

−
√

λ
ε
si

W
j+1
i+1 e

√

λ
ε
si+1 e

−
√

λ
ε
si+1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

After certain manipulation, we get

W
j+1
i−1 − 2 cosh

(

√

λ

ε
h

)

W
j+1
i +W

j+1
i+1 = 0. (21)

The finite difference approximation of Equation (20) is given as

− ε
W

j+1
i−1 − 2W

j+1
i +W

j+1
i+1

σ 2
i

+ λWj+1
i = 0, (22)

where σi is a denominator function. From Equatiosn (21), (22), the

denominator function for the variable coefficients is given as

σi =
2

ωi
sinh

(

ωih

2

)

, where ωi =
√

1+1tαi

ε1t
(23)

Using the denominator function (Equation 23), we can obtain a

fully discrete scheme as

L
n,m
ε W

j+1
i = ϑ

j+1
i , i = 1, 2, ..., n− 1, (24)

where

LεW
j+1
i =















−εδ2Wj+1
i + ( 1

1t + αi)W
j+1
i , i = 1(1)n/2,

−εδ2Wj+1
i + ( 1

1t + αi)W
j+1
i + (1− τ

1t )βiW
j+1
i−n/2,

i = n/2+ 1(1)n− 1

and

ϑ
j+1
i =



















γ
j+1
i + W

j
i

1t − (1− τ
1t )βiψ

j+1
i−n/2 − τ

1tβiψ
j
i−n/2,

i = 1(1)n/2,

γ
j+1
i + W

j
i

1t −
τ
1tβiW

j
i−n/2, i = n/2+ 1(1)n− 1,

With δ2W
j+1
i = W

j+1
i+1−2W

j+1
i +W

j+1
i−1

σ 2i
, and the discrete initial and

boundary conditions W0(si) = w0(si), Wj+1(si) = ψ j+1(si),

Wj+1(2) = ϕ(2, tj+1), si ∈ [0, 2], tj+1 ∈ [0,T].

Lemma 8. Let Z
j+1
i be a given mesh function satisfying Z

j+1
0 ≥ 0

and Z
j+1
n ≥ 0. If Ln,m

ε Z
j+1
i ≥ 0 for i = 1(1)n − 1, then we have

Z
j+1
i ≥ 0 for i = 0(1)n.

Proof. For some y ∈ {1, ..., n − 1}, suppose that Z
j+1
y =

min
i=1,...,n−1

Z
j+1
i < 0.

Case 1: For y = 1, 2, ..., n2 , we have L
n
ε,1Z

j+1
y = −εδ2Zj+1

y + ( 1
1t +

αy)Z
j+1
y < 0.

Case 2: For y = n
2 + 1, n2 + 2, ..., n − 1, we have L

n
ε,2Z

j+1
y =

−εδ2Zj+1
y + ( 1

1t + αy)Z
j+1
y + (1 − τ

1t )βyZ
j+1
y−n/2 ≤ −εδ2Zj+1

y +
( 1
1t + αy)Z

j+1
y + (1 − τ

1t )βyZy < 0. From the two cases, we see

that the given hypothesis is contradicted, and hence our assumption

fails. Thus, Z
j+1
i ≥ 0, i = 0(1)n.

Lemma 9. The solution W
j+1
i of the fully discrete scheme (24) is

estimated as

|Wj+1
i | ≤ 1t‖ϑ ||

1+ λ1t
+max{|∂Dn,m|}, i = 0(1)n.

Proof. Let us define π
j+1
i,± = 1t‖ϑ ||

1+λ1t +max{|∂Dn,m|}±W
j+1
i . Then,

we have

π
j+1
0,± = 1t‖ϑ ||

1+ λ1t
+max{|∂Dn,m|} ±W

j+1
0 ≥ 1t‖ϑ ||

1+ λ1t
≥ 0

π
j+1
n,± = 1t‖ϑ ||

1+ λ1t
+max{|∂Dn,m||} ±W

j+1
n ≥ 1t‖ϑ ||

1+ λ1t
≥ 0

When i = 1(1) 1n , we obtain

L
n,m
ε,1 π

j+1
i,± =− εδ2π j+1

i,± +
(

1

1t
+ αi

)

π
j+1
i,±

=
(

1

1t
+ αi

)(

1t‖ϑ ||
1+ λ1t

+max{|∂Dn,m|}
)

± ϑ j+1
i

≥
(

1

1t
+ αi

)

max{|∂Dn,m|} ≥ 0

When i = n
2 + 1(1)n− 1, we obtain

L
n,m
ε,2 π

j+1
i,± =− εδ2π j+1

i,± +
(

1

1t
+ αi

)

π
j+1
i,± +

(

1− τ

1t

)

βiφ
j+1
i−n/2,±

=
(

1

1t
+ αi +

(

1− τ

1t

)

βi

)

(

1t‖ϑ ||
1+ λ1t

+max{|∂Dn,m|}
)

± ϑ j+1
i

≥
(

1+1tαi +
(

1− τ

1t

)

βi

)

max{|∂Dn,m|} ≥ 0

Thus, applying Lemma 8, we have π
j+1
i,± ≥ 0, j = 0(1)n, which yields

the stability estimate.

Lemma 10. For a given fixed mesh number n, we have

lim
ε→0























max
si∈(0,1]

exp

(

−
√

α(xi)
ε

si

)

+exp

(

−
√

α(si)
ε

(1−si)

)

εk/2
= 0,

max
si∈(1,2)

exp

(

−
√

α(si)
ε

(si−1)

)

+exp

(

−
√

α(si)
ε

(2−si)

)

εk/2
= 0

for all i = 1(1)n− 1 and k = 1, 2, 3, ....

Proof. We refer to Lemma 3.3 of Woldaregay and Duressa

[37].

Theorem 1. Let the solution of Equation (14) beW(s, tj+1) and the

solution of (24) beW
j+1
i . Then, we have

max
i=0(1)n,j=0(1)m

|Wj+1
i −W(si, tj+1)| ≤ Cn−2.
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TABLE 1 Maximum absolute errors and uniform convergence rates of Example 1 at τ = ε/4.

ε N : 40 80 160 320 640

↓ 1t : 0.1/40 0.1/41 0.1/42 0.1/43 0.1/44

2−04 9.0018e-03 2.1164e-03 4.7823e-04 1.1625e-04 5.4060e-05

2−06 1.1641e-02 3.2085e-03 1.0967e-03 2.1814e-04 6.0927e-05

2−08 1.1803e-02 3.9262e-03 1.0893e-03 2.4892e-04 6.6173e-05

2−10 1.1806e-02 4.2510e-03 1.1623e-03 2.6394e-04 6.7668e-05

2−12 1.1811e-02 4.2735e-03 1.1605e-03 2.8472e-04 7.6245e-05

2−14 1.1812e-02 4.2737e-03 1.1797e-03 3.0293e-04 7.6249e-05

2−16 1.1812e-02 4.2737e-03 1.1798e-03 3.0293e-04 7.6250e-05

2−18 1.1812e-02 4.2737e-03 1.1798e-03 3.0293e-04 7.6250e-05

2−20 1.1812e-02 4.2737e-03 1.1798e-03 3.0293e-04 7.6250e-05

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−40 1.1812e-02 4.2737e-03 1.1798e-03 3.0293e-04 7.6250e-05

eN,M 1.1812e-02 4.2737e-03 1.1798e-03 3.0293e-04 7.6250e-05

ρN,M 1.4667 1.8569 1.9615 1.9902 -

TABLE 2 Maximum absolute errors and uniform convergence rates of Example 2 at τ = ε/4.

ε N : 40 80 160 320 640

↓ 1t : 0.1/40 0.1/41 0.1/42 0.1/43 0.1/44

2−04 1.7988e-02 4.2929e-03 9.5899e-04 2.3234e-04 1.0276e-04

2−06 2.3252e-02 6.5120e-03 2.0897e-03 4.3974e-04 1.5494e-04

2−08 2.3609e-02 7.9555e-03 2.3536e-03 6.2910e-04 1.6514e-04

2−10 2.3343e-02 8.7007e-03 2.3793e-03 6.2889e-04 1.6533e-04

2−12 2.3344e-02 8.6447e-03 2.4462e-03 6.1828e-04 1.6385e-04

2−14 2.3345e-02 8.6449e-03 2.4443e-03 6.5550e-04 1.6880e-04

2−16 2.3346e-02 8.6450e-03 2.4446e-03 6.5050e-04 1.7486e-04

2−18 2.3346e-02 8.6450e-03 2.4446e-03 6.5551e-04 1.7898e-04

2−20 2.3346e-02 8.6451e-03 2.4446e-03 6.5551e-04 1.7900e-04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−40 2.3346e-02 8.6451e-03 2.4446e-03 6.5551e-04 1.7900e-04

eN,M 2.3609e-02 8.7007e-03 2.4462e-03 6.5551e-04 1.7900e-04

ρN,M 1.4401 1.8306 1.8999 1.8727 -

Proof. From the differential and difference equations, the

truncation error is given by

∣

∣

∣
L
n,m
ε

(

Wj+1(si)−W
j+1
i

)
∣

∣

∣
=
∣

∣

∣

∣

−ε d
2Wj+1(si)

ds2
+ εδ2Wj+1

i

∣

∣

∣

∣

=
∣

∣

∣

∣

−ε d
2Wj+1(si)

ds2
+ ε

σ 2
i

(

W
j+1
i+1 − 2W

j+1
i +W

j+1
i−1

)

∣

∣

∣

∣

(25)

By the Taylor series expansion ofW
j+1
i+1 ,W

j+1
i−1 , and

1
σi
truncated up

to order five, we have

W
j+1
i+1 = W

j+1
i + h

dWj+1

ds
+ h2

2!

d2Wj+1

ds2
+ h3

3!

d3Wj+1

ds3

+ h4

4!

d4Wj+1(ζi)

ds4
, ζi ∈ (si−1, si+1),
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TABLE 3 Maximum absolute errors and uniform convergence rates of Example 3 at τ = ε/4.

ε N : 40 80 160 320 640

↓ 1t : 0.1/40 0.1/41 0.1/42 0.1/43 0.1/44

2−04 4.3141e-02 8.4683e-03 1.1599e-03 2.3730e-04 1.2568e-04

2−06 4.7466e-02 1.1454e-02 2.6426e-03 5.6940e-04 1.5517e-04

2−08 4.7176e-02 1.2003e-02 2.2515e-03 5.7746e-04 1.5432e-04

2−10 4.6634e-02 1.2830e-02 2.3415e-03 5.8625e-04 1.5541e-04

2−12 4.6595e-02 1.2728e-02 2.9457e-03 6.6726e-04 1.5984e-04

2−14 4.6594e-02 1.2727e-02 2.9430e-03 6.8613e-04 1.6442e-04

2−16 4.6594e-02 1.2727e-02 2.9431e-03 6.8614e-04 1.6442e-04

2−18 4.6594e-02 1.2727e-02 2.9431e-03 6.8614e-04 1.6442e-04

2−20 4.6594e-02 1.2727e-02 2.9431e-03 6.8614e-04 1.6442e-04

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2−40 4.6594e-02 1.2727e-02 2.9431e-03 6.8614e-04 1.6442e-04

eN,M 4.7466e-02 1.2830e-02 2.9457e-03 6.8614e-04 1.6442e-04

ρN,M 1.8874 2.1228 2.1020 2.0611 -

W
j+1
i−1 = W

j+1
i − h

dWj+1

ds
+ h2

2!

d2Wj+1

ds2
− h3

3!

d3Wj+1

ds3

+ h4

4!

d4Wj+1(ζi)

ds4
, ζi ∈ (si−1, si+1),

1

σ 2
i

= ω2
i

4 sinh2(ωih/2)
= ω2

i

4

(

4

(ωih)2
− 1

3
+ (ωih)

2

60

)

.

Putting these expansions in Equation (25) yields

|Ln,m
ε

(

Wj+1(si)−W
j+1
i

)

|

=| −ε d
2W

j+1
i

ds2
+ ε d

2W
j+1
i

ds2
+
(

ε

12

d4Wj+1(ζi)

ds4
− εω

2
i

12

d2W
j+1
i

ds2

)

h2

+
(

εω4
i

240

d2W
j+1
i

ds2
− εω2

i

144

d4Wj+1(ζi)

ds4

)

h4 + εω4
i

2880

d4Wj+1(ζi)

ds4
h6|.

Applying the bound of derivatives in Lemma 7 and then using

Lemma 10 yields

∣

∣

∣
L
n,m
ε

(

Wj+1(si)−W
j+1
i

)
∣

∣

∣
≤ C1h

2 + C2h
4 + C3h

6 ≤ Ch2. (26)

Invoking Lemma 8, we have max
i=0(1)n,j=0(1)m

|Wj+1
i − W(si, tj+1)| ≤

Cn−2, because h = 2n−1.

Theorem 2. For the solutions w(s, t) of Equation (6) and W
j+1
i of

Equation (24), the uniform error is estimated as

max
i=0(1)n, j=0(1)m

∣

∣

∣
w(si, tj+1)−W

j+1
i

∣

∣

∣
≤ C

(

1t + n−2
)

.

Proof. By the triangular inequality, we can obtain that

∣

∣

∣
w(si, tj+1)−W

j+1
i

∣

∣

∣
=
∣

∣

∣
w(si, tj+1)−Wj+1(si)+Wj+1(si)−W

j+1
i

∣

∣

∣

≤
∣

∣w(si, tj+1)−Wj+1(si)
∣

∣+
∣

∣

∣
Wj+1(si)−W

j+1
i

∣

∣

∣
.

Then, the combination of Lemma 6 and Theorem 1 yields the

required uniform error estimate.

4. Numerical examples, results, and
discussions

To demonstrate the validity and applicability of the proposed

numerical scheme, we solved examples of the problem under

consideration. Since the exact solution for each example is not

given, we use the variant of the double mesh principle [38] to

determine the maximum absolute error as

en,1t
ε = max

0(1)n,0(1)m
|Wn,1t(si, tj)−W2n,1t/4(si, tj)|,

Where W2n,1t/4(si, tj) is the approximate solution obtained by

taking (2n,1t/4) for fixed value of the transition parameter. The

uniform absolute error is determined by en,1t = max
ε

(en,1t
ε ).

The convergence rate of the method is computed by ρn,1t
ε =

log(en,1t
ε /e

2n,1t/4
ε )

log 2
and uniformly it is obtained as ρn,1t = max

ε
(ρn,1t
ε ).

Example 1. Consider ∂w
∂t − ε

∂2w
∂s2

+ 6w(s, t)− 2w(s− 1, t− τ ) = 1,

subjected to w0(s) = 0, w(s, t) = 0, and w(2, t) = 0.

Example 2. Consider ∂w
∂t − ε ∂

2w
∂s2

+ (s + 4)w(s, t) − (s2 + 1)w(s −
1, t − τ ) = 2, subjected to w0(s) = 0, w(s, t) = 0, and w(2, t) = 0.

Example 3. Consider ∂w
∂t − ε

∂2w
∂s2

+ 5w(s, t)− 2w(s− 1, t− τ ) = 2,

subjected to w0(s) = sin(πs), w(s, t) = 0, and w(2, t) = 0.

We treated each problem by applying the proposed numerical

method with the help of MATLAB R2019a packages. Since the

exact solutions of the examples are not given, we used a variant
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A B C

FIGURE 1

E�ect of the perturbation parameter in resolving the boundary layers for (A) Example 1, (B) Example 2, and (C) Example 3 when τ = ε/4.

FIGURE 2

Surface plot simulations of Example 1, for various values of ε at τ = ε/4. (A) ε = 20 and (B) ε = 216.

FIGURE 3

Surface plot simulations of Example 2, for various values of ε at τ = ε/4. (A) ε = 20 and (B) ε = 216.
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FIGURE 4

Surface plot simulations of Example 3, for various values of ε at τ = ε/4. (A) ε = 20 and (B) ε = 216.

A B C

FIGURE 5

Log–log plots of N vs maximum absolute errors for (A) Example 1, (B) Example 2, and (C) Example 3.

of the double mesh principle to determine the numerical results.

Moreover, the obtained results are displayed in tables and graphs.

The uniform convergence is shown by computing the maximum

point-wise error and convergence rate as given in Tables 1–3 for

each example, respectively. From these tables, we observe that for

a fixed value of ε, increasing the mesh numbers minimizes the

maximum absolute error. On the contrary, for a fixed number of

meshes, decreasing ε yields stable point-wise errors after certain

changes in the values of ε. This shows the ε-uniform convergence

of the proposed scheme.

In Figure 1, we observe the effect of the perturbation parameter

in layer resolving for each example. Surface plots are simulated in

Figures 2–4 for Examples 1–3, respectively. From each figure, we

observe the effect of ε, that is, decreasing the values of ε decreases

the width of the layers. The robustness of the developed scheme is

illustrated by plotting log–log figures as given in Figure 5 for the

considered examples.

5. Conclusion

In this study, we proposed and analyzed a fitted numerical

method for a singularly perturbed differential equation involving

spatial and temporal delays in the reaction term. The solution

varies abruptly in the layers due to the presence of the perturbation

parameter. The rapidly changing behavior of the layers and the

effect of the delays cause difficulties to find the analytical solution.

To solve the problem, we proposed a fitted numerical method.

The method is obtained by using the implicit Euler method in the

temporal variable and the nonstandard finite difference method in

the spatial variable on uniform meshes. The effect of the temporal

delay is handled by applying Taylor’s series approximation and the

spatial delay is handled by choosing a special mesh so that the delay

term lies on the mesh point xi = 1. We investigated and proved

that the proposed method is stable and uniformly convergent. We

considered and solved three model examples to test the validity and
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applicability of the proposed method. The solutions and accuracy

of the results of the examples are shown in graphical and tabular

forms. From the theoretical and numerical findings discussed in

the article, we can conclude that the proposed numerical method

is uniformly convergent of order one in time and of order two

in space.
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