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Microseismicity is expected in potash mining due to the associated rock-mass

response. This phenomenon is known, but not fully understood. To assess the

safety and e�ciency of mining operations, producers must quantitatively discern

between normal and abnormal seismic activity. In this work, statistical aspects

and clustering of microseismicity from a Saskatchewan, Canada, potash mine are

analyzed and quantified. Specifically, the frequency-magnitude statistics display a

rich behavior that deviates from the standard Gutenberg-Richter scaling for small

magnitudes. To model the magnitude distribution, we consider two additional

models, i.e., the tapered Pareto distribution and amixture of the tapered Pareto and

Pareto distributions to fit the bi-modal catalog data. To study the clustering aspects

of the observed microseismicity, the nearest-neighbor distance (NND) method

is applied. This allowed the identification of potential cluster characteristics in

time, space, andmagnitude domains. The implementedmodeling approaches and

obtained results will be used to further advance strategies and protocols for the

safe and e�cient operation of potash mines.

KEYWORDS

mining seismicity, statistical seismology, nearest-neighbor distance, earthquake

clustering, frequency-magnitude statistics

1. Introduction

Mining is typically accompanied by various degrees of seismic activity. This is known as
mining-induced seismicity and it is observed both in hard rock and soft rock environments
[1–4]. The mining seismicity is typically induced by different operations, such as rock
excavation, rock blasting, and others. This is a direct result of a constantly changing
underground stress field that leads to the creation of new fracture zones or reactivation
of existing fractures/faults [3–5]. Induced seismicity is one of the hazards in mines and it
is observed in potash, coal, metal ore, uranium, and diamond mines within a wide range
of geological settings [6–8]. Induced seismicity is observed during other anthropogenic
operations such as: hydrocarbon production from tight shale reservoirs, enhanced
geothermal energy generation, and high-volume underground fluid injection [9–11].

In the context of mining industry, several geohazards are associated with mining
operations. These include: water inflow, the occurrence of earthquakes, rockbursts,
development of fracture zones, to mention a few [2, 4, 12, 13]. In case of potash mines, the
intrusion of undersaturated brine into a mine has the potential to inflict significant damage
to a mine internal structure and result in erosion of pillars, weakening of openings, and
rupture of the caprock [12–14]. Among those geohazards, the occurrence of earthquakes and
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/or microseismicity is a critical factor that has to be monitored
and studied. The occurrence of mining seismicity is controlled
by various aspects of mine operations and settings such as depth,
spatial expanse, geological setting, which includes varied rock
formations and layering, the presence of fault systems and fractures,
as well as the changes in the ambient stress field and pore pressure
[15]. In hard rock mines, seismicity is usually associated with an
active mining front due to rock excavation [16]. Whereas in soft
rock mining, the host rocks may experience plastic creep due to
rock extraction. As a result, the seismicity can be observed in the
surrounding rocks [17]. Various aspects of the microseismicity
has been also extensively studied in rock fracture experiments, for
example in Refs. [18–20].

In this study, we focused on the statistical analysis of
microseismicity associated with mining operations in a
Saskatchewan, Canada, potash mine. Several statistical models
have been considered to investigate various aspects of induced
seismicity in the mine. Specifically, a comprehensive analysis of
the frequency-magnitude statistics of the mining events has been
performed. This included the estimation of the magnitude of the
completeness of the analyzed catalog by utilizing several catalog-
based methods. Also, we modeled the frequency-magnitude
statistics of microseismicity by considering several parametric
distributions to establish the most appropriate model that was
relevant to that mine. In addition, we also considered the standard
exponential distribution, the upper-truncated and tapered Pareto
distributions, and the mixture of the above distributions. The
maximum likelihood method was utilized to estimate the model
parameters. In order to classify the mining seismicity in terms
of the mode of triggering and possible rheological regimes, the
NND clustering method was applied. The influence of the mining
operations on the triggering of microseismicity was quantified
by using the cross-correlation analysis. The main goal of this
work was to establish and quantify the current pattern of seismic
activity in the mine in order to monitor and observe any significant
deviations in seismic activity during the future mine operation.
The studied seismic catalog also presented a unique opportunity to
investigate the statistical properties of microseismicity in the soft
rock environment.

Potash deposits in Saskatchewan are mined from the Prairie
Evaporite formation. This layer contains one of the largest global
potash deposits of sylvinite ore and is mainly used for fertilizer
production. Saskatchewan potash deposits are unique in the world
because they are very extensive, flat, and generally intact, leading
to low-cost extraction. Evidence suggests that the age of these
strata of sediments is Middle Devonian. The Prairie Evaporite
formation, with a thickness of 100–200 m, is located below 400–
500 m of Devonian carbonate with thin layers of shales, anhydrite,
and salts followed by 400–500 m of Cretaceous shale and sands
with glacial tills on top [21–23]. Besides common microseismicity,
several moderate earthquakes have been observed in the past
in Saskatchewan’s potash mines [12, 13]. Those earthquakes are
thought to occur in the layers above the mining horizon, mainly
in the carbonate Dawson Bay formation. Changes in the local stress
regime and ongoing convergence of the underlying strata into the
openings are commonly viewed as one of the leading causes of
mining-induced seismicity in potash mines in Saskatchewan [24].

To safely operate a mine, it is important to impose reasonable
control on the factors that can trigger earthquakes [3, 4, 25, 26].
In this respect, the statistical analysis of past mining seismicity
plays a critical role [27, 28]. By analyzing the patterns of seismicity,
one can infer more about their possible causes and relate them
to specific mining operations or geomechanical processes. As a
result, this can help mitigate the risk associated with induced
mining seismicity. The standard approach involves the analysis of
the frequency-magnitude statistics and spatio-temporal patterns of
mining seismicity [27, 29–31]. This is used to improve the re-entry
protocols in mines [32, 33], to study aftershocks and clustering
[28, 34], to develop the hazard assessment approaches of mining
seismicity [2, 31]. In addition, one can also consider more advanced
methods to study mining seismicity. These include the analysis of
the clustering aspects of seismicity; any possible deviations from
Poisson statistics in the occurrence of events; whether earthquake
magnitudes are correlated or not. Therefore, the statistical analysis
is a crucial step in assessing the associated seismic hazard and is
used to mitigate the corresponding risk.

The statistical analysis of seismicity offers various approaches
to quantify the occurrence of earthquakes in magnitude and
spatio/temporal domains. Among those approaches, the clustering
aspects of seismicity can be used to identify possible triggering
mechanisms that drive the occurrence of earthquakes. Various
clustering identification methods have been developed in the
context of the statistical data analysis [35, 36] and several have
been used to study the spatio-temporal patterns of natural and
mining seismicity [37, 38]. The overview of clustering aspects of
microseismicity in Australian and Canadian mines was provided
by Hudyma [39]. It was suggested that mining seismicity is
primarily induced by the local failure of rock mass due to various
factors including: mining-induced stresses, geological structures,
and mining operations. That analysis was based on the application
of the hierarchical agglomerative clustering methods to identify
individual seismic sources and rock mass failure mechanisms [39].
Themeanminimum distance, hierarchical, and K-means clustering
methods were used in the study of seismicity in a coal mine in
Poland [40]. A 3D spatial clustering methodology for short-term
mining seismicity was developed [41] by introducing modifications
to the density-based clustering of applications with noise method
[42]. The expectation-maximization algorithmwas used to identify
probabilistic kernels associated with active fault segments to
classify seismic events based on their seismic source mechanism,
location, and its uncertainty [43]. A hierarchical clustering analysis
incorporating Ward’s minimum variance method was applied to
seismicity in a coal mine to quantify the seismic hazard [44]. One
of the goals of the clustering analysis is to identify the relationship
between seismic sources and the influence of inducing operations
in order to assess and quantify the seismic hazard. For example,
the effect of declustering of earthquake catalogs on the frequency-
magnitude analysis of seismicity was investigated to asses the
estimation of the b-value [45].

A separate method to analyze the clustering of seismicity
is based on the assumption that earthquakes can be linked
by a suitably computed nearest-neighbor distance in a
multidimensional space spanned by the time, space, andmagnitude
domains. It is known as the nearest-neighbor distance (NND)
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method and it was first proposed by Baiesi and Paczuski [46]
and considerably expanded by Zaliapin et al. [47], Zaliapin and
Ben-Zion [48, 49]. It was also adapted to perform declustering of
earthquake catalogs [50]. The NND method was also applied to
analyze the seismicity in the Western Canada Sedimentary Basin
due to a significant increase in induced seismicity observed in the
last decade [51–53].

The paper is organized as follows: Section 2 presents the
background information about the mine and seismicity catalog. In
Section 3 the statistical methods to analyze mining seismicity are
formulated. The results of the statistical analysis are reported in
Section 4. Section 5 discusses the results and conclusions are drawn
in Section 6.

2. Mining seismicity data

In order to analyze the induced microseismicity in a potash
mine in Saskatchewan, a manually reviewed microseismic catalog
was used. The spatial distribution of microseismic events above
magnitude m ≥ −2.97 is shown in Figure 1. The catalog spans
the time interval between 01/05/2019 and 07/09/2021. The original
catalog contained 11,633 events. For the analysis, it was reduced
to 9,268 events by manually removing the events associated with
the network calibrating surface shots that were performed between
02/12/2021 and 02/19/2021. The magnitudes of events in the
catalog are reported with two decimal points.

3. Statistical methods

To perform the statistical analysis of mining seismicity, we
analyze several aspects of the occurrence of events. This was
accomplished by performing the analysis of event catalog data in
magnitude, temporal, and spatial domains. The following specific
methods were employed.

3.1. The rate of seismicity and the
distribution of interevent times

In statistical modeling of seismicity, the occurrence of seismic
events can be approximated as a stochastic marked point process
in time and space. In the simplest case, it is assumed that the event
magnitudes are not correlated and the occurrence of events is fully
controlled by the rate. This constitutes the Poisson assumption
and is commonly used in statistical seismology. If the seismicity
rate is constant, the distribution of the interevent times between
successive events must follow an exponential distribution with the
probability density function:

p(1t) = λe−λ 1t , (1)

where λ is a constant seismicity rate and the interevent time 1ti =
ti − ti−1 defines the time interval between two consecutive events.
When the rate is no longer constant λ = λ(t), the distribution of
interevent times deviates from the exponential [54].

FIGURE 1

The plot of the epicenters of microseismicity in a potash mine in

Saskatchewan, Canada. The events were recorded from May 1,

2019, to July 9, 2021. The colored solid circles represent events with

magnitudes above m ≥ −0.94. Di�erent colors indicate the time of

the occurrence of events and are given by the color bar with the

corresponding times in days starting from May 1, 2019. All other

events between magnitudes −2.97 ≤ m < −0.94 are shown as black

solid circles. The light gray lines illustrate the layout of the mine

which includes the mine shafts and tunnels.

It was also reported that for some earthquake sequences the
distribution of interevent times can be described by the gamma
distribution [54, 55]:

p(1t) =
1

θκŴ(κ)
1tκ−1e−

1t
θ , (2)

where κ > 0 is a shape parameter and θ > 0 is a scale
parameter. This is typically associated with the presence of
aftershock sequences that decay according to the Omori-Utsu law
[56].

3.2. Frequency-magnitude distribution

3.2.1. The exponential distribution and
Gutenberg-Richter (G-R) scaling

The most accepted empirical relationship that describes the
distribution of earthquake magnitudes was suggested by Gutenberg
and Richter [57]. It gives the cumulative number of events,N(m ≥),
above magnitudem:

N(m ≥) = 10a−bm , (3)

where b-value is a slope of the fitted line in a semi-logarithmic scale.
a is the intercept of this line at magnitude zero and is related to
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the cumulative number of events above magnitude zero, N(m ≥
0) = 10a, during a specified time interval. From the statistical
point of view, it is more appropriate to separate the distribution
of magnitudes and the occurrence rate. The distribution of the
magnitudes can be described by the left-truncated exponential
distribution [58]:

f (m) = βe−β (m−mmin) , (4)

F(m) = 1− e−β (m−mmin) , (5)

where f (m) and F(m) are the probability density and cumulative
distribution functions, respectively. mmin, is the minimum
magnitude cut-off that is above the catalog completenessmagnitude
mc and β is the model parameter related to the b-value of G-R
scaling: β = b ln(10). The standard approach to estimate the b-
value or parameter β is using the maximum likelihood estimation
(MLE). Bender [59] proposed an estimator for β by considering
the binning of the earthquake magnitudes. In addition, Tinti and
Mulargia [60] developed an approach to estimate the uncertainties
of the estimated parameter β for a given confidence interval.

3.2.2. The tapered Pareto distribution
One can also consider more realistic distributions to describe

the statistics of event magnitudes. For this, we will use the scalar
seismic moment M to characterize the size of an event. It can be
computed from the magnitude through an empirical relationship:
M = 101.5(m+10.73). The distribution of magnitudes given by
Eqs. (4)–(5) becomes a Pareto distribution in the scalar seismic
moment domain [61]:

fPar(M) = γM
γ
minM

−1−γ , (6)

8Par(M) =
(

M

Mmin

)−γ

, (7)

where Mmin = 101.5(mmin+10.73). The complementary distribution
function 8(M) is related to the cumulative distribution function
F(M) = 1− 8(M). γ = 3

2β is the parameter that characterizes the
scaling of seismic moments.

From the analysis of the distribution of seismic moments,
Kagan [61] suggested using the tapered Pareto distributions as
a suitable alternative instead of the original G-R distribution,
Equation (3). The probability density function, ftap(M), and
complimentary cumulative distribution function, 8tap(M) of the
tapered Pareto distribution can be written as follows:

ftap(M) =
(

Mmin

M

)α [
α

M
+

1

Mcm

]

exp

(

Mmin −M

Mcm

)

, (8)

8tap(M) =
(

Mmin

M

)α

exp

(

Mmin −M

Mcm

)

, (9)

where Mcm is the corner moment, which specifies the magnitude
above which the distribution is tapered by the exponential tail. The
parameters of the truncated and tapered Pareto distributions can be
estimated using the MLE approach [61].

3.2.3. A mixture of distributions
Induced seismicity can exhibit a bimodal structure in its

magnitude distributions. To capture this aspect of induced
seismicity one can consider a mixture of distributions. This can be
achieved by considering the mixture of the tapered Pareto (8) and
Pareto (6)distributions:

fmix(M) = w ftap(M)+ (1− w) fPar(M) , (10)

where w is a mixing weighting factor. The model parameters and
weight w can be estimated using the MLE approach.

3.3. Estimation of the magnitude of
completeness

One of the challenges when performing the statistical analysis
of seismicity is the estimation of the magnitude of completeness
of a catalog of earthquakes, mc, which is the minimum magnitude
above which all events are recorded. This is critical for the
parameter estimation of statistical models or analysis of clustering
of seismicity as the population must contain events above this
threshold to avoid any bias in the obtained results due to missing
events. On the other hand, overestimation of mc can result in
larger uncertainties in the parameter estimates. To address this
issue, the three catalog-based methods most-commonly used to
estimate the magnitude of completeness mc were applied: (1) the
method of maximum curvature (MAXC) [62]; (2) the G-R b-value
stability (MBS) method [63, 64]; and (3) the method based on the
goodness-of-fit test (GFT) [62].

In case of MAXC, it was suggested that the completeness
magnitude mc can be defined as the magnitude of the bin with the
maximum number of events in the histogram of the magnitude
distribution [62]. However, this approach tends to underestimate
mc, especially in locations characterized by irregular network
coverage [65].

In order to estimate mc using the MBS method, Cao and Gao
[63] suggested an approach based on the stability of the b-value as a
function of the cutoff magnitude, mmin. This method assumes that
b-value reaches a plateau when progressively increasingmmin. They
define mc as a cutoff magnitude for which the successive changes
in b-values are <0.03. Woessner and Wiemer [64] introduced a
modification to this method by defining mc as the magnitude for
which the changes in b-value are less than its uncertainty.

In the GFT method, the magnitude of completeness mc,
is estimated by comparing the empirical frequency-magnitude
distribution with the model that is being used for different cutoff
magnitudes [62]. The discrepancy is quantified by computing a
goodness-of-fit (gof) value. The cutoff magnitude that achieves
the gof above a given percentage level defines mc. In the method,
the corresponding model parameters are estimated. The absolute
differences in the number of events in each magnitude bin from
the observed and the model distribution are used to compute the
residuals. This is used to obtain the value of the gof:

gof =

(

1−
∑mmax

mi
|Ni − Fi|

∑

i Ni

)

× 100 , (11)
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where the observed and anticipated cumulative number
of occurrences of magnitude in each bin are Ni and Fi,
respectively. To normalize the sum, it is divided by the total
number of observed events.

3.4. The nearest-neighbor distance method

The occurrence of seismic events is typically driven by natural
or anthropogenic changes in stresses and can also be characterized
by interevent triggering. This leads to the formation of seismic
sequences with varying degrees of clustering. To study the
clustering aspects of natural or induced seismicity one can define a
rescaled distance between pairs of events in a hyperspace, which is
spanned by the spatial, temporal, and magnitude domains. In this
respect, the problem of earthquake classification and clustering is
addressed in the works by Baiesi and Paczuski [46], Zaliapin et al.
[47], Zaliapin and Ben-Zion [48–50] and is based on minimizing
the rescaled relative distance between events and is known as the
nearest-neighbor distance (NND) method.

In the NNDmethod, each event i in the catalog is characterized
by the time ti, magnitude mi, and hypocenter location (latitude φi,
longitude λi, and depth di). For each pair of events i and j, one
can compute a rescaled distance in spatio-temporal and magnitude
domains:

ηij =

{

tij(rij)
df 10−bmi , for tij > 0

∞ , for tij ≤ 0
, (12)

where tij = tj − ti is the time interval between event i and the
subsequent event j. The spatial distance rij can be computed as an
epicentral distance

rij = 2RE arcsin

√

sin2
(φi − φj)

2
+ cosφi cosφj sin2

(λi − λj)

2
,

(13)
where RE = 6, 371 km is the radius of the Earth. The parameter b
can be estimated from the G-R relation. df is the fractal dimension
of the distribution of the epicenters or hypocenters. It ranges
between 1.2 and 1.6 for both local and global earthquake epicenter
distributions in 2-dimensional space [66].

The rescaled distance ηij can also be written as a product of
rescaled temporal and spatial terms: ηij = Tij Rij, where

Tij = tij10
− 1

2 bmi , (14)

and

Rij = (rij)
df 10−

1
2 bmi . (15)

For each event j it is possible to find the minimum ηj =
min
i<j

ηij that defines the nearest-neighbor distance to event j. The

corresponding event i that minimizes ηij becomes a parent event
for the event j. Therefore, one can compute the distribution of the
nearest-neighbor distances η. In addition, it is possible to analyze
the distribution of the rescaled times T and rescaled distances R.
Finally, one also can compute the joint distribution of (T, R). These
distributions can be analyzed to infer any possible modality in the
spatio-temporal relationship between events.

When applying the NND analysis and finding the nearest-
neighbor distance η for each event, one can obtain a corresponding
clustering structure, where events can be classified into groups, by
specifying a suitable threshold, ηthresh. This threshold value can
be used to separate events into two categories, i.e. clustered and
background ones. In addition, there are root events that do not
have any parent events. There are events that are both parent and
daughter events. And finally, the events that are leaves and are not
parents to any events [49].

4. Results

4.1. Seismicity rate analysis

The cumulative number of events in the catalog starting on
May 1, 2019, and ending on July 9, 2021, is plotted in Figure 2
as blue dots. The original catalog contained 11,633 events above
magnitude m ≥ −2.97. The events between February 12–19, 2021
were excluded from the analysis as they were mostly initiated by
the controlled blasts. The reduced catalog containing 9,268 events
was utilized for further analysis in this study and the corresponding
cumulative numbers are plotted as brown dots in Figure 2. In
addition, the cumulative numbers are plotted for the events above
the completeness magnitudemc = −0.94 as yellow dots.

4.2. The magnitude of completeness mc

The reduced catalog, given in Figure 2 as brown dots, was
analyzed to estimate the magnitude of completeness mc. This

FIGURE 2

The cumulative number of events of the mining microseismicity

during the study time interval from 05/01/2019 until 07/09/2021.

The numbers are plotted as: blue solid symbols for the original full

catalog with the events above magnitude m ≥ −2.97; red symbols

using the reduced catalog, where events associated with the

controlled blasts during 12–19/02/2021 were removed; yellow

symbols using the reduced catalog for the events above magnitude

m ≥ −0.94.
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FIGURE 3

The frequency-magnitude statistics for the mining-induced

seismicity. The light blue open squares represent the cumulative

number of events. The distribution was fit by the G-R relation (3)

with the cuto� magnitude mmin taken to be the completeness

magnitude mc. Several fits correspond to di�erent values of mc

obtained from the application of: the MAXC (dotted blue line), MBS

(solid red line), GFT (90% yellow dashed line), and GFT (95% purple

doted-dashed line) methods. The estimated a and b-values with

95% confidence intervals are given in Table 1.

was done by using the MAXC, MBS, and GFT methods. The
results of the application of these methods are illustrated in
Supplementary Figures S1–S3 with the corresponding inferred
values for mc assuming that the frequency-magnitude statistics of
microseismicity is governed by the exponential distribution (5).
Based on the value obtained from the MBS analysis, we decided to
usemc = −0.94 as the lower magnitude threshold above which the
catalog is complete.

4.3. The frequency-magnitude statistics

The frequency-magnitude statistics of the microseismicity
in the mine were modeled using the exponential distribution,
Equations (4) and (5) with the magnitude binning of 0.01. The
magnitude of completeness mc was used as the lower magnitude
cutoff mmin. This was done for several possible values of mc that
were estimated using MAXC, MBS, and GFT methods. The results
are plotted in Figure 3, where the cumulative number of events is
modeled by the G-R fit (3). The parameter β of the exponential
distribution (4) and the corresponding b-value were estimated
using the MLE approach for binned magnitude catalogs [59].
The 95% confidence intervals were computed using the method
suggested by Tinti and Mulargia [60]. The corresponding estimates
of a and b-value of the G-R fit, Equation (3), with 95% confidence
intervals are reported in Table 1.

To investigate any possible bi-modality in the frequency-
magnitude statistics, the variability of event magnitudes were
modeled by two other distributions. Specifically, we considered the
tapered Pareto distribution (8) as well as the mixture of the tapered
Pareto (8) and Pareto (6) distributions given in Equation (10).

TABLE 1 The estimated magnitude of completenessmc, a and b-value

with 95% confidence intervals using several methods.

Method mc gof b-value a-value

MAXC −1.13 87.3% 1.86± 0.08 1.47± 0.10

MBS −0.94 93.7% 2.39± 0.15 1.03± 0.15

GFT (90%) −1.06 90.0% 2.07± 0.10 1.29± 0.11

GFT (95%) −0.87 95.3% 2.54± 0.19 0.92± 0.17

FIGURE 4

The frequency-magnitude statistics for the mining-induced

seismicity. The blue open squares represent the cumulative number

of events. The dark blue line is the fit of the G-R scaling (3). The

dash-doted line is the fit of the tapered Pareto distribution (9). The

dashed line is the fit of the mixture of the tapered Pareto and Pareto

distributions (10).

The obtained goodness-of-fit percentages vs. mc for each model
are plotted in Supplementary Figure S4. Using the lower magnitude
cutoff mmin = −0.94 the fits of the frequency-magnitude
distribution are given in Figure 4. The estimated parameters with
95% confidence intervals are reported in Table 2 for each model.
In addition, the fits of the three models are plotted in the seismic
moment scale in Supplementary Figure S5. For comparison, we
also plot in Supplementary Figures S6, S7 the results of the fit of the
three models for the lower magnitude cutoffmmin = −1.5, and the
values of the parameters are reported in Supplementary Table S1.

The spatial dependence of the frequency-magnitude statistics
was analyzed by subdividing the mine layout into several
subregions (Supplementary Figure S8). The evolution of the
cumulative numbers of events abovemagnitudem ≥ −0.94 is given
in Supplementary Figure S9. For each subregion, the distribution
of magnitudes was modeled using the exponential distribution (4).
The results are illustrated in Supplementary Figure S10.

4.4. Interevent times statistics and Poisson
assumption

To investigate the Poisson nature of the occurrence of
microseismicity, we analyzed the distribution of interevent times
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TABLE 2 The estimated model parameters with 95% confidence intervals

for the three frequency-magnitude models applied to the mining

microseismicity with the events above magnitudem ≥ −0.94.

Distribution Weight Parameters mcm gof AIC

G-R – b = 2.39± 0.15 – 93.7% 132502.4

Tap. Pareto – α = 1.55± 0.09 0.24± 0.04 92.8% 132500.2

Tap. Pareto+ w1 = 0.38 α = 0.62± 0.02 0.19± 0.03 97.1% 132477.2

Pareto w2 = 0.62 γ = 1.54± 0.17

between successive events for the whole catalog. This distribution
of interevent times for the events above magnitude mmin = −0.94
is plotted in Figure 5. The distribution was modeled separately
by the exponential (1) and gamma (2) distributions. Based on
the AIC or BIC the gamma distribution is a better fit to the
distribution of interevent times. We also analyzed this distribution
for different lower-magnitude cutoffs. Specifically, we considered
mmin = −1.5, −1.3, −1.1, −0.9, and −0.7. The results are
illustrated in Supplementary Figure S11.

To analyze the sequence further and establish whether it
confirms Poisson or non-Poisson statistics, we computed the
coefficient of variation COV = σ1t

〈1t〉 = 1.54, where σ1t is the
standard deviation and 〈1t〉 is the mean of the interevent times.
The obtained value of COV = 1.54 indicates that the sequence
deviates from Poisson statistics showing higher variability in the
interevent times compared to the mean value. The values of the
coefficient of variation above 1.0 typically indicate that time series
tend to show a certain degree of clustering. In case of mining
seismicity, this can be attributed to systematic changes in the
underground stress field related to mining operations that induce
microseismicity.

In addition, we also analyzed the distribution of magnitude
differences between successive events: 1mi = mi − mi−1.
In order to check any correlations between magnitudes, we
considered the difference between the cumulative distributions:
1P(dm) = P(1m < dm) − P(1m∗ < dm), where 1m∗

is the difference between magnitudes of the reshuffled catalogs
[67]. The results are plotted in Figure 6. The dependence of the
performed analysis on the lower magnitude cutoff is shown in
Supplementary Figure S12. For the earthquake magnitudes that do
not show significant correlations between the magnitudes, this
difference 1P(dm) should fluctuate around zero. However, the
contrary is observed in case of the mining seismicity and indicates
a positive correlation between magnitudes of subsequent events
on short time scales. Similarly to the degree of clustering in the
interevent data, this shows that subsequent events have comparable
magnitudes on short time scales and indication of swarm-like
behavior driven by mining.

To support the above results, we also performed a
cross-correlation analysis of the seismicity rate and the
corresponding mining activity in Subregion 2 of the mine
shown in Supplementary Figure S8. The seismicity rate, R(t), was
computed as the number of events above magnitude m = −0.94
occurring each day during the study period. The mining activity
was computed as the number of hours per day the mine was
performing the cutting operations. These two time-series are given

in Figures 7A, B, respectively. For the cross-correlation analysis,
the corresponding time series was computed by subtracting the
mean from the seismicity rate and dividing by the standard
deviation: r(t) = R(t)−〈R(t)〉

σR
. Similarly, the normalized time-series

was computed for cutting operations: c(t) = C(t)−〈C(t)〉
σC

. By
computing the cross-correlation function g(τ ) = 〈r(t) c(t′)〉, where
τ = t − t′ specifies a time lag, one can analyze any possible
correlation between the two time-series. The results are given in
Figure 7C as a plot of the cross-correlation coefficient vs. lag time
in days. It clearly indicates that there are positive and negative
correlations between the two time-series at certain time lags. To
check this further, we randomly reshuffled the cutting operations
time-series and repeated the same analysis. This is given in
Supplementary Figure S13, which shows the disappearance of any
correlations present in the original time-series.

4.5. Clustering analysis of mining
microseismicity

In addition to the interevent time analysis, the clustering of
induced mining seismicity was analyzed using the NND method,
which also takes into account the spatial distribution of events.
In this analysis, we used b = 2.39, df = 1.6, and considered
the epicentral distances between events with the magnitudes above
mmin = −0.94 when computing the rescaled times (14) and
distances (15). The obtained distributions of the rescaled distances
R and times T as well as the nearest-neighbor proximity η are given
in Figure 8.

The multi-modality of the distribution of η was studied by
fitting the Gaussian mixture model (GMM). The fit of the two-
component GMM is given in Figure 8. The comparison of the
GMM fits with the number of components ranging between 1 and
4 is given in Supplementary Figure S14. The Bayesian information
criterion (BIC) was used for model selection. As a result, the GMM
with the two components had the lowest BIC = 4029.7. This
result illustrates that the microseismic events can be declustered
into two classes, i.e. the background events and clustered events.
The intersect of the two components of the selected GMM was
considered as a threshold for the log10 ηthresh = 0.538 value in the
declustering process (Figure 8).

In order to investigate the characteristics of possible clustering
modes, the joint normalized distribution of the rescaled spatial R
and temporal T components is plotted in Figure 9. The dashed
white line corresponds to the threshold log10 ηthresh = 0.538 chosen
as the intersection of the two components of the GMM fit.

4.5.1. Distribution and structure of the event
clusters

In the analysis of the rescaled nearest-neighbor distances η,
we showed that the distribution of η can be fitted by the two-
component GMM and the intersect of the two components was
used to obtain a threshold value of log10 ηthresh = 0.538 (Figure 8).
This threshold value ηthresh was used to separate the clustered
seismicity from the background seismicity. The clustered events
are considered those for which R + T < ηthresh (Figure 9 and
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FIGURE 5

The distribution of interevent times between successive events for

all events above magnitude mmin = −0.94. The fits of the

exponential distribution (blue dashed curve) and the gamma

distribution (solid red curve) are given with corresponding model

parameters and the values of AIC and BIC. The parameter

uncertainties are reported with 95% confidence intervals.

FIGURE 6

The dependence of the di�erences in cumulative magnitude

distributions 1P(dm) on the size di�erence dm between the

magnitudes of subsequent events. The mean of the 1,000 reshu	ed

cataloge is considered for 1m*. The error bars correspond to one

standard deviation.

Supplementary Figure S15). In addition, we also introduced two
more constraints on the maximum distance and maximum time
interval between nearest-neighbor events. Specifically, we assumed
that events cannot be linked if they were more than 100 days apart
and separated by more than 5 km. This allowed us to separate
events into two main categories, i.e. the background events that
lie to the right from the white dashed line given in Figure 9
and Supplementary Figure S15 and the clustered events that have
parent events.

As a result of this declustering, 1,407 events that were separated
from their parent events formed the background (singleton)
events and the rest 488 events formed the clustered events
(Supplementary Figure S16). This also resulted in the formation
of a total of 157 family trees with clusters containing more than
one event. The NND method subdivided the analyzed sequence
into 14 classes (Figure 10B). The largest cluster was formed by the
largest event in the catalog with the local magnitude of m = 0.56
(Supplementary Figure S16d).

Out of 157 tree families, nine families had more than seven
events (Supplementary Figure S16c). The first nine largest clusters
are shown in Supplementary Figure S17. Each node is labeled by the
corresponding event magnitude. Several cluster characteristics are
also provided. These include: the number of events in each cluster
N, the cluster duration in days Td, the difference between the largest
(root) and the second largest event 1m, the average leaf depth 〈d〉,
the normalized leaf depth δ = 〈d〉√

N
, and the inverted branching

number BI [49, 53].
The spatial distribution of each cluster tree is plotted in

Figure 11. Since clustered events are separated by the rescaled
distance less than log10 η < 0.538, most of the family members
are very close to each other in the spatio-temporal space. In
Supplementary Figure S18, the plot of the magnitudes vs. time for
each tree is plotted. Finally, the spatial distribution of all the clusters
and background events are plotted on top of the mine layout
(Figure 12) and the corresponding magnitude vs. time structure
(Supplementary Figure S22).

5. Discussion of the results

The statistical analysis is crucial to quantify patterns of seismic
activity and provides insight into possible physical mechanisms
that are responsible for triggering of mining microseismicity.
It is standard practice to assume that the occurrence of
seismic events can be approximated by a stochastic marked
point process in time and space. This approximation assumes
that seismic events are governed by certain statistical models
in temporal, spatial, and magnitude domains. The approach
undertaken in this work was to establish and apply these statistical
models to mining microseismicity in order to make specific
inferences about the physical and statistical properties of the mine
host-rock environment.

When working with a microseismic catalog, one encounters
a standard problem of the incompleteness of the catalog below
a certain magnitude mc. The underestimation of this threshold
magnitude can introduce a significant bias in the statistical results.
Therefore, we performed a comprehensive analysis to establish the
magnitude of the completeness for the mining catalog we used
in this study. Specifically, we employed the method of maximum
curvature (MAXC), the method of b-value stability analysis (MBS),
and the method based on the goodness-of-fit test (GFT). The
details of the methods used are summarized in Section 3.3. We
applied these methods by first assuming that the event magnitude
distribution can be described by the left-truncated exponential
distribution (4) or a more commonly accepted form of G-R scaling
(3). The MBS and GFT methods produced a consistent estimate
for the magnitude of the completeness mc. The MAXC method
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FIGURE 7

Cross-correlation analysis between microseismicity rate and the mine cutting operation rate in Subregion 2 of the mine. (A) The mine-cutting

operations are given as the number of cutting hours per day. (B) The seismicity rate is computed as the number of events above magnitude

m = −0.94 per day. (C) The cross-correlation coe�cient vs. time lag is given.

is known to underestimate mc, typically, by 0.2 magnitude units.
Therefore, we decided to use the value of mc = −0.94 from
the MBS method as it is somewhere in between of the two
values returned by the GFT method. This gives that 93.7% of the
distribution of magnitudes above mc = −0.94 can be explained
by the G-R fit (Figure 3) and this value of mc was adopted for the
subsequent analysis.

When fitting the distribution of event magnitudes above
m ≥ −0.94 with the exponential model (4), we obtained
a rather large value for β = 5.5 ± 0.35 or corresponding
b = 2.39 ± 0.15. This indicates that the mining microseismicity
is distributed over a narrow range of magnitudes above the
completeness level and displays swarm-like characteristics. An
earthquake swarm is typically characterized by the occurrence of
events of similar magnitude sizes. This can be related to the fact
that the microseismicity is driven primarily by mining operations
and is occurring on newly created fractures with a limited size
distribution [68]. This also indicates that the frequency-magnitude
statistics in soft rock environment differs from what is typically
observed in hard rock settings [28, 69]. The observed higher than
typical tectonic b-values were also observed in other instances of
induced seimsmicity [70, 71]. b-value can also be indicative of the
state of stress in the crust [72–75]. In tectonic settings, high b-
values are typically associated with an extensional stress regime
resulting in predominantly normal faulting for seismic events [76].
One possible explanation for the obtained high b-value result is the

occurrence of events in ductile rock environment as was suggested
by [72] for rock fracture experiments.

To investigate this further, we performed a cross-correlation
analysis between the microseismicity rate and the corresponding
mine-cutting operations in one particular subregion of the mine.
The computed cross-correlation coefficient clearly shows a pattern
of negative and positive correlations between the two time-series
(Figure 7). The pattern disappears when the cutting time-series
was randomly reshuffled (Supplementary Figure S13). In addition,
most of the events occurred at rather shallow depths in soft rock
environments without the presence of any major fault structures.
The performed cross-correlation analysis does not fully explain
what kind of mechanisms are responsible for triggering of the
microseismicity. The main limitation is that the cutting rate is
only a proxy for the actual mining operations. In addition, it
may provide an indirect indication that some delayed triggering
mechanism is also present influenced by the ductile deformation
of soft rock material.

The left-truncated exponential distribution (4) or its equivalent,
G-R scaling (3), is the most commonly used model to describe the
frequency-magnitude statistics of earthquakes. However, the actual
magnitude distribution of mining seismicity can deviate from G-R
scaling and can exhibit a bimodality or other features. Therefore, we
explored several other possible statistical models to fit the observed
distribution of event magnitudes. Specifically, we considered the
tapered Pareto distribution (8) when the magnitude m is replaced
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FIGURE 8

The distributions of the (A) rescaled distances R, (B) rescaled times T, and (C) nearest-neighbor proximity ηj for all events above magnitude

m ≥ −0.94. The dark red curves are the fits of the two-component Gaussian mixture model to each distribution. The individual components are

shown in (C) as yellow and blue solid curves with the corresponding means and weights given in the legend. The threshold log10(ηthresh) = 0.538 was

estimated from the intersection of the two components and is shown as a vertical dashed line.

by the corresponding scalar seismic moment M = 101.5(m+10.73).
We also considered the mixture of the tapered Pareto and Pareto
distributions (10).

The application of the goodness-of-fit test indicates that the
mixture of the tapered Pareto and Pareto distributions, Equation
(10), can fit better the frequency-magnitude statics over a wider
range of magnitudes lowering the completeness level to mc =
−1.5 (Supplementary Figures S4, S6, S7). However, this still does
not fully resolve the problem that the microseismic events are
fully recorded in the catalog up to this level. The histogram
of the distribution of microseismic event magnitudes, given
in Supplementary Figure S1, shows that there is a decrease in
the number of events in each magnitude bin below the value
m = −1.1. This indicates the deficiency in the numbers below
this level and is typically attributed to the incompleteness of
a catalog. When fitting all the three models and considering
only events above magnitude mmin = −0.94, the exponential

distribution (4) and the mixture of the tapered Pareto and
Pareto distributions, Equation (10), fit the data best (Figure 4 and
Supplementary Figure S5).

The event occurrence rate is a direct manifestation of the
underlying physical processes responsible for the induction or
triggering of microseismic events. The analysis of the mining
seismicity shows that it is primarily controlled by the mining
operations and lack any significant aftershock sequences. The
cumulative number of events given in Figure 2 shows the almost
steady linear increase with time for events above m ≥ −0.94
indicating a relatively constant rate of occurrence. However, the
interevent time distribution between consecutive events (Figure 5)
shows a deviation from the exponential distribution for short time
intervals and is better described by the gamma distribution. This
signifies that events that are separated by time intervals shorter than
10 min are driven by the time-dependent rate related to the mining
operations. This is also observed by studying the distribution of
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the magnitude difference between consecutive events (Figure 6).
This distribution shows a clear correlation between consecutive
magnitudes and an indication of deviation from Poisson statistics
on shorter time scales. However, it is also affected by the magnitude
completeness of the catalog and the effect is more pronounced
for lower magnitude cutoffs (Supplementary Figure S12). This
effect was also observed in case of rock fracture experiments
[20]. A related approach was recently suggested to use the
difference between consecutive magnitudes to estimate the b-
value that can handle the catalog incompleteness more efficiently

FIGURE 9

The normalized density plot of the joint distribution of the rescaled

time T and space R. The white dashed line corresponds to the

threshold log10(ηthresh) = 0.538.

[77]. However, that method relies on the assumption that
the earthquake magnitudes are independent. In the case of
mining seismicity, our analysis indicates a short-time correlation
between magnitudes.

Clustering of seismicity is an invaluable feature that
is directly related to the mechanisms of triggering and
interaction between seismic events. In our work, we used
the NND method (Section 3.4) to identify characteristics
of the triggering process and the structure of event family
trees. The GMM was utilized to investigate any possible
multimodality in the distribution of the rescaled nearest-
neighbor proximity between events, η (Figure 8). The GMM
with two components achieved the lowest BIC = 4029.7
(Supplementary Figure S14). The corresponding intersection of the
two components of the GMM was used to identify the threshold,
η = 0.538, in the declustering process (Figure 8). Therefore,
the microseismic events can be classified as being background
events (isolated singleton events) or as clustered events. The
obtained results show that the analyzed microseismic catalog has
characteristics that are dominated by the occurrence of isolated
singleton events.

Within the NND analysis, seismic family trees that form
the clustered events can be subdivided into three main types:
swarm-like, burst-type, or aftershocks [48, 49]. The swarm-like
families are those chains of seismic events without branches.
The burst-type families are those that have only one parent
event and many children. The aftershock-type families are the
combination of both mentioned types and contain first or higher-
order triggered events. By applying this classification to the mining
microseismicity we were able to identify 52 families (groups
of microseismic events) that had more than two nodes. Using
the criterion based on the value of BI (BI = 1 – swarm-
type, BI > 0.5 – aftershock-type, and BI ≤ 0.5 – burst-type),

FIGURE 10

Cluster statistics is shown for (A) the number of events in each cluster and (B) the distribution of clusters according to the number of nodes.

Frontiers in AppliedMathematics and Statistics 11 frontiersin.org

https://doi.org/10.3389/fams.2023.1126952
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Sedghizadeh et al. 10.3389/fams.2023.1126952

FIGURE 11

The spatial distribution of the nine largest clusters with respect to the mine layout. The panels from (A)-(I) correspond to the clusters initiated by the

root events (the black solid circles) indicated by their numbers in the catalog.

from these 52 seismic family trees, 18 families had swarm-
type, eight family trees had aftershock-type, and the rest
had burst-type characteristics (Supplementary Figures S19–S21).
This indicates that among clustered events the “burst-type”
of activity dominates the clustering. It should be mentioned
from these 52 family trees, 17 families had a foreshock
sequence, and in the other 35 families, the root event was
the largest event in the family tree. As the cluster size
distribution is dominated by small clusters with a predominantly
“burst-type” structure (Figure 10), the cluster leaf depth is
typically short.

6. Conclusions

In this work, several statistical methods were applied to
investigate the nature of microseismicity in a potash mine in
Saskatchewan, Canada. Specifically, the modeling of the frequency-
magnitude statistics was performed by fitting several models:
the left-truncated exponential distribution (or equivalently G-R
scaling), the tapered Pareto distribution, and their mixtures. By
analyzing the rate of seismicity we concluded that the occurrence
of events deviates from Poisson statistics on short time scales and
for the lower magnitude cutoffs. The magnitude of completeness
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FIGURE 12

The spatial distribution of all the clusters identified using the NND

method by using the threshold log10(ηthresh) = 0.538. This is plotted

with respect to the mine layout. Black solid circles indicate the

singleton events. The colored solid circles are all clusters with more

than one event.

was estimated using several methods and we used mc =
−0.94 for the analysis. The results of the clustering analysis of
microseismicity indicate that the majority of events can be treated
as independent background events mostly driven by underground
mining operations. However, there is some clustering of seismicity
and the formation of limited aftershock sequences. This clustering
is predominantly of “burst-type” in the terminology adopted in the
NND analysis.

From the analysis performed in this work, we can draw
several specific conclusions concerning the observed mining
microseismicity. The frequency-magnitude distribution of
seismicity exhibits a relatively high b-value (b = 2.39 ± 0.15)
indicating that the seismic events are distributed in a rather narrow
magnitude range above the completeness threshold m ≥ −0.94.
The largest observed event during the study period had a
magnitude of 0.56. The interevent triggering is also suppressed
and does not show any significant cascade-like propagation of
seismicity. This suggests that the probability of having even larger
events is very low and does not constitute a significant hazard for
the safe operation of the mine.
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