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Fast and direct inversion methods
for the multivariate
nonequispaced fast Fourier
transform

Melanie Kircheis* and Daniel Potts

Faculty of Mathematics, Chemnitz University of Technology, Chemnitz, Germany

The well-known discrete Fourier transform (DFT) can easily be generalized to

arbitrary nodes in the spatial domain. The fast procedure for this generalization

is referred to as nonequispaced fast Fourier transform (NFFT). Various applications

such as MRI and solution of PDEs are interested in the inverse problem, i.e.,

computing Fourier coe�cients from given nonequispaced data. In this article, we

survey di�erent kinds of approaches to tackle this problem. In contrast to iterative

procedures, where multiple iteration steps are needed for computing a solution,

we focus especially on so-called direct inversion methods. We review density

compensation techniques and introduce a new scheme that leads to an exact

reconstruction for trigonometric polynomials. In addition, we consider a matrix

optimization approach using Frobenius norm minimization to obtain an inverse

NFFT.

KEYWORDS

inverse nonequispaced fast Fourier transform, nonuniform fast Fourier transform, direct

inversion, iNFFT, NFFT

1. Introduction

The NFFT, short hand for nonequispaced fast Fourier transform or nonuniform fast
Fourier transform (NUFFT), respectively, is a fast algorithm to evaluate a trigonometric
polynomial

f (x) =
∑

k∈IM

f̂ k e
2π ikx (1.1)

with given Fourier coefficients f̂ k ∈ C, k ∈ IM , at nonequispaced points xj ∈
[

− 1
2 ,

1
2

)d
,

j = 1, . . . ,N, N ∈ N, where IM := Z
d ∩

[

−M
2 ,

M
2

)d
with |IM| = Md. In case we are given

equispaced points xj and |IM| = N, this evaluation can be realized by means of
the well-known fast Fourier transform (FFT); an algorithm that is invertible. However,
various applications such as magnetic resonance imaging (MRI), cf. [1, 2] and solution
of PDEs, cf. [3] need to perform an inverse nonequispaced fast Fourier transform
(iNFFT), i.e., compute the Fourier coefficients f̂ k from given function evaluations f (xj)
of the trigonometric polynomial (1.1). Hence, we are interested in an inversion also for
nonequispaced data.
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In general, the number N of points xj is independent of

the number |IM| of Fourier coefficients f̂ k and hence the
nonequispaced Fourier matrix

A :=
(

e2π ikxj
)N

j=1, k∈IM

∈ C
N×|IM |,

which we would have to invert, is rectangular in most
cases. Considering the corresponding linear system Af̂ = f

with f :=
(

f (xj)
)N

j=1 and f̂ := (f̂k)k∈IM , this can either be
overdetermined, if |IM| ≤ N, or underdetermined, if |IM| > N.
Generally, this forces us to look for a pseudoinverse solution.
Moreover, we also require that the nonequispaced Fourier matrixA
has full rank. Eigenvalue estimates in [4–8] indeed confirm that
this condition is satisfied for sufficiently nice sampling sets.

In literature a variety of approaches for an inverse NFFT
(iNFFT) can be found. This is why we give a short overview.

1.1. Iterative inversion methods

We start surveying the iterative methods. For the one-
dimensional setting d = 1 with |IM| = N an algorithm was
published in Ruiz-Antolin and Townsend [9], which is specially
designed for jittered equispaced points and is based on the
conjugate gradient (CG) method in connection with low-
rank approximation. An approach for the overdetermined case
|IM| ≤ N can be found in Feichtinger et al. [4], where the Toeplitz
structure of the matrix product A∗WA with a diagonal matrix
W := diag(wj)Nj=1 of Voronoi weights is used to compute the
solution iteratively by means of the CG algorithm.

For higher dimensional problems with d ≥ 1, several
approaches compute a least squares approximation to the linear
system Af̂ = f . In the overdetermined case |IM| ≤ N, the
given data can typically only be approximated up to a residual
r := Af̂ − f . Therefore, the weighted least squares problem

Minimize
f̂∈C|IM |

N
∑

j=1

wj

∣

∣

∣

∣

∣

∑

k∈IM

f̂k e
2π ikxj − f (xj)

∣

∣

∣

∣

∣

2

is considered, which is equivalent in solving the weighted normal
equations of the first kind A∗WAf̂ = A∗Wf with the diagonal
matrixW := diag(wj)Nj=1 of weights in the time domain. In [10–12],
these normal equations are solved iteratively by means of CG using
the NFFT to realize fast matrix-vector multiplications involving A,
whereas in Pruessmann and Wayer [13] a fast convolution
is used.

In the consistent underdetermined case |IM| > N the data can
be interpolated exactly and, therefore, one can choose a specific
solution, e.g., the one that solves the constrained minimization
problem

Minimize
f̂∈C|IM |

∑

k∈IM

|f̂k|2
ŵk

subject to Af̂ = f .

This interpolation problem is equivalent to the weighted normal
equations of the second kind AŴA∗y = f , f̂ = ŴA∗y with the
diagonal matrix Ŵ := diag(ŵk)k∈IM of weights in the frequency

domain. In Kunis and Potts [14], the CG method was used in
connection with the NFFT to iteratively compute a solution to this
problem, see also [15, Section 7.6.2].

1.2. Regularization methods

Moreover, there also exist several regularization techniques for
the multidimensional setting d ≥ 1. For example, [16–18] all solve
the ℓ1-regularized problem

Minimize
f̂∈C|IM |

1
2‖Af̂ − f ‖22 + λ‖Lm f̂ ‖1

with regularization parameter λ > 0 and the m-th order
polynomial annihilation operator L

m ∈ R
N×|IM | as sparsifying

transform, see Archibald et al. [19]. Based on this, weighted
ℓp-schemes

Minimize
f̂∈C|IM |

1
2‖Af̂ − f ‖22 + 1

p‖WL
m f̂ ‖pp

were introduced in [20–23], which are designed to reduce the
penalty at locations where Lm f̂ is nonzero. For instance, Churchill
et al. [24] and Scarnati and Gelb [25] each state a two-step method,
that first uses edge detection to create a mask, i.e., a weighting
that which indicates where nonzero entries are expected in the
TV domain, and then targets weighted ℓ2-norm TV regularization
appropriately to smooth regions of the function in a second
minimization step.

1.3. Direct inversion methods

In contrast to these iterated procedures, there are also so-
called direct methods that do not require multiple iteration
steps. Already in Dutt and Rokhlin [26] a direct method was
explained for the setting d = 1 and |IM| = N that uses Lagrange
interpolation in combination with fast multiple methods. Based on
this, further methods were deduced for the same setting, which
also use Lagrange interpolation, but additionally incorporate an
imaginary shift in [27], or utilize fast summation in Kircheis and
Potts [28] for the fast evaluation of occurring sums, see also
[15, Section 7.6.1].

In the overdetermined setting |IM| ≤ N another approach for
computing an inverse NFFT can be obtained by using the fact that
A∗A is of Toeplitz structure. To this end, the Gohberg-Semencul
formula, see Heinig and Rost [29], can be used to solve the normal
equations A∗Af̂ = A∗f exactly by analogy with Averbuch et al.
[72]. Here, the computation of the components of the Gohberg-
Semencul formula can be viewed as a precomputational step. In
addition, also a frame-theoretical approach is known from Gelb
and Song [30], which provides a link between the adjoint NFFT
and frame approximation, and could, therefore, be seen as a way
to invert the NFFT. Note that the method in Gelb and Song [30] is
based only on optimizing a diagonal matrix [the matrix D defined
in (2.13)], whereas in Kircheis and Potts [28] similar ideas were
used to modify a sparse matrix [the matrix B defined in (2.15)].
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For the multidimensional setting d > 1, several methods have
been developed that are tailored to the special structure of
the linogram or pseudo-polar grid, respectively, see Figure 3B,
such that the inversion involves only one-dimensional FFTs and
interpolations. On the one hand, in Averbuch et al. [31], a
least squares solution is computed iteratively by using a fast
multiplication technique with the matrix A, which can be derived
in the case of the linogram grid. On the other hand, [32] is based on
a fast resampling strategy, where a first step resamples the linogram
grid onto a Cartesian grid, and the second phase recovers the
image from these Cartesian samples. However, these techniques are
exclusively applicable to the special case of the linogram grid, see
Figure 3B, or the polar grid by another resampling, cf. Figure 3A.
Since we are interested in more generally applicable methods, a
brief introduction to direct inversion for general sampling patterns
can be found in Kircheis and Potts [33].

1.4. Current approach

In this article, we focus on direct inversion methods that are
applicable to general sampling patterns and present new methods
for the computation of an iNFFT. Note that the direct method in
the context of the linear systemAf̂ = f means, that for a fixed set of
points xj, j = 1, . . . ,N, the reconstruction of f̂ from given f can be
realized with the same number of arithmetic operations as a single
application of an adjoint NFFT (see Algorithm 2.4). To achieve this,
a certain precomputational step is compulsory, since the adjoint
NFFT does not yield an inversion of the NFFT per se, cf. (3.3).
Although these precomputations might be rather costly, they need
to be done only once for a given set of points xj, j = 1, . . . ,N.
Therefore, direct methods are especially beneficial in the case of
fixed points for several measurement vectors f .

For this reason, the current paper is concerned with
two different approaches of this kind. First, we consider
the very well-known approach of so-called sampling density
compensation, which can be written as f̂ ≈ A∗Wf with a diagonal
matrix W := diag(wj)Nj=1 of weights. The already mentioned
precomputations then consist of computing suitable weights wj,
while the actual reconstruction step includes only one adjoint NFFT
applied to the scaled coefficient vector Wf . In this article, we
examine several existing approaches for computing the weights wj

and introduce a new method, such that the iNFFT is exact for all
trigonometric polynomials (1.1) of degreeM.

As a second part, we reconsider and enhance our approach
introduced in Kircheis and Potts [33]. Therefore, the idea is
using the matrix representation A ≈ BFD of the NFFT to modify
one of the matrix factors, such that an inversion is given
by f̂ ≈ D∗F∗B∗

opt f . Then the precomputational step consists of
optimizing the matrix B, while the actual reconstruction step
includes only one modified adjoint NFFT applied to the coefficient
vector f .

1.5. Outline of this paper

This article is organized as follows. In Section 2, we introduce
the already mentioned algorithm, the NFFT, as well as its adjoint

version, the adjoint NFFT. Second, in Section 3, we introduce
the inversion problem and deal with direct methods using so-
called sampling density compensation. We start our investigations
with trigonometric polynomials in Section 3.1. Here, the main
formula (3.14) yields exact reconstruction for all trigonometric
polynomials of degree M. We also discuss practical computation
schemes for the overdetermined and the underdetermined setting.
Subsequently, in Section 3.2, we go on to bandlimited functions
and show that the same numerical procedures as in Section 3.1
can be used in this setting as well. Section 3.3 then summarizes
the previous findings by presenting a general error bound on
density compensation factors computed by means of (3.14)
in Theorem 3.14. In addition, this also yields an estimate on
the condition number of a specific matrix product, as shown in
Theorem 3.15. In Section 3.4, we have a look at certain approaches
from literature and their connection among each other as well as
to the method presented in Section 3.1. Afterward, we examine
another direct inversion method in Section 4, where we aimed to
modify the adjoint NFFT by means of matrix optimization such
that this yields an iNFFT. Finally, in Section 5, we show some
numerical examples to investigate the accuracy of our approaches.

2. Nonequispaced fast Fourier
transform

Let

T
d
:= R

d \ Zd ∼=
[

− 1
2 ,

1
2

)d =
{

x ∈ R
d
: − 1

2 ≤ xt <
1
2 , t = 1, . . . , d

}

denote the d-dimensional torus with d ∈ N. For
M := (M, . . . ,M)T ,M ∈ 2N, we define the multi-index set

IM := Z
d∩
[

−M
2 ,

M
2

)d =
{

k ∈ Z
d
: − M

2 ≤ kt <
M
2 , t = 1, . . . , d

}

with cardinality |IM| = Md. The inner product of two vectors
shall be defined as usual as kx := k1x1 + · · · + kdxd. and the
componentwise product as x⊙ y :=

(

x1y1, . . . , xdyd
)T . In

addition, we define the all ones vector 1d := (1, . . . , 1)T and the
reciprocal of a vector x with nonzero components shall be given by

x−1
:=
(

x−1
1 , . . . , x−1

d

)T
.

We consider the Hilbert space L2(Td) of all 1-periodic,
complex-valued functions, which possess the orthonormal basis
{e2π ikx : k ∈ Z

d}. It is known that every function f ∈ L2(Td) is
uniquely representable in the form

f (x) =
∑

k∈Zd

ck(f ) e
2π ikx (2.1)

with the coefficients

ck(f ) :=
∫

Td
f (x) e−2π ikx dx, k ∈ Z

d, (2.2)

where the sum in (2.1) converges to f in the L2(Td)-norm, cf. [15,
Thm. 4.5]. A series of the form (2.1) is called Fourier series with the
Fourier coefficients (2.2). Numerically, the Fourier coefficients (2.2)
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are approximated on the uniform grid {M−1 ⊙ ℓ, ℓ ∈ IM} by the
trapezoidal rule for numerical integration as

ck(f ) ≈
1

|IM|
∑

ℓ∈IM

f (M−1 ⊙ ℓ) e−2π ik(M−1⊙ℓ), k ∈ Z
d, (2.3)

which is an acceptable approximation for k ∈ IM , see e. g., [15,
p. 214]. The fast evaluation of (2.3) can then be realized by means
of the fast Fourier transform (FFT). Moreover, it is know that
this transformation is invertible and that the inverse problem of
computing

f (M−1 ⊙ ℓ) =
∑

k∈IM

f̂k e
2π ik(M−1⊙ℓ), ℓ ∈ IM , (2.4)

with f̂k ≈ ck(f ), k ∈ IM , can be realized by means of an inverse fast

Fourier transform (iFFT), which is the same algorithm except for
some reordering and scaling, cf. [15, Lem. 3.17].

Now, suppose we are given nonequispaced points xj ∈ T
d,

j = 1, . . . ,N, instead. Then, we consider the computation of the
sums

fj := f (xj) =
∑

k∈IM

f̂k e
2π ikxj , j = 1, . . . ,N, (2.5)

for given f̂k ∈ C, k ∈ IM , as well as the adjoint problem of
computing

hk =
N
∑

j=1

fj e
−2π ikxj , k ∈ IM , (2.6)

for given fj ∈ C, j = 1, . . . ,N. By defining the nonequispaced
Fourier matrix

A = A|IM | :=
(

e2π ikxj
)N

j=1, k∈IM

∈ C
N×|IM |, (2.7)

as well as the vectors f :=
(

fj
)N

j=1, f̂ := (f̂k)k∈IM and h := (hk)k∈IM ,
the computation of sums of the form (2.5) and (2.6) can be written

as f = Af̂ and h = A∗f , whereA∗
:= A

T
denotes the adjoint matrix

of A.
Since the naive computation of (2.5) and (2.6) is of

complexityO(N · |IM|), a fast approximate algorithm, the so-called
nonequispaced fast Fourier transform (NFFT), is briefly explained
below. For more information see [34–38] or [15, p. 377–381].

2.1. NFFT

We first restrict our attention to the problem (2.5), which is
equivalent to the evaluation of a trigonometric polynomial

f (x) =
∑

k∈IM

f̂k e
2π ikx (2.8)

with given f̂k ∈ C, k ∈ IM , at given nonequispaced points xj ∈ T
d,

j = 1, . . . ,N. Let w ∈ L2(Rd) ∩ L1(Rd) be a so-called window

function, which is well localized in space and frequency domain.
Now, we define the 1-periodic function w̃(x) :=

∑

r∈Zd w(x+ r)

with absolute convergent Fourier series. As a consequence, the
Fourier coefficients of the periodization w̃ have the form

ck(w̃) =
∫

Td
w̃(x) e−2π ikx dx =

∫

Rd
w(x) e−2π ikx dx =: ŵ(k).

For a given oversampling factor σ ≥ 1, we define
2N ∋ Mσ := 2⌈⌈σM⌉/2⌉ as well as Mσ := Mσ · 1d, and
approximate f by a linear combination translates of the periodized
window function, i.e.,

f (x) ≈ s1(x) :=
∑

ℓ∈IMσ

gℓ w̃
(

x−M−1
σ

⊙ ℓ
)

, (2.9)

where gℓ ∈ C, ℓ ∈ IMσ
, are coefficients to be determined such

that (2.9) yields a good approximation. Bymeans of the convolution
theorem (see [15, Lem. 4.1]), the approximant s1 ∈ L2(Td) in (2.9)
can be represented as

s1(x) =
∑

k∈Zd

ck(s1) e
2π ikx

=
∑

k∈IM

ĝk ck(w̃) e
2π ikx

+
∑

r∈Zd\{0}

∑

k∈IM

ĝk ck+Mσ⊙ r(w̃) e
2π i(k+Mσ⊙ r)x, (2.10)

where the discrete Fourier transform of the coefficients gℓ is defined
by

ĝk :=
∑

ℓ∈IMσ

gℓ e
−2π ik(M−1

σ ⊙ ℓ), k ∈ IM . (2.11)

Comparing (2.5) and (2.10) then yields

ĝk =







f̂k

ŵ(k)
: k ∈ IM ,

0 : k ∈ IMσ
\ IM .

Consequently, the coefficients gℓ in (2.9) can be obtained by
inverting (2.11), i.e., by the application of an iFFT.

Furthermore, we assume that w is well localized such that it is
small outside the square [−m/Mσ , m/Mσ ]d with truncation parameter
m≪Mσ . In this case, w can be approximated by the compactly
supported function

wm(x) :=







w(x) : x ∈
[

− m
Mσ

, m
Mσ

]d
,

0 : otherwise.

Thereby, we approximate s1 by the short sums

f (xj) ≈ s1(xj) ≈ s(xj) :=
∑

ℓ∈IMσ

gℓ w̃m

(

xj −M−1
σ

⊙ ℓ
)

=
∑

ℓ∈IMσ ,m(xj)

gℓ w̃m

(

xj −M−1
σ

⊙ ℓ
)

,

where the index set

IMσ ,m(xj) :=
{

ℓ ∈ IMσ
: ∃z ∈ Z

d with

−m · 1d ≤ Mσ ⊙ xj − ℓ + z ≤ m · 1d} (2.12)

contains at most (2m + 1)d entries for each fixed xj. Thus, the
obtained algorithm can be summarized as follows.
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For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, be given points as well as

f̂ k ∈ C, k ∈ IM , given Fourier coefficients. Furthermore, we are
given the oversampling factor σ ≥ 1, 2N ∋ Mσ := 2⌈⌈σM⌉/2⌉,
Mσ := Mσ · 1d, as well as the window function w, the truncated
function wm with truncation parameter m≪Mσ , and their
1-periodic versions w̃ and w̃m.

1. Set

ĝk :=
{

f̂k
ŵ(k)

: k ∈ IM ,

0 : k ∈ IMσ
\ IM .

O(|IM|)

2. Compute

gℓ := 1

|IMσ
|
∑

k∈IM

ĝk e
2π ik(M−1

σ ⊙ ℓ), ℓ ∈ IMσ
,

by means of a d-variate iFFT. O(|IM| log(|IM|))

3. Compute the short sums

f̃j :=
∑

ℓ∈IMσ ,m(xj)

gℓ w̃m

(

xj −M−1
σ

⊙ ℓ
)

, j = 1, . . . ,N.

O(N)

Output: f̃j ≈ fj, j = 1, . . . ,N, cf. (2.5).
Complexity:O(|IM| log(|IM|)+ N)

Algorithm 2.1. NFFT.

Remark 2.2. Suitable window functions can be found, e.g., in

[34, 35, 37–41].

Next, we give the matrix-vector representation of the NFFT. To
this end, we define

• the diagonal matrix

D := diag

(

1

|IMσ
| · ŵ(k)

)

k∈IM

∈ C
|IM |×|IM |, (2.13)

• the truncated Fourier matrix

F :=
(

e2π ik(M
−1
σ ⊙ ℓ)

)

ℓ∈IMσ , k∈IM

∈ C
|IMσ |×|IM |, (2.14)

• and the sparse matrix

B :=
(

w̃m

(

xj −M−1
σ

⊙ ℓ
)

)N

j=1, ℓ∈IMσ

∈ R
N×|IMσ |, (2.15)

where by definition (2.12) each row of B contains at most
(2m+ 1)d nonzeros. In doing so, the NFFT in Algorithm 2.1 can
be formulated in matrix-vector notation such that we receive the

approximation A ≈ BFD of (2.7), cf. [15, p. 383]. In other words,
the NFFT uses the approximation

e2π ikxj ≈ 1

|IMσ
| · ŵ(k)

∑

ℓ∈IMσ ,m(xj)

e2π ik(M
−1
σ ⊙ ℓ) w̃m

(

xj −M−1
σ

⊙ ℓ
)

.

Remark 2.3. It has to be pointed out that because of consistency the

factor |IMσ
|−1 is here not located in the matrix F as usual but in the

matrix D.

2.2. Adjoint NFFT

Now, we proceed with the adjoint problem (2.6). As already
seen, this can be written as h = A∗f with the adjoint matrix A∗

of (2.7). Thus, using the matrices (2.13), (2.14), and (2.15) we
receive the approximationA∗ ≈ D∗F∗B∗, such that a fast algorithm
for the adjoint problem can be denoted as follows.

For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, be given points as

well as fj ∈ C given coefficients. Furthermore, we are given
the oversampling factor σ ≥ 1, 2N ∋ Mσ := 2⌈⌈σM⌉/2⌉,
Mσ := Mσ · 1d, as well as the window function w, the truncated
function wm with truncation parameter m≪Mσ , and their
1-periodic versions w̃ and w̃m.

1. Compute the sparse sums

gℓ :=
N
∑

j=1

fj w̃m

(

xj −M−1
σ

⊙ ℓ
)

, ℓ ∈ IMσ
.

O(N)

2. Compute

ĝk :=
1

|IMσ
|
∑

ℓ∈IMσ

gℓ e
−2π ik(M−1

σ ⊙ ℓ), k ∈ IM ,

by means of a d-variate FFT. O(|IM| log(|IM|))

3. Set

h̃k :=
ĝk

ŵ(k)
, k ∈ IM .

O(|IM|)

Output: h̃k ≈ hk, k ∈ IM , cf. (2.6).
Complexity:O(|IM| log(|IM|)+ N)

Algorithm 2.4. Adjoint NFFT.

The algorithms presented in this section (Algorithms 2.1
and 2.4) are part of the NFFT software [42]. For algorithmic details
we refer to Keiner et al. [38].
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3. Direct inversion using density
compensation

Having introduced the fast methods for nonequispaced data, we
remark that various applications such as MRI and solution of PDEs
are interested in the inverse problem, i.e., instead of the evaluation
of (2.5) the aim was to compute the Fourier coefficients f̂k, k ∈ IM ,
from given nonequispaced data f (xj), j = 1, . . . ,N. Therefore, this
section shall be dedicated to this task.

To clarify the major dissimilarity between equispaced and
nonequispaced data, we start considering the equispaced case.
When evaluating at the points xj = 1

n j ∈ T
d, j ∈ In, with

n := n · 1d and |In| = N, the nonequispaced Fourier matrix
A ∈ C

N×|IM | in (2.7) turns into the equispaced Fourier matrix
F ∈ C

|IMσ |×|IM | from (2.14) with |IMσ
| = N. Thereby, it results

from the geometric sum formula that

F∗F =
(

∑

j∈In

e2π i(k−ℓ)j/n

)

k,ℓ∈IM

= NI|IM |, if |IM| ≤ N,

(3.1)
as well as

FF∗ =
(

∑

k∈IM

e2π ik(j−h)/n

)

j,h∈In

= |IM| · IN , if |IM| ≥ N

(3.2)
and |IM| is divisible by N. Thus, in the equispaced setting a one-
sided inverse is given by the (scaled) adjoint matrix. However, when
considering arbitrary points xj ∈ T

d, j = 1, . . . ,N, this property is
lost, i.e., for the nonequispaced Fourier matrix, we have

A∗A 6= NI|IM | and AA∗ 6= |IM| · IN . (3.3)

Because of this, more effort is needed in the nonequispaced setting.
In general, we face the following two problems.

(1) Solve the linear system

Af̂ = f , (3.4)

i.e., reconstruct the Fourier coefficients f̂ = (f̂k)k∈IM from
given function values f = (f (xj))Nj=1. This problem is referred
to as inverse NDFT (iNDFT) and an efficient solver shall be
called inverse NFFT (iNFFT).

(2) Solve the linear system

A∗f = h, (3.5)

i.e., reconstruct the coefficients f = (fj)Nj=1 from given data
h = (hk)k∈IM . This problem is referred to as inverse adjoint
NDFT (iNDFT*) and an efficient solver shall be called inverse

adjoint NFFT (iNFFT*).

Note that in both problems the numbers |IM| and N are
independent, such that the nonequispaced Fourier matrix
A ∈ C

N×|IM | in (2.7) is generally rectangular.
At first, we restrict our attention to the problem (3.4). When

considering iterative inversion procedures as those mentioned in
the introduction, these methods require multiple iteration steps

by definition. Therefore, multiple matrix-vector multiplications
with the system matrix A, or rather multiple applications of the
NFFT (see Algorithm 2.1), are needed to compute a solution. To
reduce the computational effort, we now proceed, in contrast to this
iterated procedure, with so-called direct methods. In the setting of
the problem (3.4) we hereby mean methods, where for a fixed set of
points xj, j = 1, . . . ,N, the reconstruction of f̂ from given f can be
realized with the same number of arithmetic operations as a single
application of an adjoint NFFT (see Algorithm 2.4). To achieve this,
a certain precomputational step is compulsory, since the adjoint
NFFT does not yield an inversion of the NFFT per se, see (3.3).
Although these precomputations might be rather costly, they need
to be done only once for a given set of points xj, j = 1, . . . ,N. In
fact, the actual reconstruction step is very efficient. Therefore, direct
methods are especially beneficial in case we are given fixed points
for several measurement vectors f .

In this section, we focus on a direct inversion method for
solving problem (3.4) that utilizes so-called sampling density

compensation. To this end, we consider the integral (2.2) and
introduce a corresponding quadrature formula. In contrast to the
already known equispaced approximation (2.3) we now assume
given arbitrary, nonequispaced points xj ∈ T

d, j = 1, . . . ,N.
Thereby, the Fourier coefficients (2.2) are approximated by
a general quadrature rule using quadrature weights wj ∈ C,
j = 1, . . . ,N, which are needed for sampling density compensation
due to the nonequispaced sampling. Thus, for a trigonometric
polynomial (2.8), we have

f̂k = ck(f ) ≈ hwk :=
N
∑

j=1

wj f (xj) e
−2π ikxj , k ∈ IM . (3.6)

Using the nonequispaced Fourier matrix A ∈ C
N×|IM | in (2.7),

the diagonal matrix of weights W := diag(wj)Nj=1 ∈ C
N×N as well

as the vector hw := (hwk )k∈IM , the nonequispaced quadrature

rule (3.6) can be written as f̂ ≈ hw := A∗Wf . For achieving a fast
computation method, we make use of the approximation of the
adjoint NFFT, cf. Section 2.2, i.e., the final approximation is given
by

f̂ ≈ h̃
w
:= D∗F∗B∗Wf , (3.7)

with the matrices D ∈ C
|IM |×|IM |, F ∈ C

|IMσ |×|IM |, and
B ∈ R

N×|IMσ | defined in (2.13), (2.14), and (2.15). In other
words, for density compensation methods the already mentioned
precomputations consists of computing the quadrature weights
wj ∈ C, j = 1, . . . ,N, while the actual reconstruction step includes
only one adjoint NFFT (see Algorithm 2.4) applied to the scaled
measurement vectorWf .

The aim of all density compensation techniques was then to
choose appropriate weights wj ∈ C, j = 1, . . . ,N, such that the
underlying quadrature (3.6) is preferably exact. In the following,
we have a look at the specific choice of the so-called density

compensation factors wj.
An intuitive approach for density compensation is based on

geometry, where each sample is considered as representative of a
certain surrounding area, as in numerical integration. The weights
for each sample can be obtained for instance by constructing
a Voronoi diagram and calculating the area of each cell, see
e.g., [43]. This approach of Voronoi weights is well-known and
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widely used in practice. However, it does not necessarily yield a
good approximation (3.7), which is why we examine some more
sophisticated approaches in the remainder of this section.

To this end, this section is organized as follows. First,
in Section 3.1, we introduce density compensation factors wj,
j = 1, . . . ,N, that lead to an exact reconstruction formula (3.6) for
all trigonometric polynomials (2.8) of degree M. In addition to
the theoretical results, we also discuss methods for the numerical
computation. Secondly, in Section 3.2, we show that it is reasonable
to consider the inversion problem (3.4) and density compensation
via (3.7) for bandlimited functions f ∈ L1(Rd) ∩ C0(Rd) as well.
Subsequently, we summarize our previous findings by presenting a
general error bound on density compensation factors in Section 3.3.
Finally, in Section 3.4, we reconsider certain approaches from
literature and illustrate their connection to each other as well as to
the method introduced in Section 3.1.

Remark 3.1. Recapitulating, we have a closer look at some possible

interpretation perspectives on the reconstruction (3.7).

(i) If we define g := Wf , i.e., each entry of f is scaled with respect

to the points xj, j = 1, . . . ,N, the approximation (3.7) can be

written as f̂ ≈ D∗F∗B∗g. As mentioned before, this coincides

with an ordinary adjoint NFFT applied to amodified coefficient

vector g.

(ii) By defining the matrix B̃ := W∗B, i.e., scaling the rows

of B with respect to the points xj, j = 1, . . . ,N, the

approximation (3.7) can be written as f̂ ≈ D∗F∗B̃
∗
f . In this

sense, density compensation can also be seen as a modification

of the adjoint NFFT and its application to the original

coefficient vector.

Note that (i) is the common viewpoint. However, we keep (ii) in

mind, since this allows treating density compensation methods as an

optimization of the sparse matrix B ∈ R
N×|IMσ | in (2.15), as it shall

be done in Section 4. We remark that density compensation methods

allow only N degrees of freedom.

3.1. Exact quadrature weights for
trigonometric polynomials

Similar to Gräf et al. [44], we aimed to introduce density
compensation factors wj, j = 1, . . . ,N, that lead to an exact
reconstruction formula (3.6) for all trigonometric polynomials (2.8)
of degree M. To this end, we first examine certain properties that
arise from (3.6) being exact.

Theorem 3.2. Let a polynomial degree M ∈ (2N)d, nonequispaced
points xj ∈ T

d, j = 1, . . . ,N, and quadrature weights wj ∈ C be

given. Then an exact reconstruction formula (3.6) for trigonometric

polynomials (2.8) with maximum degreeM satisfying

f̂k = ck(f ) = hwk , k ∈ IM , (3.8)

implies the following equivalent statements.

(i) The quadrature rule

∫

Td
f (x) dx =

N
∑

j=1

wjf (xj) (3.9)

is exact for all trigonometric polynomials (2.8) with maximum

degreeM.

(ii) The linear system of equations

[

ATw
]

k
=

N
∑

j=1

wj e
2π ikxj = δ0,k =

{

1 : k = 0

0 : otherwise

}

,

k ∈ IM ,
(3.10)

is fulfilled with the matrix A ∈ C
N×|IM | in (2.7) and

w :=
(

wj

)N

j=1.

Proof: (3.8) ⇒ (i): By inserting the definition (2.8) of a
trigonometric polynomial of degreeM into the integral considered
in (3.9), we have

∫

Td
f (x) dx =

∑

k∈IM

f̂k ·
∫

Td
e2π ikx dx =

∑

k∈IM

f̂k · δ0,k = f̂0, (3.11)

with the Kronecker delta δ0,k. Now using the property (3.8) as well
as definition (3.6) of hwk we proceed with

f̂0 = hw0 =
N
∑

j=1

wjf (xj)
∑

k∈IM

e0 =
N
∑

j=1

wjf (xj), (3.12)

such that (3.11) combined with (3.12) yields the assertion (3.9).
(i) ⇒ (ii): Inserting the definition (2.8) of a trigonometric

polynomial of degreeM into the right-hand side of (3.9) implies

N
∑

j=1

wjf (xj) =
N
∑

j=1

wj

∑

k∈IM

f̂k e
2π ikxj =

∑

k∈IM

f̂k

N
∑

j=1

wj e
2π ikxj .

(3.13)

This together with the property (i) and (3.11) leads to

f̂0 =
∑

k∈IM

f̂k

N
∑

j=1

wj e
2π ikxj

and thus to assertion (3.10).
(ii) ⇒ (i): Combining (3.11), (3.10), and (3.13) yields the

assertion via

∫

Td
f (x) dx =

∑

k∈IM

f̂k · δ0,k =
∑

k∈IM

f̂k

N
∑

j=1

wj e
2π ikxj =

N
∑

j=1

wjf (xj).

Remark 3.3. Comparable results can also be found in literature.

A fundamental theorem in numerical integration, see [45], states

that for any integral
∫

Td f (x) dx there exists an exact quadrature

rule (3.9), i.e., optimal points xj ∈ T
d and weights wj ∈ C,

j = 1, . . . ,N, such that (3.9) is fulfilled. In Gröchenig [46,

Lemma 2.6], it was shown that for given points xj ∈ T
d, j = 1, . . . ,N,

certain quadrature weights wj can be stated by means of frame

theoretical considerations that lead to an exact quadrature rule (3.9)
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by definition. Moreover, it was shown (cf. [46, Lemma 3.6]) that these

weights are the ones with minimal (weighted) ℓ2-norm, which are

already known under the name “least squares quadrature,” see [47].

According to Huybrechs [47, Sec. 2.1], these quadrature weights wj,

j = 1, . . . ,N, can be found by solving a linear system of equations

8w = v, where 8k,j = φk(xj) and vk =
∫

Td φk(x) dx for a given set

of basis functions {φk}k∈IM . In our setting, we have φk(x) = e2π ikx

and, therefore,

8 =
(

e2π ikxj
)

k,j
= AT and vk =

∫

Td
1 · e2π ikx dx = δ0,k,

i.e., the same linear system of equations as in (3.10). We remark that

both Gröchenig [46] and Huybrechs [47] state the results in the case

d = 1, a generalization to d > 1, however, is straight-forward.

By means of Theorem 3.2 we can now give a condition that
guarantees (3.6) being exact for all trigonometric polynomials (2.8)
with maximum degreeM.

Corollary 3.4. The two statements (i) and (ii) in Theorem 3.2 are

not equivalent to property (3.8), since (3.10) does not imply an exact

reconstruction in (3.6).

However, an augmented variant of (3.10), namely,

N
∑

j=1

wj e
2π ikxj = δ0,k, k ∈ I2M , (3.14)

yields an exact reconstruction f̂ k = hwk in (3.6) for trigonometric

polynomials (2.8) with maximum degree M. In addition, (3.14)

implies the matrix equation A∗WA = I|IM | with A ∈ C
N×|IM |

in (2.7) and the identity matrix I|IM | of size |IM|.

Proof: Utilizing definitions (3.6) and (2.8), we have

hwk =
N
∑

j=1

wj

(

∑

ℓ∈IM

f̂ℓ e
2π iℓxj

)

e−2π ikxj

=
∑

ℓ∈IM

f̂ℓ

N
∑

j=1

wj e
2π i(ℓ−k)xj

=
∑

ℓ∈IM
(ℓ−k)∈IM

f̂ℓ

N
∑

j=1

wj e
2π i(ℓ−k)xj

+
∑

ℓ∈IM
(ℓ−k)/∈IM

f̂ℓ

N
∑

j=1

wj e
2π i(ℓ−k)xj , k ∈ IM .

Since (3.10) only holds for k, ℓ ∈ IM with (ℓ − k) ∈ IM , this
implies

hwk = f̂k +
∑

ℓ∈IM
(ℓ−k)/∈IM

f̂ℓ

N
∑

j=1

wj e
2π i(ℓ−k)xj , k ∈ IM ,

where for all k ∈ IM \ {0} there exists an ℓ ∈ IM with
(ℓ − k) ∈ I2M \ IM .

As (ℓ − k) ∈ I2M for k, ℓ ∈ IM , the augmented variant (3.14)
yields

hwk =
∑

ℓ∈IM

f̂ℓ

N
∑

j=1

wj e
2π i(ℓ−k)xj =

∑

ℓ∈IM

f̂k · δ0,k = f̂k, k ∈ IM .

Moreover, since δ(ℓ−k),0 = δk,ℓ, the condition (3.14) implies

δk,ℓ =
N
∑

j=1

wj e
2π i(ℓ−k)xj =

N
∑

j=1

e−2π ikxj
(

wj e
2π iℓxj

)

, k, ℓ ∈ IM .

In matrix-vector notation, this can be written as A∗WA = I|IM |
with A ∈ C

N×|IM | in (2.7) and the identity matrix I|IM | of
size |IM|. We remark that this matrix equation immediately shows
that we have an exact reconstruction of the form (3.8), since if
A∗WA = I|IM | is fulfilled, (3.4) implies that f̂ = A∗WAf̂ = A∗Wf .

Remark 3.5. Let f ∈ L2(Td) be an arbitrary 1-periodic

function (2.1). Then (3.14) yields

hwk =
∑

ℓ∈Zd

cℓ(f )
N
∑

j=1

wj e
2π i(ℓ−k)xj =

∑

ℓ∈Zd

(ℓ−k)∈I2M

cℓ(f )
N
∑

j=1

wj e
2π i(ℓ−k)xj

+
∑

ℓ∈Zd

(ℓ−k)/∈I2M

cℓ(f )
N
∑

j=1

wj e
2π i(ℓ−k)xj

= ck(f )+
∑

ℓ∈Zd

(ℓ−k)/∈I2M

cℓ(f )
N
∑

j=1

wj e
2π i(ℓ−k)xj , k ∈ IM ,

i.e., for a function f ∈ L2(Td) we only have a good approximation

in case the coefficients cℓ(f ) are small for ℓ /∈ IM , whereas this

reconstruction can only be exact for f being a trigonometric

polynomial (2.8).

3.1.1. Practical computation in the
underdetermined setting |I2M| ≤ N

So far, we have seen in Corollary 3.4 that an exact solution
w = (wj)Nj=1 to the linear system (3.14) leads to an exact
reconstruction formula (3.6) for all trigonometric polynomials (2.8)
with maximum degree M. Therefore, we aimed to use this
condition (3.14) to numerically find optimal density compensation
factors wj ∈ C, j = 1, . . . ,N.

Having a closer look at the condition (3.14) we recognize that
it can be written as the linear system of equations AT

|I2M | w = e0

with the matrix A|I2M | ∈ C
N×|I2M |, cf. (2.7), and right side

e0 :=
(

δ0,k
)

k∈I2M
. We remark that in contrast to A ∈ C

N×|IM |

we now deal with the enlarged matrix A|I2M | ∈ C
N×|I2M |, such

that single matrix operations are more costly. Nevertheless,
Corollary 3.4 yields a direct inversion method for (3.4), where
the system AT

|I2M | w = e0 needs to be solved only once for fixed

points xj ∈ T
d, j = 1, . . . ,N. Its solution w can then be used

to efficiently approximate f̂ for multiple measurement vectors f ,
whereas iterative methods for (3.4) need to solve Af̂ = f each
time.
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As already mentioned in [47, Sec. 3.1] an exact solution
to (3.14) can only be found if |I2M| ≤ N, i.e., in case AT

|I2M | w = e0
is an underdetermined system of equations. By [47, Lem. 3.1]
this system has at least one solution, which is why we may
choose the one with a minimal ℓ2-norm. If rank(A|I2M |) = |I2M|,
then the system AT

|I2M | w = e0 is consistent and the unique
solution is given by the normal equations of the second
kind

AT
|I2M |A|I2M | v = e0, A|I2M | v = w. (3.15)

More precisely, we may compute the vector v using an
iterative procedure such as the CG algorithm, such that only
matrix multiplications with AT

|I2M | and A|I2M | are needed.

Since fast multiplication with AT
|I2M | and A|I2M | can easily

be realized by means of an adjoint NFFT (see Algorithm 2.4)
and an NFFT (see Algorithm 2.1), respectively, computing the
solution w to (3.15) is of complexity O(|I2M| log(|I2M|)+ N),
where

|I2M| = (2M)d = 2dMd = 2d |IM|.

Thus, to receive exact quadrature weights wj ∈ C,
j = 1, . . . ,N, via (3.15) we need to satisfy the full rank
condition rank (A|I2M |) = |I2M|. In case of a low-rank
matrix A|I2M | ∈ C

N×|I2M | for |I2M| ≤ N, we may still
use (3.15) to obtain a least squares approximation
to (3.14).

3.1.2. Practical computation in the
overdetermined setting |I2M| > N

In the setting |I2M| > N, we cannot expect to find an
exact solution w to (3.14), since we have to deal with an
overdetermined system possessing more conditions than variables.
However, we still aimed to numerically find optimal density
compensation factors wj ∈ C, j = 1, . . . ,N, by considering
a least squares approximation to (3.14) that minimizes
∥

∥AT
|I2M | w − e0

∥

∥

2. In [60, Thm. 1.1.2] it was shown that every
least squares solution satisfies the normal equations of the first
kind

A|I2M | A
T
|I2M | w = A|I2M | e0. (3.16)

By means of definitions of A|I2M | ∈ C
N×|I2M |, cf. (2.7),

and e0 =
(

δ0,k
)

k∈I2M
we simplify the right-hand side

via

A|I2M | e0 =
(

∑

k∈I2M

δ0,k e
−2π ikxj

)N

j=1

= 1N .

Since fast multiplication with AT
|I2M | and A|I2M | can easily

be realized by means of an adjoint NFFT (see Algorithm 2.4)
and an NFFT (see Algorithm 2.1), respectively, the solution w

to (3.16) can be computed iteratively by means of the CG
algorithm in O(|I2M| log(|I2M|)+ N) arithmetic operations.
Note that the solution to (3.16) is only unique if the full
rank condition rank(A|I2M |) = N is satisfied, cf. [60, p. 7].

We remark that the computed weight matrix W = diag(w)
can further be used in an iterative procedure as in Plonka
et al. [[15, Alg. 7.27] to improve the approximation
of f̂ .

The previous considerations lead to the following algorithms.

For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, as well as M ∈ 2N and

M := M · 1d be given.

1. Compute |I2M| = (2M)d. O(1)

2. If |I2M| ≤ N

Compute the solution v to (3.15) iteratively using the
NFFT.

O(|I2M| log(|I2M|)+ N)

Compute the solutionw = A|I2M | v, see (3.15), using
an NFFT.

O(|I2M| log(|I2M|)+ N)

elseif |I2M| > N

Compute the solution w to (3.16) iteratively using
the NFFT.

O(|I2M| log(|I2M|)+ N)

3. ComposeW = diag(w) ∈ C
N×N . O(N)

Output: weights matrixW
Complexity:O(|I2M| log(|I2M|)+ N)

Algorithm 3.6. Computation of the optimal density compensation factors.

For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, as well as f ∈ C

N , M ∈ 2N,
andM := M · 1d be given.

0. Precompute the weights matrixW using Algorithm 3.6.

1. Compute h̃
w
:= D∗F∗B∗Wf , cf. (3.7), by means of an adjoint

NFFT.

Output: h̃
w ≈ f̂ ∈ C

|IM |, cf. (3.4).
Complexity:O(|IM| log(|IM|)+ N)

Algorithm 3.7. iNFFT – density compensation approach.

3.2. Bandlimited functions

In some numerical examples, such as in MRI, we are concerned
with bandlimited functions f ∈ L1(Rd) ∩ C0(Rd) instead of
trigonometric polynomials f ∈ L2(Td) in (2.8), cf. [1]. In the
following we show that it is reasonable to consider the inversion
problem (3.4) as well as the density compensation via (3.7) for
bandlimited functions as well.
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To this end, let f ∈ L1(Rd) ∩ C0(Rd) be a bandlimited function
with bandwidthM, i.e., its (continuous) Fourier transform

f̂ (v) :=
∫

Rd

f (x) e−2π ivx dx, v ∈ R
d, (3.17)

is supported on
[

−M
2 ,

M
2

)d
. Utilizing this fact, we have f̂ ∈ L1(Rd)

and thus by the Fourier inversion theorem [15, Thm. 2.10] the
inverse Fourier transform of f can be written as

f (x) =
∫

Rd

f̂ (v) e2π ivx dv =
∫

[

−M
2 ,M2

)d

f̂ (v) e2π ivx dv, x ∈ R
d.

(3.18)
Analogous to (2.3), the approximation using equispaced
quadrature points k ∈ IM yields

f (x) ≈
(

M
2 − (−M

2 )
)d

|IM|
∑

k∈IM

f̂ (k) e2π ikx =
∑

k∈IM

f̂ (k) e2π ikx,

x ∈ R
d, (3.19)

such that evaluation at the given nonequispaced points

xj ∈
[

− 1
2 ,

1
2

)d
, j = 1, . . . ,N, leads to

f (xj) ≈
∑

k∈IM

f̂ (k) e2π ikxj .

By means of the definition (2.7) of the matrix A ∈ C
N×|IM | this can

be written as f ≈ Af̂ , where we used the notation f̂ := (f̂ (k))k∈IM

in this setting. Thus, also for bandlimited functions f its evaluations
at points xj can be approximated in the form (2.5), such that it is
reasonable to consider the inversion problem (3.4) for bandlimited
functions as well.

Considering (3.17) we are given an exact formula for the
evaluation of the Fourier transform f̂ . However, in practical
applications, such as MRI, this is only a hypothetical case, since f
cannot be sampled on whole Rd, cf. [1]. Due to a limited coverage
of space by the acquisition, the function f is typically only known

on a bounded domain, w.l.o.g. for x ∈
[

− 1
2 ,

1
2

)d
. Thus, we have to

deal with the approximation

f̂ (v) ≈
∫

[

− 1
2 ,

1
2

)d

f (x) e−2π ivx dx, v ∈
[

−M
2 ,

M
2

)d
. (3.20)

Using the nonequispaced quadrature rule in (3.6), we find that
evaluation at uniform grid points k ∈ IM can be approximated via

f̂ (k) ≈ h̃(k) :=
N
∑

j=1

wj f (xj) e
−2π ikxj , k ∈ IM .

This is to say, equispaced samples of the Fourier transform of
a bandlimited function may be approximated in the same form
(f̂ (k))k∈IM = f̂ ≈ hw := A∗Wf as in (3.6), where we used the
notation hw := (h̃(k))k∈IM in this setting. Moreover, we extend this

approximation onto the whole interval
[

−M
2 ,

M
2

)d
, i.e., we consider

f̂ (v) ≈ h̃(v) :=
N
∑

j=1

wj f (xj) e
−2π ivxj , v ∈

[

−M
2 ,

M
2

)d
. (3.21)

So all in all, we have seen that it is reasonable to study the
inversion problem (3.4) and the associated density compensation
via (3.7) for bandlimited functions as well. Analogous to
Section 3.1, we now aimed to find a numerical method for
computing suitable weights wj ∈ C, j = 1, . . . ,N, such that the
reconstruction formula (3.21) is preferably exact. To this end, we
have a closer look at (3.21) being exact and start with analogous
considerations as in Theorem 3.2.

Theorem 3.8. Let a bandwidth M ∈ N
d, nonequispaced points

xj ∈
[

− 1
2 ,

1
2

)d
as well as quadrature weights wj ∈ C, j = 1, . . . ,N, be

given. Then an exact reconstruction formula (3.21) for bandlimited

functions f ∈ L1(Rd) ∩ C0(Rd) with bandwidthM, i.e.,

f̂ (v) = h̃(v) =
N
∑

j=1

wjf (xj) e
−2π ivxj , v ∈

[

−M
2 ,

M
2

)d
, (3.22)

implies that the quadrature rule

∫

Rd
f (x) dx =

N
∑

j=1

wjf (xj)

is exact for all bandlimited functions f ∈ L1(Rd) ∩ C0(Rd) with

bandwidthM.

Proof: By (3.17) the assumption (3.22) can be written as

∫

Rd

f (x) e−2π ivx dx = f̂ (v) =
N
∑

j=1

wjf (xj) e
−2π ivxj ,

v ∈
[

−M
2 ,

M
2

)d
. (3.23)

Especially, for v = 0 evaluation of (3.23) yields the assertion

∫

Rd

f (x) dx = f̂ (0) =
N
∑

j=1

wjf (xj).

However, in contrast to Theorem 3.2, this Theorem 3.8 does
not yield an explicit condition for computing suitable weights
wj ∈ C, j = 1, . . . ,N. To derive a numerical procedure anyway,

we generalize the notion of an exact reconstruction h̃ of f

and have a look at the theory of tempered distributions. To
this end, let S(Rd) be the Schwartz space of rapidly decaying
functions, cf. [15, Sec. 4.2.1]. The tempered Dirac distribution
δ shall be defined by 〈δ,ϕ〉 :=

∫

Rd ϕ(v) δ(v) dv = ϕ(0) for all
ϕ ∈ S(Rd), cf. [15, Ex. 4.36]. For a slowly increasing function
f : Rd → C satisfying |f (x)| ≤ c(1+ ‖x‖2)n almost everywhere
with c > 0 and n ∈ N0, the induced distribution Tf shall be defined
by 〈Tf ,ϕ〉 :=

∫

Rd ϕ(x) f (x) dx for all ϕ ∈ S(Rd). For a detailed
introduction to the topic we refer to [15, Sec. 4.2.1 and Sec. 4.3].

Then the following property can be shown.

Theorem 3.9. Let nonequispaced points xj ∈
[

− 1
2 ,

1
2

)d
,

j = 1, . . . ,N, and quadrature weights wj ∈ C be given. Furthermore,
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let Tf be the distribution induced by some bandlimited function

f ∈ L1(Rd) ∩ C0(Rd) with bandwidthM. Then

〈δ,ϕ〉 = 〈Tξ ,ϕ〉, ϕ ∈ S(Rd), (3.24)

with

ξ (v) :=
N
∑

j=1

wj e
2π ivxj , v ∈ R

d, (3.25)

implies

〈T̂f ,ϕ〉 = 〈T
h̃
,ϕ〉, ϕ ∈ S(Rd), (3.26)

with the function h̃ defined in (3.21).

Proof: Using the definition of the function h̃ in (3.21) as well as the
fact that the inversion formula (3.18) holds for all x ∈ R

d, we have

〈T
h̃
,ϕ〉 =

∫

Rd
ϕ(v)

N
∑

j=1

wjf (xj) e
−2π ivxj dv

=
∫

Rd
ϕ(v)

N
∑

j=1

wj

(∫

Rd
f̂ (u) e2π iuxj du

)

e−2π ivxj dv

= −
∫

Rd
f̂ (u)

∫

Rd
ϕ(u− v)

N
∑

j=1

wj e
2π ivxj dv du.

Hence, by (3.24), this implies

〈T
h̃
,ϕ〉 = −

∫

Rd
f̂ (u)

∫

Rd
ϕ(u− v) δ(v) dv du

=
∫

Rd
f̂ (u)

∫

Rd
ϕ(v) δ(u− v) dv du =

∫

Rd
f̂ (u)ϕ(u) du.

Considering the property (3.26), we remark that this
indeed states an exact reconstruction f̂ = h̃ in the sense of
tempered distributions, as distinct from (3.22). Since it is
known by Corollary 3.4 that the condition (3.14) yields an exact
reconstruction for trigonometric polynomials, we aimed to use
this result to compute suitable weights wj ∈ C, j = 1, . . . ,N, for
bandlimited functions as well. To this end, suppose we have (3.14),
i.e.,

N
∑

j=1

wj e
2π ikxj = δ0,k, k ∈ I2M .

Then this yields

ϕ(0) =
∑

k∈I2M

ϕ(k)
N
∑

j=1

wj e
2π ikxj , ϕ ∈ S(Rd). (3.27)

Having a look at Theorem 3.9, an exact reconstruction (3.26) is
implied by (3.24), i.e.,

ϕ(0) = 〈δ,ϕ〉 = 〈Tξ ,ϕ〉 =
∫

Rd
ϕ(v)

N
∑

j=1

wj e
2π ivxj dv, ϕ ∈ S(Rd).

Thus, the property (3.27) that is fulfilled by (3.14) could be
interpreted as an equispaced quadrature of (3.24) at integer
frequencies k ∈ I2M .

Remark 3.10. We remark that for deriving the quadrature

rule (3.27) from (3.24), we implicitly truncate the integral bounds

in (3.24) as

〈Tξ ,ϕ〉 =
∫

Rd
ϕ(v)

N
∑

j=1

wj e
2π ivxj dv

≈
∫

[−M,M)d

ϕ(v)
N
∑

j=1

wj e
2π ivxj dv

=
∫

Rd
ϕ(v)

N
∑

j=1

wj e
2π ivxj χ[−M,M)d (v) dv,

i.e., instead of (3.25) we rather deal with a distribution induced by

ξ̃ (v) := ξ (v)χ[−M,M)d (v), v ∈ R
d. (3.28)

However, an analogous implication as in Theorem 3.9 cannot be

shown when using the function (3.28) instead of (3.25).

As seen in Remark 3.10, our numerical method for computing
suitable weights wj ∈ C, j = 1, . . . ,N, can also be derived by means
of a quadrature formula applied to the property 〈δ, ϕ̂〉 = 〈Tξ̃ , ϕ̂〉
with ξ̃ defined in (3.28). Having a closer look at this property, the
following equivalent characterization can be shown.

Theorem 3.11. Let a bandwidth M ∈ N
d, nonequispaced points

xj ∈
[

− 1
2 ,

1
2

)d
, and quadrature weights wj ∈ C, j = 1, . . . ,N, be

given. Then the following two statements are equivalent.

(i) For all ϕ ∈ S(Rd) we have 〈δ, ϕ̂〉 = 〈Tξ̃ , ϕ̂〉 with ξ̃ defined

in (3.28).

(ii) We have 〈1,ϕ〉 = 〈Tψ ,ϕ〉 for all ϕ ∈ S(Rd), where

ψ(x) :=
N
∑

j=1

wj · |I2M| sinc
(

2Mπ
(

xj − x
))

, x ∈ R
d,

with the d-variate sinc function sinc(x) :=
∏d

t=1 sinc(xt) and

sinc(x) :=
{

sin x
x x ∈ R \ {0} ,

1 x = 0 .

Proof: By the definition 〈T̂,ϕ〉 = 〈T, ϕ̂〉 of the Fourier
transform of a tempered distribution T ∈ S

′(Rd) we have
〈1,ϕ〉 = 〈δ, ϕ̂〉, cf. [15, Ex. 4.46]. Moreover, the distribution
induced by (3.28) can be rewritten using the Fourier
transform (3.17) as

〈Tξ̃ , ϕ̂〉 =
∫

Rd
ϕ̂(v) ξ̃ (v) dv =

N
∑

j=1

wj

∫

[−M,M)d

ϕ̂(v) e2π ivxj dv

=
N
∑

j=1

wj

∫

[−M,M)d

(∫

Rd
ϕ(x) e−2π ivx dx

)

e2π ivxj dv

=
N
∑

j=1

wj

∫

Rd
ϕ(x)

∫

[−M,M)d

e2π iv(xj−x) dv dx. (3.29)
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The inner integral can be determined by

∫

[−M,M)d
e2π iv(xj−x) dv = |I2M| sinc

(

2Mπ
(

xj − x
))

,

such that (3.29) shows the equality 〈Tξ̃ , ϕ̂〉 = 〈Tψ ,ϕ〉. Hence, the
assertions (i) and (ii) are equivalent.

Thus, since the statements (i) and (ii) of Theorem 3.11
are equivalent, one could also consider the property (ii)
for deriving a numerical method to compute suitable
weights wj ∈ C, j = 1, . . . ,N. To this end, we have a closer
look at
∫

Rd
ϕ(x) dx = 〈1,ϕ〉 = 〈Tψ ,ϕ〉 (3.30)

=
∫

Rd
ϕ(x)

N
∑

j=1

wj · |I2M| sinc
(

2Mπ
(

xj − x
))

dx

for all ϕ ∈ S(Rd). Due to the integrals on both sides of (3.30), we
need to discretize twice and, therefore, use the same quadrature
rule on both sides of (3.30). For better comparability to (3.27),
we utilize the same number |I2M| of equispaced quadrature points
y
ℓ
:= (2M)−1 ⊙ ℓ, ℓ ∈ I2M , as in (3.27), i.e., we consider

∑

ℓ∈I2M

ϕ(y
ℓ
) =

∑

ℓ∈I2M

ϕ(y
ℓ
)

N
∑

j=1

wj · |I2M| sinc
(

2Mπ
(

xj − y
ℓ

))

.

In order that this applies for all ϕ ∈ S(Rd), we need to satisfy

1 =
N
∑

j=1

wj · |I2M| sinc
(

2Mπ
(

xj − y
ℓ

))

, ℓ ∈ I2M , (3.31)

i.e., one could also compute weights wj ∈ C, j = 1, . . . ,N, as a least
squares solution to the linear system of equations (3.31). Hence, it
merely remains the comparison of the two computation schemes.

Remark 3.12. Since we derived discretizations out of both

statements of Theorem 3.11, we examine if also the two linear

systems (3.14) and (3.31) are related. Considering the statements

in Theorem 3.11 we notice that in some sense they are the Fourier

transformed versions of each other. To this end, we need to Fourier

transform one of the linear systems for better comparability. More

precisely, we apply an iFFT of length |I2M|, cf. (2.4), to both sides of

equation (3.31). Since the left side transforms to

∑

ℓ∈I2M

1 · e2π ikyℓ = |I2M| · δ0,k, k ∈ I2M ,

we obtain the transformed system

δ0,k =
N
∑

j=1

wj

∑

ℓ∈I2M

sinc
(

2Mπ
(

xj − y
ℓ

))

e2π ikyℓ , k ∈ I2M .

(3.32)

Comparing this linear system of equations to (3.14), we

recognize an identical structure. Hence, we have a closer

look at the connection between the expressions e2π ikxj and
∑

ℓ∈I2M
sinc

(

2Mπ
(

xj − y
ℓ

))

e2π ikyℓ .

For this purpose, we consider the function

f (t) = e2π itx, t ∈ [−M,M)d, for fixed x ∈ C
d. By means of

f̃ (t) :=
∑

k∈Zd f (t + 2Mk) we extend it into a (2M)-periodic
function. This periodized version then possesses the Fourier

coefficients

cℓ(f̃ ) =
1

|I2M|

∫

[−M,M)d

f (t) e−2π ity
ℓ dt

= 1

|I2M|

∫

[−M,M)d

e2π it(x−y
ℓ
) dt = sinc

(

2Mπ
(

x− y
ℓ

))

, ℓ ∈ Z
d,

cf. (2.2), i. e., the Fourier expansion of f̃ (t), t ∈ [−M,M)d, for
fixed x is given by

e2π itx =
∑

ℓ∈Zd

e2π ityℓ sinc
(

2Mπ
(

x− y
ℓ

))

, x ∈ C
d,

cf. (2.1). Since f̃ (t) is continuous and piecewise differentiable,

this Fourier series converges absolutely and uniformly, cf. [71,

Ex. 1.22]. Thereby, we may consider the point evaluations at

x = xj, j = 1, . . . ,N, and t = k ∈ I2M , such that we obtain the

representation

e2π ikxj =
∑

ℓ∈Zd

e2π ikyℓ sinc
(

2Mπ
(

xj − y
ℓ

))

. (3.33)

Thus, we recognize that (3.32) is a truncated version of (3.33). In

other words, this implies that the linear system (3.14) is equivalent

to a discretization of (3.30) incorporating infinitely many points

y
ℓ
∈ R

d in (3.31).

Remark 3.13. For bandlimited functions several fast evaluation

methods including the sinc function are known. The classical

sampling theorem of Shannon–Whittaker–Kotelnikov, see [48–50],

states that any bandlimited function f ∈ L1(Rd) ∩ C0(Rd) with

maximum bandwidth M can be recovered from its uniform samples

f (L−1 ⊙ ℓ), ℓ ∈ Z
d, with L ≥ M, L := L · 1d, and we have

f (x) =
∑

ℓ∈Zd

f (L−1 ⊙ ℓ) sinc
(

Lπ
(

x− L−1 ⊙ ℓ
))

, x ∈ R
d.

(3.34)

Since the practical use of this sampling theorem is limited due to the

infinite number of samples, which is impossible in practice, and the

very slow decay of the sinc function, various authors such as [51–55]

considered the regularized Shannon sampling formula with localized

sampling

f (x) ≈
∑

ℓ∈Zd

f (L−1 ⊙ ℓ) sinc
(

Lπ
(

x− L−1 ⊙ ℓ
))

ϕm
(

x− L−1 ⊙ ℓ
)

, x ∈ R
d, (3.35)

instead. Here, ϕm : R
d → [0, 1] is a compactly supported window

function with truncation parameter m ∈ N \ {1}, such that for ϕm
with small support the direct evaluation of (3.35) is efficient, see [55]

for the relation to the NFFT window functions.
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On the other hand, in the one-dimensional setting a fast sinc
transform was introduced in [56], which is based on the Clenshaw-

Curtis quadrature

sinc
(

Lπ
(

x− ℓ
L

))

≈
n
∑

k=0

wk e
−π iL(x− ℓ

L )zk

using Chebyshev points zk = cos( kπn ) ∈ [−1, 1], k = 0, . . . , n, and
corresponding Clenshaw-Curtis weights wk > 0. Thereby, sums of

the form

h(x) =
∑

ℓ∈IT

f
(

ℓ
L

)

sinc
(

Lπ
(

x− ℓ
L

))

≈
n
∑

k=0

wk

(

∑

ℓ∈IT

f
(

ℓ
L

)

eπ iℓzk
)

e−π iLxzk

with uniform truncation parameter T ∈ 2N, can efficiently be

approximated by means of fast Fourier transforms. More precisely,

for the term in brackets one may utilize an NFFT, cf. (2.5). Then the

resulting outer sum can be computed using an NNFFT, also referred

to as NFFT of type III, see [34, 57, 58] or [15, p. 394–397].

3.3. General error bound

In this section, we summarize our previous findings by
presenting a general error bound on density compensation factors
computed by means of (3.14), that applies to trigonometric
polynomials, 1-periodic functions f ∈ L2(Td) ∩ C(Td), and band-
limited functions f ∈ L1(Rd) ∩ C0(Rd) as well.

Theorem 3.14. Let p, q ∈ {1, 2,∞} with 1
p + 1

q = 1. For given

d,N ∈ N, M ∈ (2N)d, and nonequispaced points xj ∈
[

− 1
2 ,

1
2

)d
,

j = 1, . . . ,N, let A ∈ C
N×|IM | be the nonequispaced Fourier matrix

in (2.7). Furthermore, assume we can compute density compensation

factors W = diag
(

wj

)N

j=1 ∈ C
N×N by means of Algorithm 3.6, such

that

N
∑

j=1

wj e
2π ikxj = δ0,k + εk, k ∈ I2M , (3.36)

with small εk ∈ R for all k ∈ I2M .

Then there exists an ε ≥ 0 such that the corresponding

density compensation procedure with W = diag(wj)Nj=1 satisfies the

following error bounds.

(i) For any trigonometric polynomial f ∈ L2(Td) of degree M

given in (2.8), we have

∥

∥f̂ − A∗Wf
∥

∥

p
≤ |IM| ε ·

∥

∥f̂
∥

∥

p
, (3.37)

where f̂ := (f̂k)k∈IM are the coefficients given in (2.8).

(ii) For any 1-periodic function f ∈ L2(Td) ∩ C(Td), we have

∥

∥f̂ − A∗Wf
∥

∥

p
≤ |IM| ε ·

∥

∥f̂
∥

∥

p

+ (N |IM|)1/p ‖w‖q · ‖f − pM‖C(Td), (3.38)

where f̂ := (ck(f ))k∈IM are the first |IM| coefficients given

in (2.1) and pM is the best approximating trigonometric

polynomial of degreeM of f .

(iii) For any bandlimited function f ∈ L1(Rd) ∩ C0(Rd) with

bandwidthM, we have

∥

∥f̂ − A∗Wf
∥

∥

p
≤ |IM| ε ·

∥

∥f̂
∥

∥

p

+ (N |IM|)1/p ‖w‖q · ‖Q‖C(Td), (3.39)

where f̂ := (f̂ (k))k∈IM are the integer evaluations of (3.17)

and Q in (3.45) is the pointwise quadrature error of the

equispaced quadrature rule (3.19).

Proof: We start with some general considerations that
are independent of the function f . By (3.36) we can find
ε := maxk∈IM |εk| ≥ 0, such that |εk| ≤ ε, k ∈ I2M , and thereby

∣

∣

∣

∣

∣

∣

N
∑

j=1

wj e
2π ikxj − δ0,k

∣

∣

∣

∣

∣

∣

≤ ε, k ∈ I2M .

Then for all k, ℓ ∈ IM with (ℓ − k) ∈ I2M this yields

∣

∣[Er]k,ℓ
∣

∣ =

∣

∣

∣

∣

∣

∣

N
∑

j=1

wj e
2π i(ℓ−k)xj − δk,ℓ

∣

∣

∣

∣

∣

∣

≤ ε,

where Er := A∗WA− I|IM |. Hence, we have

∥

∥A∗WA− I|IM |
∥

∥

1 = max
ℓ∈IM

∑

k∈IM

∣

∣[Er]k,ℓ
∣

∣ ≤ max
ℓ∈IM

∑

k∈IM

ε

= |IM| ε, (3.40)

∥

∥A∗WA− I|IM |
∥

∥

∞ = max
k∈IM

∑

ℓ∈IM

∣

∣[Er]k,ℓ
∣

∣ ≤ max
k∈IM

∑

ℓ∈IM

ε

= |IM| ε, (3.41)

and

∥

∥A∗WA− I|IM |
∥

∥

F =
√

∑

k∈IM

∑

ℓ∈IM

∣

∣[Er]k,ℓ
∣

∣

2 ≤
√

∑

k∈IM

∑

ℓ∈IM

ε2

= |IM| ε. (3.42)

Considering the approximation error of (3.6), it can be estimated
by

∥

∥f̂ − A∗Wf
∥

∥

p
≤
∥

∥f̂ − A∗WAf̂
∥

∥

p
+
∥

∥A∗WAf̂ − A∗Wf
∥

∥

p

=
∥

∥

(

A∗WA− I|IM |
)

f̂
∥

∥

p
+
∥

∥A∗W
(

Af̂ − f
)
∥

∥

p

≤
∥

∥A∗WA− I|IM |
∥

∥

p
·
∥

∥f̂
∥

∥

p
+
∥

∥A∗W
∥

∥

p
·
∥

∥Af̂ − f
∥

∥

p
.

(3.43)
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Using A ∈ C
N×|IM | from (2.7) as well as

W = diag(wj)Nj=1 = diag(w), we have

∥

∥A∗W
∥

∥

1 = max
j=1,...,N

∑

k∈IM

|wj| ·
∣

∣e−2π ikxj
∣

∣ ≤ max
j=1,...,N

|wj| ·
∑

k∈IM

1

= |IM| · ‖w‖∞,

∥

∥A∗W
∥

∥

∞ = max
k∈IM

N
∑

j=1

|wj| ·
∣

∣e−2π ikxj
∣

∣ ≤
N
∑

j=1

|wj| · max
k∈IM

1 = ‖w‖1,

and

∥

∥A∗W
∥

∥

F =

√

√

√

√

∑

k∈IM

N
∑

j=1

|wj|2 ·
∣

∣e−2π ikxj
∣

∣

2 ≤

√

√

√

√

N
∑

j=1

|wj|2 · |IM|

=
√

|IM| · ‖w‖2.

Hence, from (3.40) to (3.43) and ‖ · ‖2 ≤ ‖ · ‖F it follows that
∥

∥f̂ − A∗Wf
∥

∥

p
≤ |IM| ε ·

∥

∥f̂
∥

∥

p
+
∥

∥Af̂ − f
∥

∥

p
· |IM|1/p ‖w‖q

(3.44)

for p ∈ {1, 2,∞} with 1
p + 1

q = 1. Now it merely remains to

estimate
∥

∥Af̂ − f
∥

∥

p
for the specific choice of f .

(i): Since a trigonometric polynomial (2.8) of degreeM satisfies
Af̂ = f , the second error term in (3.44) vanishes and we obtain the
assertion (3.37).

(ii): When considering a general 1-periodic function
f ∈ L2(Td) ∩ C(Td) in (2.1) we have

r
∣

∣

∣

[

Af̂ − f
]

j

∣

∣

∣
=
∣

∣

∣

∣

∣

f (xj)−
∑

k∈IM

ck(f ) e
2π ikxj

∣

∣

∣

∣

∣

≤ max
x∈Td

∣

∣

∣

∣

∣

∑

k∈Zd\IM

ck(f ) e
2π ikx

∣

∣

∣

∣

∣

= ‖f − pM‖C(Td),

j = 1, . . . ,N,

with the best approximating trigonometric polynomial pM of
degree M of f . Thus, this yields

∥

∥Af̂ − f
∥

∥

p
≤ N1/p ‖f − pM‖C(Td)

and by (3.44) the assertion (3.38).
(iii): For a bandlimited function f ∈ L1(Rd) ∩ C0(Rd) with

bandwidth M we may use the notation f̂ := (f̂ (k))k∈IM as well as
the inverse Fourier transform (3.18) to estimate

∣

∣

∣

[

Af̂ − f
]

j

∣

∣

∣
=
∣

∣

∣

∣

∣

f (xj)−
∑

k∈IM

f̂ (k) e2π ikxj

∣

∣

∣

∣

∣

≤ max
x∈Td

|Q(x)| = ‖Q‖C(Td),

j = 1, . . . ,N,

with the pointwise quadrature error

Q(x) :=
∫

[

−M
2 ,M2

)d
f̂ (v) e2π ivx dv −

∑

k∈IM

f̂ (k) e2π ikx (3.45)

of the uniform quadrature rule (3.19). For detailed investigations
of quadrature errors for bandlimited functions we refer to Kircheis
et al. [56] and Gopal and Rokhlin [59]. Hence, we obtain
∥

∥Af̂ − f
∥

∥

p
≤ N1/p ‖Q‖C(Td) and by (3.44) the assertion (3.39).

By Corollary 3.4 it is known that in the setting of trigonometric
polynomials there is a linkage between an exact reconstruction (3.8)
and the matrix product A∗WA being equal to identity I|IM |. The
following theorem shows that the error of the reconstruction (3.6)
also affects the condition of the matrix A∗WA.

Theorem 3.15. Let A ∈ C
N×|IM | from (2.7),W = diag(wj)Nj=1 and

ε ≥ 0 be given as in Theorem 3.14. If additionally ε |IM| < 1 is

fulfilled, then we have

1 ≤ κ2(A
∗WA) ≤ 1+ ε |IM|

1− ε |IM| (3.46)

for the condition number κ2(X) := ‖X‖2‖X−1‖2.

Proof: To estimate the condition number κ2(A∗WA) we need to
determine the norms

∥

∥A∗WA
∥

∥

2 and
∥

∥(A∗WA)−1
∥

∥

2. By (3.36) it
is known that A∗WA = I|IM | + E , where E := (εℓ−k)ℓ,k∈IM

, and,
therefore, we have

∥

∥A∗WA
∥

∥

2 =
∥

∥I|IM | + E
∥

∥

2 ≤
∥

∥I|IM |
∥

∥

2 + ‖E‖2. (3.47)

Moreover, it is known by the theory of Neumann series,
cf. [70, Thm. 4.20], that if

∥

∥I|IM | − T
∥

∥

2 < 1 holds for a matrix
T ∈ C

|IM |×|IM |, then T is invertible and its inverse is given by

T−1 =
∞
∑

n=0

(

I|IM | − T
)n

.

Using this property for T = A∗WA, we have

∥

∥(A∗WA)−1
∥

∥

2 =
∥

∥

∥

∥

∥

∞
∑

n=0

(

I|IM | − A∗WA
)n

∥

∥

∥

∥

∥

2

=
∥

∥

∥

∥

∥

∞
∑

n=0

E
n

∥

∥

∥

∥

∥

2

≤
∞
∑

n=0

∥

∥E
n
∥

∥

2 , (3.48)

in case that
∥

∥I|IM | − A∗WA
∥

∥

2 = ‖E‖2 < 1. Hence, by (3.47)
and (3.48) we obtain

κ2(A
∗WA) ≤ (1+ ‖E‖2) ·

( ∞
∑

n=0

∥

∥E
n
∥

∥

2

)

. (3.49)

In addition, we know that |εk| ≤ ε, k ∈ I2M , with some ε > 0 and,
therefore,

‖E‖2 ≤ ‖E‖F =
√

∑

k∈IM

∑

ℓ∈IM

|εℓ−k|2 ≤
√

∑

k∈IM

∑

ℓ∈IM

ε2 = ε |IM|.

(3.50)

In other words, the correctness of (3.48) is ensured if ε |IM| < 1.
Since the spectral norm is a sub-multiplicative norm, (3.50) also
implies ‖En‖2 ≤ ‖E‖n2 ≤ (ε |IM|)n. Consequently, we have

∞
∑

n=0

∥

∥E
n
∥

∥

2 ≤
∞
∑

n=0

(ε |IM|)n = 1

1− ε |IM| . (3.51)

Thus, combining (3.49), (3.50), and (3.51) yields the
assertion (3.46).
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3.4. Connection to certain density
compensation approaches from literature

In literature a variety of density compensation approaches
can be found that are concerned with the setting of bandlimited
functions and make use of a sinc transform

C :=
(

|IM| sinc
(

Mπ
(

xj −M−1 ⊙ ℓ
))

)N

j=1, ℓ∈IM

∈ R
N×|IM |

(3.52)

instead of the Fourier transform (3.6). Namely, instead of directly
using the quadrature (3.21) for reconstruction, in these methods it
is inserted into the inverse Fourier transform (3.18), i.e.,

f (x) =
∫

[

−M
2 ,M2

)d

f̂ (v) e2π ivx dv

≈
N
∑

j=1

wj f (xj)
∫

[

−M
2 ,M2

)d

e−2π iv(xj−x) dv

=
N
∑

j=1

wj f (xj) · |IM| sinc(Mπ(xj − x)), x ∈ R
d. (3.53)

By using the sinc matrix C ∈ R
N×|IM | from (3.52), the weight

matrix W = diag(wj)Nj=1 as well as the vectors f =
(

f (xj)
)N

j=1

and f̃ = (f (M−1 ⊙ ℓ))l∈IM , the evaluation of (3.53) at equispaced
points M−1 ⊙ ℓ, ℓ ∈ IM , can be denoted as f̃ ≈ C∗Wf . Using the
equispaced quadrature rule in (2.3), we find that evaluations f̂ (k)
of (3.17) at the uniform grid points k ∈ IM can be approximated
by (3.20) by means of a simple FFT. In matrix-vector notation,
this can be written as f̂ ≈ D̃

∗
F∗|IM | f̃ where f̂ = (f̂ (k))k∈IM ,

F|IM | := (e2π ik(M
−1⊙ ℓ))ℓ, k∈IM , cf. (2.14), and D̃ := 1

|IM | I|IM |.
Thus, all in all one obtains an approximation of the form
f̂ ≈ D̃

∗
F∗|IM |C

∗Wf .
Here some of these approaches, cf. [2], shall be reconsidered in

the context of the Fourier transform (3.6). We especially focus on
the connection of the approaches among each other as well as to
our new method introduced in Section 3.1.

3.4.1. Density compensation using the
pseudoinverse

Since (3.4) is in general not exactly solvable, we study the
corresponding least squares problem, instead, i.e., we look for the
approximant that minimizes the residual norm

∥

∥f − Af̂
∥

∥

2. It is
known (e.g., [60, p. 15]) that this problem always has the unique
solution

f̂ ≈ h̃
pinv

:= A†f (3.54)

with the Moore-Penrose pseudoinverse A†. Comparing (3.54) to
the density compensation approach (3.6), the weights wj should
be chosen such that the matrix product A∗W approximates the
pseudoinverse A† as best as possible, i.e., we study the optimization
problem

Minimize
W=diag(wj)Nj=1

∥

∥A∗W − A†
∥

∥

2
F, (3.55)

where ‖ · ‖F denotes the Frobenius norm of a matrix. It was shown
in Sedarat and Nishimura [61] that the solution to this least squares
problem can be computed as

wj =
[AA†]j,j
[AA∗]j,j

= 1

|IM| · [AA
†]j,j, j = 1, . . . ,N. (3.56)

However, since a singular value decomposition is necessary
for the calculation in (3.56), we obtain a high complexity of
O(N2 |IM| + |IM|3). Therefore, we study some more sophisticated
least squares approaches in the following.

3.4.2. Density compensation using weighted
normal equations of the first kind

It is known that every least squares solution to (3.4) satisfies
the weighted normal equations of the first kind A∗WAf̂ = A∗Wf ,
see e.g., [60, Thm. 1.1.2]. As already mentioned in Corollary 3.4,
we have an exact reconstruction formula (3.6) for all trigonometric
polynomials (2.8) of degree M, if A∗WA = I|IM | is fulfilled.
Thus, we aimed to compute optional weights wj, j = 1, . . . ,N, by
considering the optimization problem

Minimize
W=diag(wj)Nj=1

∥

∥A∗WA− I|IM |
∥

∥

2
F. (3.57)

Analogous to Sedarat and Nishimura [61] this could also be derived
from (3.55) by introducing a right-hand scaling in the domain of
measured data andminimizing the Frobenius norm of the weighted
error matrix Er := E · A, where E := A∗W − A† is the error matrix
in (3.55).

In Rosenfeld et al. [62], it was shown that a solution
W = diag(w) to (3.57) can be obtained by solving Sw = b with

S :=
( ∣

∣

∣

[

AA∗]
j,h

∣

∣

∣

2 )N

j,h=1
and b = |IM| · 1N . (3.58)

However, since Sw = b is not separable for single wj, j = 1, . . . ,N,
computing these weights is of complexity O(N3). This is why the
authors in Sedarat and Nishimura [61] restricted themselves to a
maximal image size of 64× 64 pixels, which corresponds to setting
M = 64.

3.4.3. Density compensation using weighted
normal equations of the second kind

Another approach for density compensation factors is based on
the weighted normal equations of the second kind

AA∗Wy = f , A∗Wy = f̂ . (3.59)

We recognize that by (3.59) we are given an exact approximation
f̂ = A∗Wf of the Fourier coefficients in (3.6) in case y = f , and
thereby AA∗W = IN . To this end, we consider the optimization
problem

Minimize
W=diag(wj)Nj=1

‖AA∗W − IN‖2F. (3.60)

As in Section 3.4.2, we remark that this optimization problem (3.60)
could also be derived from (3.55) by introducing an additional left-
hand scaling in the Fourier domain and minimizing the Frobenius
norm of the weighted error matrix El := A · E.
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Remark 3.16. An analogous approach considering the sinc
transform (3.52) instead of the Fourier transform (3.6) was already

studied in Pipe and Menon [63]. Another version using a sinc
transform evaluated at pointwise differences of the nonequispaced

points instead of (3.52) was studied in [64, 65], where it was claimed

that this approach coincides with the one in [63]. However, we remark

that due to the sampling theorem of Shannon-Whittaker-Kotelnikov,

see (3.34), applied to the function f (x) = sinc(Mπ(xj − x)), i.e.,

sinc(Mπ(xj − x)) =
∑

ℓ∈Zd

sinc(Mπ(xj −M−1 ⊙ ℓ))·

sinc
(

Mπ
(

x−M−1 ⊙ ℓ
))

and its evaluation at x = xh, h = 1, . . . ,N, this claim only holds

asymptotically for |IM| → ∞ in the setting of the sinc transform.

In contrast, when using the Fourier transform (3.6) this equality

can directly be seen. Then the analog to Greengard et al. [65] utilizes

an approximation of the form f ≈ HWf , where the matrix H

is defined as the system matrix of (3.4) evaluated at pointwise

differences of the nonequispaced points, i.e.,

H :=
(

∑

k∈IM

e2π ik(xj−xh)

)N

j,h=1

. (3.61)

Since by (2.7) we have H = AA∗, minimizing the approximation

error

∥

∥H∗Wf − f
∥

∥

2
2 =

∥

∥AA∗Wf − f
∥

∥

2
2 ≤

∥

∥AA∗W − IN
∥

∥

2
F ·
∥

∥f
∥

∥

2
2 ,

leads to the optimization problem (3.60) as well.

It was shown in [63] that the minimizer of (3.60) is given by

wj =
|IM|

∑N
h=1

∣

∣[AA∗]j,h
∣

∣

2 , j = 1, . . . ,N. (3.62)

Since for fixed j the computation of [AA∗]j,h, h = 1, . . . ,N, is of
complexity O(N |IM|), the weights (3.62) can be computed in
O(N2 |IM|) arithmetic operations. However, due to the explicit
representation (3.61) the computation of [AA∗]j,h, h = 1, . . . ,N,
for fixed j can be accelerated by means of the NFFT (see
Algorithm 2.1). Then, this step takes O(|IM| log(|IM|)+ N)
arithmetic operations and the overall complexity is given by
O(N · |IM| log(|IM|)+ N2).

As mentioned in Pipe and Menon [63] one could also consider
a simplified version of the optimization problem (3.60) by reducing
the number of conditions, e.g., by summing the columns on both
sides of AA∗W = IN as

N
∑

j=1

wj

∑

k∈IM

e2π ik(xh−xj) =
N
∑

j=1

δj,h = 1, h = 1, . . . ,N. (3.63)

By means of (2.7) this can be written as AA∗w = 1N . Since
fast multiplication with A and A∗ can be realized using
the NFFT (see Algorithm 2.1) and the adjoint NFFT (see
Algorithm 2.4), respectively, a solution to the linear system of

equations AA∗w = 1N can be computed iteratively with arithmetic
complexityO(|IM| log(|IM|)+ N).

Finally, we investigate the connection of this approach to our
method introduced in Section 3.1. To this end, suppose the linear

system (3.10) is fulfilled for givenw ∈ C
N , i.e., byA∗ = AT we have

(

δ0,k
)

k∈IM
= ATw = A∗w. Then multiplication with A ∈ C

N×|IM |

in (2.7) yields

AA∗w = A ·
(

δ0,k
)

k∈IM
=





∑

k∈IM

δ0,k · e2π ikxj




N

j=1

= 1N .

In other words, an exact solution w to the linear system (3.10)
implies that the conjugate complex weights w exactly solve the
system (3.63). However, the reversal does not hold true and,
therefore, (3.63) is not equivalent to (3.10). Moreover, we have seen
in Corollary 3.4 that an augmented variant of (3.10), namely (3.14),
is necessary to obtain an exact reconstruction f̂ k = hwk in (3.6) for
trigonometric polynomials (2.8) with maximum degreeM.

4. Direct inversion using matrix
optimization

As seen in Remark 3.1, the previously considered density
compensation techniques can be regarded as an optimization of
the sparse matrix B ∈ R

N×|IMσ | from the NFFT, cf. Section 2.1.
Since density compensation allows only N degrees of freedom,
this limitation shall now be softened, i.e., instead of searching
for optimal scaling factors for the rows of B, we now study the
optimization of each nonzero entry of the sparse matrix B, cf. [33].
To this end, we first have another look at the equispaced setting.
It is known by (3.1) and (3.2), that for equispaced points and
appropriately chosen parameters a one-sided inversion is given by
composition of the Fourier matrix and its adjoint. Hence, we aimed
to use this result to find a good approximation of the inverse in the
general setting.

Considering problem (3.4) we seek to find an appropriate
matrix X such that we have XA ≈ I|IM |, since then we can simply
compute an approximation of the Fourier coefficients by means
of Xf = XAf̂ ≈ f̂ . To find this left-inverse X, we utilize the fact
that in the equispaced case it is known that (3.1) holds in the
overdetermined setting |IM| ≤ N. In addition, we also incorporate
the approximate factorization A∗ ≈ D∗F∗B∗ of the adjoint NFFT,
cf. Section 2.2, with the matricesD ∈ C

|IM |×|IM |, F ∈ C
|IMσ |×|IM |,

and B ∈ R
N×|IMσ | defined in (2.13), (2.14), and (2.15). Combining

both ingredients we aimed for an approximation of the form
D∗F∗B∗A ≈ I|IM |. To achieve an approximation like this, we aimed
to modify the matrix B such that its sparse structure with at
most (2m+ 1)d entries per row and consequently the arithmetic
complexity of its evaluation is preserved. A matrix satisfying this
property we call (2m+ 1)d-sparse.

Remark 4.1. We remark that this approach can also be deduced

from the density compensation method in Section 3 as follows.

By Corollary 3.4 it is known that an exact reconstruction
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needs to satisfy A∗WA = I|IM |. Since the reconstruction shall

be realized efficiently by means of an adjoint NFFT, one rather

studies D∗F∗B∗WA ≈ I|IM |. Using the definition B̃ := W∗B as

in Remark 3.1, we end up with an approximation of the form

D∗F∗B̃
∗
A ≈ I|IM |. Thus, optimizing each nonzero entry of the sparse

matrixB using this approximation is the natural generalization of the

density compensation method from Section 3.

Let B̃ denote such a modified matrix. By defining
h̃ : = D∗F∗B̃

∗
f , we recognize that the minimization of the

approximation error

∥

∥h̃− f̂
∥

∥

2 =
∥

∥D∗F∗B̃
∗
f − f̂

∥

∥

2 =
∥

∥D∗F∗B̃
∗
Af̂ − f̂

∥

∥

2

=
∥

∥

(

D∗F∗B̃
∗
A− I|IM |

)

f̂
∥

∥

2 ≤
∥

∥D∗F∗B̃
∗

(4.1)

A− I|IM |
∥

∥

F

∥

∥f̂
∥

∥

2

implies the optimization problem

Minimize
B̃∈RN×|IMσ

|
: B̃ (2m+1)d-sparse

∥

∥D∗F∗B̃
∗
A− I|IM |

∥

∥

2
F. (4.2)

Note that a similar idea for the forward problem, i.e., the evaluation
of (2.5), was already studied in Nieslony and Steidl [66]. By the
definition of the Frobenius norm we have ‖Z‖F = ‖Z∗‖F, such
that (4.2) is equivalent to its adjoint

Minimize
B̃∈RN×|IMσ

|
: B̃ (2m+1)d-sparse

∥

∥A∗B̃FD− I|IM |
∥

∥

2
F. (4.3)

Since it is known by (2.14) that F∗F = |IMσ
| I|IM |

and D ∈ R
|IM |×|IM | is diagonal by (2.13), we have

1
|IMσ |D

−1F∗FD = I|IM |. Thus, due to the fact that the Frobenius
norm is a submultiplicative norm, we have

∥

∥A∗B̃FD− I|IM |
∥

∥

F =
∥

∥

(

A∗B̃− 1
|IMσ |D

−1F∗
)

FD
∥

∥

F

≤
∥

∥A∗B̃− 1
|IMσ |D

−1F∗
∥

∥

F

∥

∥FD
∥

∥

F. (4.4)

Hence, we consider the optimization problem

Minimize
B̃∈RN×|IMσ

|
: B̃ (2m+1)d-sparse

∥

∥A∗B̃− 1
|IMσ |D

−1F∗
∥

∥

2
F. (4.5)

Based on the definition of the Frobenius norm of amatrixZ ∈ R
k×n

and the definition of the Euclidean norm of a vector y ∈ R
n, we

obtain for zj being the columns of Z ∈ R
k×n that

‖Z‖2F =
k
∑

i=1

n
∑

j=1

|zij|2 =
n
∑

j=1

‖zj‖22. (4.6)

Since we aimed to preserve the property that B is a (2m + 1)d-
sparse matrix, we rewrite the norm in (4.5) by (4.6) in terms of
the columns of B̃ considering only the nonzero entries of each
column. To this end, analogously to (2.12) we define the index
set

IMσ ,m(ℓ) : =
{

j ∈ {1, . . . ,N} : ∃ z ∈ Z
d

with −m1 ≤ Mσ ⊙ xj − ℓ + z ≤ m1} (4.7)

of the nonzero entries of the ℓ-th column of B ∈ R
N×|IMσ |. Thus,

we have

∥

∥A∗B̃− 1
|IMσ |D

−1F∗
∥

∥

2
F =

∑

ℓ∈IMσ

∥

∥Hℓb̃ℓ − 1
|IMσ |D

−1f
ℓ

∥

∥

2
2, (4.8)

where b̃ℓ ∈ R
|IMσ ,m(ℓ)| denotes the vectors of the nonzeros of each

column of B̃,

Hℓ :=
(

e−2π ikxj
)

k∈IM , j∈IMσ ,m(ℓ)
∈ C

|IM |×|IMσ ,m(ℓ)| (4.9)

are the corresponding submatrices of A∗ ∈ C
|IM |×N , cf. (2.7), and

f
ℓ
∈ C

|IM | are the columns of F∗ ∈ C
|IM |×|IMσ |, cf. (2.14). Hence,

we receive the equivalent optimization problems

Minimize
b̃ℓ∈R|IMσ ,m(ℓ)|

∥

∥Hℓb̃ℓ − 1
|IMσ |D

−1f
ℓ

∥

∥

2
2, ℓ ∈ IMσ

. (4.10)

Thus, if the matrix (4.9) has full column rank, the solution of the
least squares problem (4.10) can be computed by means of the
pseudoinverseH†

ℓ
as

b
opt
ℓ

:= 1
|IMσ |

(

H∗
ℓ
Hℓ

)−1
H∗

ℓ
D−1f

ℓ
, ℓ ∈ IMσ

. (4.11)

Having these vectors bopt
ℓ

we compose the optimized matrix Bopt,

observing that b
opt
ℓ

only consist of the nonzero entries of
Bopt. Then, the approximation of the Fourier coefficients is
given by

f̂ ≈ hopt := D∗F∗B∗
optf . (4.12)

In other words, this approach yields an inverse NFFT by modifying
the adjoint NFFT.

Remark 4.2. To achieve an efficient algorithm we now have a

closer look at the computation scheme (4.11). We start with the

computation of the matrix H∗
ℓ
Hℓ. By introducing the d-dimensional

Dirichlet kernel

DM(x) :=
M
2 −1
∑

k1=−M
2 +1

· · ·
M
2 −1
∑

kd=−M
2 +1

e2π ikx =
d
∏

t=1

DM
2 −1(xt)

=
d
∏

t=1

sin((M − 1)πxt)

sin(πxt)
,

the matrix H∗
ℓ
Hℓ in (4.11) can explicitly be stated via

H∗
ℓ
Hℓ =

[

∑

k∈IM

e2π ik(xh−xj)

]

h,j∈IMσ ,m(ℓ)

=





d
∏

t=1

(

DM
2 −1(xht − xjt)+ e−Mπ i(xht−xj t)

)





h,j∈IMσ ,m(ℓ)

,

(4.13)
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i.e., for given index set IMσ ,m(ℓ) the matrix H∗
ℓ
Hℓ can be

determined inO(|IMσ ,m(ℓ)|) operations. Considering the right-hand
side of (4.11), by definitions (4.9), (2.13), and (2.14), we have

vℓ := 1
|IMσ |H

∗
ℓ
D−1f

ℓ
=
(

∑

k∈IM

ŵ(k) e2π ik(xj−M−1
σ ⊙ ℓ)

)

j∈IMσ ,m(ℓ)

,

ℓ ∈ IMσ
. (4.14)

Thus, since 1
|IMσ |D

−1 = diag(ŵ(k))k∈IM , the computation of vℓ

involves neither multiplication with nor division by the (possibly)

huge number |IMσ
| and is, therefore, numerically stable.

This leads to the following algorithm.

For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, be given points.

Furthermore let M := M · 1d with M ∈ 2N, an oversampling
factor σ ≥ 1 with 2N ∋ Mσ := 2⌈⌈σM⌉/2⌉ and Mσ := Mσ · 1d as
well as a truncation parameterm≪Mσ be given.

1. For ℓ ∈ IMσ
:

Determine the index set IMσ ,m(ℓ), cf. (4.7).
O(|IMσ ,m(ℓ)|)

Compute the right side vℓ via (4.14). O(|IMσ ,m(ℓ)|)
DetermineH∗

ℓ
Hℓ via (4.13). O(|IMσ ,m(ℓ)|2)

Solve
(

H∗
ℓ
Hℓ

)

b
opt
ℓ

= vℓ, i.e., compute bopt
ℓ

, cf. (4.11).
O(|IMσ ,m(ℓ)|3)

2. Compose Bopt ∈ R
N×|IMσ | columnwise of the b

opt
ℓ

∈ R
|IMσ ,m(ℓ)|. O(|IM|)

Output: optimized matrix Bopt

Complexity:O(|IM| · |IMσ ,m(ℓ)|3)

Algorithm 4.3. Optimization of the sparse matrix B.

Note that a general statement about the dimensions of
Hℓ ∈ C

|IM |×|IMσ ,m(ℓ)| is not possible, since the size of the
set IMσ ,m(ℓ) heavily depends on the distribution of the points. To
visualize this circumstance, we depicted some exemplary patterns
of the nonzero entries of the original matrix B ∈ R

N×|IMσ | in
Figure 1. It can easily be seen that for all choices of the points
each row contains the same number of nonzero entries, i.e., all
index sets (2.12) are of the same size of maximum (2m+ 1)d.
However, when considering the columns instead, we recognize an
evident mismatch in the number of nonzero entries. We remark
that because of the fact that each row of B ∈ R

N×|IMσ | contains
at most (2m+ 1)d entries, each column contains N

|IMσ | (2m+ 1)d

entries on average. A general statement about the maximum size
of the index sets (4.7) cannot be made. Roughly speaking, the
more irregular the distribution of the points is, the larger the index
sets (4.7) can be. Nevertheless, in general |IMσ ,m(ℓ)| is a small
constant compared to |IM|, such that Algorithm 4.3 ends up with
total arithmetic costs of approximatelyO(|IM|).

In conclusion, our approach for an inverse NFFT can be
summarized as follows.

For d,N ∈ N let xj ∈ T
d, j = 1, . . . ,N, be given points as well as

f ∈ C
N . Further let M := M · 1d with M ∈ 2N, an oversampling

factor σ ≥ 1 with 2N ∋ Mσ := 2⌈⌈σM⌉/2⌉ and Mσ := Mσ · 1d as
well as a truncation parameterm≪Mσ be given.

0. Precompute the optimal sparse matrix Bopt using
Algorithm 4.3.

1. Compute hopt := D∗F∗B∗
optf , cf. (4.12), by means of a

modified adjoint NFFT.

Output: hopt ≈ f̂ ∈ C
|IM |, cf. (3.4).

Complexity:O(|IM| log(|IM|)+ N)

Algorithm 4.4. iNFFT – optimization approach.

Theorem 4.5. Let Bopt ∈ R
N×|IMσ | be the optimized

matrix computed by means of Algorithm 4.3 and let

hopt = D∗F∗B∗
optf ∈ C

|IM | be the corresponding approximation

of f̂ computed by means of Algorithm 4.4. Further assume that each

column b
opt
ℓ

∈ R
|IMσ ,m| of Bopt ∈ R

N×|IMσ | as solution to (4.10)

possesses a small residual

∥

∥Hℓb
opt
ℓ

− 1
|IMσ |D

−1f
ℓ

∥

∥

2
2 = εℓ ≥ 0, ℓ ∈ IMσ

. (4.15)

Then there exists an ε ≥ 0 such that

∥

∥hopt − f̂
∥

∥

2
2 ≤ ε

∑

k∈IM

1

ŵ(k)2
·
∥

∥f̂
∥

∥

2
2. (4.16)

Moreover, the (asymmetric) Dirichlet kernel

wD :=
∑

k∈IM

e2π ikx =
d
∏

t=1

(

DM
2 −1(xt)+ e−Mπ ixt

)

(4.17)

is the optimal window function for the inverse NFFT in

Algorithm 4.4.

Proof: As in (4.1) the approximation error can be estimated by

∥

∥hopt − f̂
∥

∥

2
2 =

∥

∥

(

D∗F∗B∗
optA− I|IM |

)

f̂
∥

∥

2
2

≤
∥

∥D∗F∗B∗
optA− I|IM |

∥

∥

2
F

∥

∥f̂
∥

∥

2
2. (4.18)

Using the same arguments as for (4.3) and (4.4) we proceed with

∥

∥D∗F∗B∗
optA− I|IM |

∥

∥

2
F =

∥

∥A∗BoptFD− I|IM |
∥

∥

2
F

≤
∥

∥A∗Bopt − 1
|IMσ |D

−1F∗
∥

∥

2
F

∥

∥FD
∥

∥

2
F.

(4.19)

To estimate the first Frobenius norm in (4.19), we rewrite it
analogously to (4.8) columnwise as

∥

∥A∗Bopt − 1
|IMσ |D

−1F∗
∥

∥

2
F =

∑

ℓ∈IMσ

∥

∥Hℓb
opt
ℓ

− 1
|IMσ |D

−1f
ℓ

∥

∥

2
2,

where bopt
ℓ

∈ R
|IMσ ,m(ℓ)| are the nonzeros of the columns of Bopt,

Hℓ ∈ C
|IM |×|IMσ ,m(ℓ)| in (4.9) are the corresponding submatrices
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A B C D

FIGURE 1

Nonzero entries of the matrix B ∈ R
N×|IMσ | for several choices of the points xj ∈ T

d, j = 1, . . . ,N, with d = 1, Mσ = M = 16, N = 2M, and m = 2.

(A) Equispaced points. (B) Jittered points. (C) Chebyshev points. (D) Random points.

of A∗ ∈ C
|IM |×N , cf. (2.7), and f

ℓ
∈ C

|IM | are the columns of
F∗ ∈ C

|IM |×|IMσ |, cf. (2.14). Since b
opt
ℓ

∈ R
|IMσ ,m| as solutions

to the least squares problems (4.10) satisfy (4.15), we can find
ε := maxℓ∈IMσ

εℓ ≥ 0, such that εℓ ≤ ε, ℓ ∈ IMσ
, and, therefore,

∑

ℓ∈IMσ

∥

∥Hℓb
opt
ℓ

− 1
|IMσ |D

−1f
ℓ

∥

∥

2
2 ≤

∑

ℓ∈IMσ

εℓ ≤ ε |IMσ
|.

Therefore, we may write (4.19) as

∥

∥D∗F∗B∗
optA− I|IM |

∥

∥

2
F ≤ ε |IMσ

| ·
∥

∥FD
∥

∥

2
F. (4.20)

Thus, it remains to estimate the Frobenius norm
∥

∥FD
∥

∥

2
F. By

the definitions of the Frobenius norm and the trace tr(Z) of a
matrix Z, it is clear that ‖Z‖2F = tr(Z∗Z). Since by (2.14) we have
that F∗F = |IMσ

| I|IM |, this yields

∥

∥FD
∥

∥

2
F = tr(D∗F∗FD) = |IMσ

| · tr(D∗D) = |IMσ
| ·
∥

∥D
∥

∥

2
F.
(4.21)

Using the definition (2.13) of the diagonal matrix D ∈ R
|IM |×|IM |,

we obtain

∥

∥D
∥

∥

2
F = 1

|IMσ
|2

∑

k∈IM

1

ŵ(k)2
. (4.22)

Then combination of (4.20), (4.21), and (4.22) implies

∥

∥D∗F∗B∗
optA− I|IM |

∥

∥

2
F ≤ ε

∑

k∈IM

1

ŵ(k)2
,

such that (4.18) yields the assertion (4.16).
Since it is known that 0 ≤ ŵ(k) ≤ 1, k ∈ IM , for suitable

window functions of the NFFT, cf. [67], we have

1 ≤ 1

ŵ(k)
≤ 1

ŵ(k)2

and, therefore,

∑

k∈IM

1

ŵ(k)2
≥
∑

k∈IM

1 = |IM|.

Hence, the smallest constant is achieved in (4.16) when ŵ(k) = 1,
k ∈ IM , i.e., the (asymmetric) Dirichlet kernel (4.17) is the optimal
window function for the inverse NFFT in Algorithm 4.4.

Note that for trigonometric polynomials (2.8) the error bound
of Theorem 4.5 with the optimal window function (4.17) is the same
as the error bound (3.37) from Theorem 3.14.

Remark 4.6. Up to now, we only focused on the problem (3.4).

Finally, considering the inverse adjoint NFFT in (3.5), we remark

that this problem can also be solved by means of the optimization

procedure in Algorithm 4.3. Assuming again |IM| ≤ N, this is the

underdetermined setting for the adjoint problem (3.5). Therefore, the

minimum norm solution of (3.5) is given by the normal equations of

the second kind

A∗Ay = h, f = Ay.

Incorporating the matrix decomposition of the NFFT, cf. Section 2.1,

we recognize that a modification of the matrix B ∈ R
N×|IMσ | such

that A∗BFD ≈ I|IM | implies y ≈ h and hence f ≈ BFDh. Thus, the

optimization problem (4.3) is also the one to consider for (3.5). In

other words, our approach provides both, an inverse NFFT as well as

an inverse adjoint NFFT.

5. Numerics

In conclusion, we have a look at some numerical examples. In
addition to comparing the density compensation approach from
Section 3 to the optimization approach from Section 4, for both
trigonometric polynomials (2.8) and bandlimited functions, we also
demonstrate the accuracy of these approaches.
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A B

FIGURE 2

Exemplary randomized grids of size N1 = N2 = 12. (A) Jittered grid. (B) Random grid.

A B C

FIGURE 3

Polar grids of size R = 12 and T = 2R. (A) Polar (blue) and modified polar (red) grid. (B) Linogram/pseudo-polar grid. (C) Golden angle linogram grid.

Remark 5.1. At first we introduce some exemplary grids. For

visualization we restrict ourselves to the two-dimensional setting

d = 2.

(i) We start with a sampling scheme, that is, somehow “close” to

the Cartesian grid, but also possesses a random part. To this

end, we consider the two-dimensional Cartesian grid and add

a two-dimensional perturbation, i.e.,

xt,j :=
(

−1

2
+ 2t − 1

N1
,−1

2
+ 2j− 1

N2

)T

+
(

1

N1
η1,

1

N2
η2

)T

,

(5.1)
t = 1, . . . ,N1, j = 1, . . . ,N2, and η1, η2 ∼ U(−1, 1),
where U(−1, 1) denotes the uniform distribution on the

interval (−1, 1). A visualization of this jittered grid can be

found in Figure 2A. In addition, we also consider the random

grid xt,j := 1
2 (η1, η2)

T , see Figure 2B.

(ii) Moreover, we examine grids of polar kind, as mentioned in

Fenn et al. [68]. For R,T ∈ 2N, the points of the polar grid

are given by a signed radius rj := j
R ∈

[

− 1
2 ,

1
2

)

and an angle

θt := π t
T ∈

[

−π
2 ,

π
2

)

as

xt,j := rj (cos θt , sin θt)
T , (j, t)T ∈ IR × IT . (5.2)

Since it is known that the inversion problem is ill-conditioned

for this grid we consider a modification, the modified polar grid

xt,j := rj (cos θt , sin θt)
T , (j, t)T ∈ I√2R × IT , (5.3)

i.e., we added more concentric circles and excluded the points

outside the unit square, see Figure 3A. Another sampling

scheme that is known to lead to more stable results than the

polar grid is the linogram or pseudo-polar grid, where the

points lie on concentric squares instead of concentric circles, see

Figure 3B. There we distinguish two sets of points, i.e.,

xBHt,j :=
(

j
R ,

4t
T

j
R

)T
, xBVt,j :=

(

− 4t
T

j
R ,

j
R

)T
,

(j, t)T ∈ IR × I T
2
. (5.4)

(iii) Another modification of these polar grids was introduced

in Helou et al. [69], where the angles θt are not chosen
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equidistantly but are obtained by golden angle increments. For

the golden angle polar grid we only exchange the equispaced

angles of the polar grid to

θt = mod

(

π

2
+ t

2π

1+
√
5
,π

)

− π

2
, t = 0, . . . ,T − 1.

(5.5)
The golden angle linogram grid is given by

xt,j :=











(

2j+1
2R , 2j+1

2R tan
(

θt − π
4
)

)T
: θt ∈

[

0, π2
)

(

− 2j+1
2R cot

(

θt − π
4
)

, 2j+1
2R

)T
: θt ∈

[

−π
2 , 0

)











, j ∈ IR,

with θt in (5.5), as illustrated in Figure 3C.

Before comparing the different approaches from Sections 3
and 4, we study the quality of our methods for the grids mentioned
in Remark 5.1. More specifically, in Example 5.2 we investigate the
accuracy of the density compensation method from Algorithm 3.7
with the weights introduced in Section 3.1, and in Example 5.3 we
check if the norm minimization targeted in Section 4 is successful.

Example 5.2. First, we examine the quality of our density

compensation method in Algorithm 3.7 for a trigonometric

polynomial f as in (2.8) with given Fourier coefficients f̂ k ∈ [1, 10],
k ∈ IM . In this test, we consider several d ∈ {1, 2, 3}. For

the corresponding function evaluations of (2.8) at given points

xj ∈
[

− 1
2 ,

1
2

)d
, j = 1, . . . ,N, we test how well these Fourier

coefficients can be approximated. More precisely, we consider

the estimate h̃
w = D∗F∗B∗Wf , cf. (3.7), with the matrix

W = diag
(

wj

)N

j=1 of density compensation factors computed

by means of Algorithm 3.6, i.e., by (3.15), in case |I2M| ≤ N, or

by (3.16), if |I2M| > N, and compute the relative errors

ep :=
‖h̃w − f̂ ‖p

‖f̂ ‖p
, p ∈ {2,∞}. (5.6)

By (3.37), it is known that

∥

∥f̂ − A∗Wf
∥

∥

p
∥

∥f̂
∥

∥

p

≤ |IM| ε, p ∈ {2,∞},

with the residual ε =
∥

∥AT
|I2M | w − e0

∥

∥

∞ ≥ 0, cf. (3.36).

In our experiment, we use random points xj with Nt = 29−d,

t = 1, . . . , d, cf. Figure 2B, and, for several problem sizes

M = M · 1d, M = 2c with c = 1, . . . , 11− d, we choose random

Fourier coefficients f̂ k ∈ [1, 10], k ∈ IM . Afterward, we compute the

evaluations of the trigonometric polynomial (2.8) by means of an

NFFT and use the resulting vector f as input for the reconstruction.

Due to the randomness we repeat this 10 times and then consider

the maximum error over all runs. The corresponding results are

displayed in Figure 4. It can clearly be seen that |I2M| < N, i.e., as

long as M < N1
2 = 28−d, the weights computed by means of (3.15)

lead to an exact reconstruction of the given Fourier coefficients.

However, as soon as we are in the setting |I2M| > N the least squares

approximation via (3.16) does not yield good results anymore.

Example 5.3. To study the quality of our optimization method in

Section 4, we consider the Frobenius norms

n(w,m, σ ) :=
∥

∥A∗BFD− I|IM |
∥

∥

F ,

nopt(w,m, σ ) :=
∥

∥A∗BoptFD− I|IM |
∥

∥

F , (5.7)

where B denotes the original matrix from the NFFT in (2.15) and

Bopt is the optimized matrix generated by Algorithm 4.3. For the

original matrix B we utilize the common B-Spline window function

wB := B2m(Mσ x) (5.8)

with the centered B-Spline of order 2m, cf. [15, p. 388]. The optimized

matrix Bopt shall be computed by means of the B-Spline (5.8) as well

as the Dirichlet window function (4.17), which is the optimal window

by Theorem 4.5.

Due to memory limitations in the computation of the Frobenius

norms (5.7), we have to settle for very small problems, which however

show the functionality of Algorithm 4.3. For this reason, we consider

d = 2 and choose M = (12, 12)T as well as N1 = N2 = R = 2µ,
µ ∈ {2, . . . , 7}, and T = 2R for the grids mentioned in Remark 5.1.

In other words, we test Algorithm 4.3 in the underdetermined setting

|IM| > N as well as for the overdetermined setting |IM| ≤ N.

Having a look at the results for the grids in Remark 5.1, it becomes

apparent that they separate into two groups. Figure 5A displays

the results for the polar grid (5.2), which are the same as for the

golden angle polar grid, cf. (5.5). In these cases there is only a slight

improvement by the optimization. However, for all other mentioned

grids the minimization procedure in Algorithm 4.3 is very effective.

The results of these grids are depicted in Figure 5B exemplarily for

the modified polar grid (5.3). Moreover, it can be seen that our

optimization procedure in Algorithm 4.3 is the most effective in the

overdetermined setting |IM| ≤ N.

One reason for the different behavior of polar and modified

polar grid could be the ill-posedness of the inversion problem for

the polar grid, which becomes evident in huge condition numbers of

H∗
ℓ
Hℓ, whereas the problem for modified polar grids is well-posed.

Another reason can be found in the optimization procedure itself.

Having a closer look at the polar grid, see Figure 3A, there are no

grid points in the corners of the unit square. Therefore, some of the

index sets IMσ ,m(ℓ), cf. (4.7), are empty and no optimization can be

done for the corresponding matrix columns. This could also cause the

worsened minimization properties of the polar grid.

Next, we proceed with comparing the density compensation
approach from Section 3 using the weights wj introduced in
Section 3.1 to the optimization approach for modifying the
matrix B from Section 4. To this end, we show an example
concerning trigonometric polynomials (2.8) of degree M and a
second one that deals with bandlimited functions of bandwidthM.
Here, we restrict ourselves to the two-dimensional setting d = 2 for
better visualization of the results.

Example 5.4. Similar to Averbuch et al. [32] and Kircheis and

Potts [33] we have a look at the reconstruction of the Shepp-

Logan phantom, see Figure 6A. Here, we treat the phantom data

as given Fourier coefficients f̂ := (f̂k)k∈IM of a trigonometric

polynomial (2.8). For given points xj ∈
[

− 1
2 ,

1
2

)2
, j = 1, . . . ,N, we

then compute the evaluations of the trigonometric polynomial (2.8)
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A B C

FIGURE 4

Relative errors (5.6) of the reconstruction of the Fourier coe�cients of a trigonometric polynomial (2.8) with given f̂k ∈ [1, 10], k ∈ IM , computed via

the density compensation method from Algorithm 3.7, for random grids with Nt = 29−d, t = 1, . . . ,d, and M = M · 1d, M = 2c with c = 1, . . . , 11− d.

(A) d = 1. (B) d = 2. (C) d = 3.

A B

FIGURE 5

Frobenius norms (5.7) of the original matrix B (violet) and the optimized matrix Bopt generated by Algorithm 4.3 using the B-Spline wB (orange) as well

as the Dirichlet window wD (cyan) with R = 2µ, µ ∈ {2, . . . , 7}, and T = 2R as well as M = (12, 12)T , m ∈ {2, 4}, and σ ∈ {1, 2}. (A) Polar grid (5.2). (B)

Modified polar grid (5.3).

by means of an NFFT and use the resulting vector as input for the

reconstruction.

In a first experiment, we test the inversion methods from

Sections 3 and 4 as in Averbuch et al. [32] for increasing input sizes.

To this end, we choose M = (M,M)T , M = 2c with c = 3, . . . , 10,
and linogram grids (5.4) of size R = 2M, T = 2R, i.e., we consider
the setting |I2M| < N. For using Algorithm 4.4 we choose the

oversampling factor σ = 1.0 and the truncation parameter m = 4.
For each input size we measure the computation time of the

precomputational steps, i.e., the computation of the weight matrixW

or the computation of the optimized sparse matrix Bopt, as well as

the time needed for the reconstruction, i.e., the corresponding adjoint

NFFT, see Algorithms 3.7, 4.4. Moreover, for the reconstruction

h̃ ∈ {h̃w, hopt}, cf. (3.7) and (4.12), we consider the relative errors

e2 :=
‖h̃− f̂ ‖2
‖f̂ ‖2

. (5.9)

The corresponding results can be found in Table 1. We remark that

since we are in the setting |I2M| < N, the density compensation

method in Algorithm 3.7 with weights computed by (3.15) indeed

produces nearly exact results. Although, our optimization procedure

from Algorithm 4.4 achieves small errors as well, this reconstruction

is not as good as the one by means of our density compensation

method.

Note that in comparison to Averbuch et al. [32], our method

in Algorithm 3.7 using density compensation produces errors of the

same order, but is much more effective for solving several problems

using the same points xj for different input values f . Since our

precomputations have to be done only once in this setting, we strongly

profit from the fact that we only need to perform an adjoint NFFT as

reconstruction, which is very fast, whereas in Averbuch et al. [32] they

would need to execute their whole routine each time again.

As a second experiment, we aimed to decrease the amount of

overdetermination, i.e., we want to keep the size |IM| of the phantom,

but reduce the number N of the points xj, j = 1, . . . ,N. To this end,
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FIGURE 6

Reconstruction of the Shepp-Logan phantom of size 1024× 1024 (top) via the density compensation method from Section 3.1 using Voronoi

weights and Algorithm 3.7 with weights computed by (3.16) compared to Algorithm 4.4 for the linogram grid (5.4) of size R = M = 1, 024, T = 2R; as

well as a detailed view of the 832nd row each (bottom). (A) Original phantom. (B) Voronoi weights with e2=5.3040e-01. (C) Algorithm 3.7 with

e2=5.0585e-01. (D) Algorithm 4.4 with e2=2.2737e-03.

we now consider linogram grids (5.4) of the smaller size R = M,

T = 2R, i.e., now we have |I2M| > N.

The reconstruction of the phantom of size 1, 024× 1, 024 is

presented in Figure 6 (top) including a detailed view of the 832nd

row of this reconstruction (bottom). Despite the reconstruction via

Algorithm 4.4 as well as the density compensation method using

weights computed by means of (3.16), we also considered the

result using Voronoi weights. For all approaches we added the

corresponding relative errors (5.9) to Figure 6 as well.

Due to the fact that the exactness condition |I2M| < N

(cf. Section 3.1.1) is violated, it can be seen in Figure 6C that the

density compensation method using weights computed by means

of (3.16) does not yield an exact reconstruction is this setting.

On the contrary, we recognize that our optimization method, see

Figure 6D, achieves a huge improvement in comparison to the density

compensation techniques in Figures 6B, C since no artifacts are

visible. Presumably, this arises because there are more degrees of

freedom in the optimization of the matrix B from Section 4 than with

the density compensation techniques from Section 3, cf. Remark 3.1.

We remark that although the errors are not as small as in Table 1, by

comparing Figures 6A, D and it becomes apparent that the differences

are not even visible anymore. Note that for this result the number N

of points is ca. four times lower as for the results depicted in

Table 1, i.e., we only needed twice as much function values as Fourier

coefficients, whereas e.g., in [32] they worked with a factor of more

than 4.

Example 5.5. Finally, we examine the reconstruction properties

for bandlimited functions f ∈ L1(Rd) ∩ C0(Rd) with maximum

bandwidth M. To this end, we first specify a compactly supported

function f̂ and consequently compute its inverse Fourier transform f ,

such that its samples f (xj) for given xj ∈
[

− 1
2 ,

1
2

)2
, j = 1, . . . ,N, can

be used for the reconstruction of the samples f̂ (k), k ∈ IM . Here, we

consider the tensorized function f̂ (v) = g(v1) · g(v2), where g(v) is
the one-dimensional triangular pulse g(v) := (1−

∣

∣

v
b

∣

∣) · χ[−b,b](v).
Then for all b ∈ N with b ≤ M

2 the associated inverse Fourier

transform

f (x) =
∫

R2
f̂ (v) e2π ivx dv = b2 sinc2(bπx)

= b2 sinc2(bπx1) sinc
2(bπx2), x ∈ R

2,

is bandlimited with bandwidth M. In this case, we consider M = 64
and b = 24 as well as the jittered grid (5.1) of size N1 = N2 = 144,
i.e., we study the setting |I2M| ≤ N.

Now, the aim was to compare the different density compensation

methods considered in Section 3 and the optimization approach

from Section 4. More precisely, we consider the reconstruction

using Voronoi weights, the weights computed via (3.58), the weights

in (3.62), and Algorithm 3.7 with weights computed via (3.15), as

well as Algorithm 4.4. For the reconstruction h̃ ∈ {h̃w, hopt}, cf. (3.7)
and (4.12), we then compute the pointwise absolute errors

∣

∣h̃− f̂
∣

∣.

The corresponding results are displayed in Figure 7. It can easily be

seen that Voronoi weights, see Figure 7A, and the weights in (3.62),

see Figure 7D, do not yield a good reconstruction, as expected. The

other three approaches produce nearly the same reconstruction error,

which is also obtained by reconstruction on an equispaced grid and,

therefore, is the best possible. In other words, in case of bandlimited

functions the truncation error in (3.20) is dominating and thus

reconstruction errors smaller than the ones shown in Figure 7 cannot

be expected.
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TABLE 1 Relative errors (5.9) of the reconstruction of the Shepp-Logan phantom of sizeM as well as the runtime in seconds for the density

compensation method from Algorithm 3.7 compared to Algorithm 4.4 with σ = 1.0 andm = 4, using linogram grids (5.4) of size R = 2M, T = 2R.

Relative error e2 Precomputation time Reconstruction time

M Algorithm 3.7 Algorithm 4.4 Algorithm 3.7 Algorithm 4.4 Algorithm 3.7 Algorithm 4.4

8 1.3332e-15 6.8606e-14 9.8254e-02 1.9220e+00 6.2500e-04 2.2360e-03

16 7.2315e-15 1.5718e-07 1.6157e-01 8.3276e+00 2.5100e-03 3.4760e-03

32 2.3383e-14 4.5778e-07 3.3032e-01 4.3169e+01 3.1860e-03 7.4790e-03

64 2.5859e-14 4.7505e-07 3.4324e+00 2.4103e+02 5.0420e-03 4.9310e-03

128 7.9006e-14 5.9962e-07 9.4725e+00 1.2045e+03 2.9860e-02 5.5123e-02

256 2.6386e-13 4.0943e-06 3.8365e+01 5.8347e+03 6.6443e-02 6.7810e-01

512 1.0917e-12 2.0184e-06 1.4020e+02 2.9235e+04 2.1674e-01 3.2674e+00

1024 4.2563e-12 1.3491e-05 7.2153e+02 1.4342e+05 7.4896e-01 1.6114e+01

A B C

D E

FIGURE 7

Pointwise absolute error
∣

∣h̃− f̂
∣

∣ of the reconstruction of samples f̂(k) of the tensorized triangular pulse function with M = 64 and b = 24, using the

density compensation methods considered in Section 3 as well as the optimization approach from Algorithm 4.4 for the jittered grid (5.1) of size

N1 = N2 = 144. (A) Voronoi weights. (B) Algorithm 3.7. (C) Weights via (3.58). (D) Weights (3.62). (E) Algorithm 4.4.

Note that the comparatively small choice of M = 64 was

made in order that the computation of the weights via (3.58),

see Figure 7C, as well as the weights in (3.62), see Figure 7D,

is affordable, cf. Section 3.4.2. In contrast, our new methods

using Algorithm 3.7, see Figure 7B, or Algorithm 4.4, see Figure 7E,

are much more effective and, therefore, better suited for the

given problem.

6. Conclusion

In the present article, we considered several direct methods
for computing an inverse NFFT, i.e., reconstructing the Fourier
coefficients f̂ k, k ∈ IM , from given nonequispaced data f (xj),
j = 1, . . . ,N. Being a direct method here means, that for a fixed
set of points xj, j = 1, . . . ,N, the reconstruction can be realized
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with the same number of arithmetic operations as a single
application of an adjoint NFFT (see Algorithm 2.4). As we have
seen in (3.3), a certain precomputational step is compulsory, since
the adjoint NFFT does not yield an inversion by itself. Although
this precomputations might be rather costly, they need to be done
only once for a given set of points xj, j = 1, . . . ,N. Therefore,
direct methods are especially beneficial in case of fixed points. For
this reason, we studied two different approaches of this kind and
especially focused on methods for the multidimensional setting
d ≥ 1 that are applicable to general sampling patterns.

First, in Section 3, we examined the well-known approach of
sampling density compensation, where suitable weights wj ∈ C,
j = 1, . . . ,N, are precomputed, such that the reconstruction can
be realized by means of an adjoint NFFT applied to the scaled
data wjf (xj). We started our investigations with trigonometric
polynomials in Section 3.1. In Corollary 3.4, we introduced
the main formula (3.14), which yields exact reconstruction for
all trigonometric polynomials of degree M. In addition to this
theoretical considerations, we also discussed practical computation
schemes for the overdetermined as well as the underdetermined
setting, as summarized in Algorithm 3.6. Afterward, in Section 3.2,
we studied the case of bandlimited functions, which often occurs
in the context of MRI and discussed that the same numerical
procedures as in Section 3.1 can be used in this setting as well.
In Section 3.3, we then summarized the previous findings by
presenting a general error bound on density compensation factors
computed by means of Algorithm 3.6 in Theorem 3.14. In addition,
this also yields an estimate on the condition number of the matrix
product A∗WA, as shown in Theorem 3.15. In Section 3.4, we
surveyed certain approaches from literature and commented on
their connection among each other as well as to the method
presented in Section 3.1.

Subsequently, in Section 4, we studied another direct inversion
method, where the matrix representation A ≈ BFD of the NFFT is
used to modify the sparse matrix B, such that a reconstruction is
given by f̂ ≈ D∗F∗B∗

optf . In other words, the inversion is done by a
modified adjoint NFFT, while the optimization of the matrix B can
be realized in a precomputational step, see Algorithm 4.4.

Finally, in Section 5, we had a look at some numerical
examples to investigate the accuracy of the previously introduced
methods. We have seen that our approaches are best-suited
for the overdetermined setting |IM| ≤ N and work for many
different sampling patterns. More specifically, in the highly
overdetermined case |I2M| ≤ N we have theoretically proven
as well as numerically verified in several examples that the
density compensation technique in Algorithm 3.7 leads to an
exact reconstruction for trigonometric polynomials. In case not
that much data are available and we have to reduce the
amount of overdetermination such that |I2M| > N, we have
shown that the optimization approach from Algorithm 4.4 is

preferable, since the higher number of degrees of freedom
in the optimization (see Remark 3.1) yields better results.
In addition, also for the setting of bandlimited functions we
demonstrated that our methods are much more efficient than
existing ones.
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