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Collective cell migration is an important process during biological development

and tissue repair but may turn malignant during tumor invasion. Mathematical

and computational models are essential to unravel the mechanisms of

self-organization that underlie the emergence of collective migration from

the interactions among individual cells. Recently, guidance-by-followers was

identified as one such underlying mechanism of collective cell migration in the

embryo of the zebrafish. This poses the question of how the guidance stimuli

are integrated when multiple cells interact simultaneously. In this study, we

extend a recent individual-based model by an integration step of the vectorial

guidance stimuli and compare model predictions obtained for di�erent variants

of the mechanism (arithmetic mean of stimuli, dominance of stimulus with largest

transmission interface, and dominance of most head-on stimulus). Simulations

are carried out and quantified within the modeling and simulation framework

Morpheus. Collective cell migration is found to be robust and qualitatively identical

for all considered variants of stimulus integration. Moreover, this study highlights

the role of individual-based modeling approaches for understanding collective

phenomena at the population scale that emerge from cell-cell interactions.

KEYWORDS

cellmigration, guidance-by-followers, zebrafish, collective phenomena, individual-based
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1. Introduction

Collective cell migration is an important process during biological development, such
as the morphogenesis of tissues and organs in the embryo, as well as during wound
healing and tissue repair in the adult, but collective behavior may also turn malignant
during tumor invasion and metastasis [1–4]. Advances in live-cell imaging and precise
perturbation experiments allow us to study individual cell trajectories and to quantify
collective phenomena [5, 6]. Mathematical models and computational analysis are essential
to unravel the mechanisms of self-organization that underlie the emergence of collective
migration from the interactions among individual cells [7–10]. Using experimental and
theoretical approaches, different interaction mechanisms between individual migrating cells
have been identified. It includes chemotaxis during vasculogenesis [11, 12] andDictyostelium
aggregation and slug motion [2], self-generated gradients in the zebrafish posterior lateral
line primordium [13, 14], contact inhibition of locomotion during neural crest streaming
[15], axis alignment of polar/ferromagnetic or apolar/nematic type in local neighborhoods
[16, 17], chase-and-run between different cell types such as neural crest and placodal cells
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[18], leader cell selection by Notch signaling, and guidance of

follower cells in trunk neural crest migration in zebrafish [19],
as well as the reverse of the previous mechanism, guidance by

followers in polster cell migration toward the animal pole followed
by posterior axial mesoderm during gastrulation in zebrafish
[20], see Figure 1. An important question is how robustly a
particular mechanism can self-organize collective cell migration
given variable starting conditions, perturbations, and variability of
individual cells. Moreover, the variability of individual cells may
be a prerequisite for leader/follower cell segregation. To achieve
robustness, multiple mechanisms need to coexist and synergize.

During gastrulation in zebrafish, the elongating body axis is
composed of distinct cell populations. The axis is headed by the
mesendodermal polster followed by the posterior axial mesoderm.
Themovement of both these tissues relies on different mechanisms.
Individual polster cells undergo active random run-and-tumble
migration but, as a group, they coordinate their movement
to exhibit guided collective migration [21, 22]. Meanwhile, the
posterior axial mesoderm elongates by undergoing convergence
and extension [23]. Due to such movement, cell-to-cell variability
and environmental perturbations risk to fragment the body

FIGURE 1

Collective cell migration due to guidance-by-followers during gastrulation in zebrafish. Schematic of the dorsal (A) and lateral (B) view of a zebrafish

embryo during gastrulation, at 60% epiboly stage. The polster (green), the (posterior) axial mesoderm (yellow), and paraxial mesoderm (gray) are part

of the inner layer of cells, and all move toward the animal pole of the embryo. Polster cells undergo a collective migration while axial mesoderm

extends by the addition of new cells by internalization and by convergence and extension. These two tissues are made up of several layers of cells

and constitute the body axis that elongates during gastrulation. The paraxial mesoderm is a flat monolayer of cells flanking the body axis, which also

moves toward the animal pole. A, animal pole; Veg, vegetal pole; R, right; L, left, D, dorsal; V, ventral. (C, D) The schematic description of the cell

migration model. The movement of axial mesodermal tissues is simulated in 2D, in a confined space, mimicking the presence of paraxial mesoderm

(gray) on both sides. Polster cells (green) exhibit random, run-and-tumble movement and are sensitive to guidance-by-followers. Axial cells (yellow)

display a directed motion oriented toward the top of the simulation and are not responsive to guidance-by-followers. Both cell types can trigger

guidance-by-followers in polster cells. In (C), the direction of motion is transmitted from a moving cell to a polster cell (green) when it is hit by the

moving cell (here, a yellow axial cell). When multiple cells interact simultaneously (D), competing input signals need to be processed to determine

the direction of motion of each cell. In this study, we propose and compare hypotheses for such signal processing.

axis. Surprisingly, none of the mutations affecting convergence
and extension movements and slowing down follower cells (the
posterior axial mesoderm) leads to axis fragmentation, but rather
lead to a slowing of polster cells [20, 23, 24], suggesting that
motility of polster cells is tightly regulated by axial cells. At
the molecular level, it appears that each polster cell detects the
movement of all contacting cells moving toward it (therefore
called followers) through E-cadherin-dependent cell-cell contacts
[22] and E-cadherin/α-cateninmechanotransduction. The cell then
aligns its own migration polarity with that of its followers [20].
Thereby, the direction of motion can be transmitted from a
moving cell to another cell as it is hit by the moving cell, see
Figure 1C. This local mechanism has been described as “guidance-
by-followers”. To date, only polster cells have been shown to
respond to guidance-by-followers, although several cell types are
capable of triggering such a reaction in polster cells, in particular,
in physiological conditions, polster cells themselves and posterior
axial cells [20]. At the collective level, the random cell motility of
polster cells gets aligned to form a compact cell cluster in contact
with the following posterior axial mesoderm cells. When contact
to following posterior axial mesoderm cells gets lost, polster cells
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no longer receive guidance from the posterior axial mesoderm
cells, and increased randomness of polster cell trajectories then
reduces the polster’s net velocity until the following posterior axial
mesoderm catches up. Information about the advancement of the
posterior axial mesoderm propagates faster than the movement
of individual cells in the same direction. As a result, polster cells
situated at the front of the axis can respond to disturbances at
the rear by slowing down. This finding has been supported by
experiments involving laser ablation and cell transplantation [20].
In the following, we will refer to the posterior axial mesoderm cells
as axial cells and compare them with polster cells.

Collective cell migration has been theoretically studied both
by individual-based models and continuum approaches [8, 25,
26]. Agent-based or individual-based models (IBM) explicitly
describe the stochastic dynamics of individuals and their discrete
interactions, in response to their individually differing and dynamic
states such as current spatial location, movement direction,
cell polarity, cell shape, or intracellular signaling [8, 27]. A
particularly versatile model formalism among IBM is the cellular
Potts model (CPM) [12, 28, 29]. Multiple open-source software
frameworks allow to develop and simulate CPM in a user-
friendly manner [30–32]. Various cell motility modes and all
the abovementioned cell-cell interaction mechanisms have been
implemented in CPM [10, 33, 34]. To study the robustness of
collective cell migration to heterogeneity and fluctuations among
cells, as well as test alternative model assumptions for a specific
interaction mechanism, we will here consider the guidance-by-
followers mechanism that coordinates two cell populations in
the biological context of the early development in zebrafish, see
Figure 1.

Here, our recently developed stochastic and spatially resolved
IBM of polster and axial cell interactions, which is constructed
based on CPM and accessible under MorpheusModelID:M0006
(https://identifiers.org/morpheus/M0006) in its previously
published implementation [20], is tested against various
perturbations. In both cell types, the number of cells, cell
sizes, and therefore contact chances are varied; motility parameters
of individual cells are considered heterogeneous, drawn from
distributions, and are considered temporally fluctuating. In
such simulations, polster cells are exposed to multiple follower
contacts at the same time and need to integrate these multiple
stimuli, see Figure 1D. How does the integration of potentially
conflicting guidance information coming from different followers
affect individual cell movement and could it lead to disruption
of collective cell migration? Therefore, we extend this IBM by a
processing step of the vectorial guidance stimuli and compare
model predictions obtained for three variants of the guidance-
by-followers mechanism, (1) the arithmetic mean of stimuli, (2)
the dominance of stimulus with the largest transmission interface,
and (3) the dominance of most head-on stimulus. Simulations are
carried out and quantified within the modeling and simulation
framework Morpheus [32]. Statistics over many repetitions of
these stochastic simulations are evaluated. Overall, collective cell
migration from guidance-by-followers is found to be robust and
quantitatively identical for all considered variants of stimulus
integration, corroborating earlier analysis. Moreover, this study
highlights the role of individual-based modeling approaches for

understanding collective phenomena at the population scale that
emerge from spatially resolved cell-cell interactions.

2. Materials and methods

2.1. Morpheus modeling framework

We chose to implement the guidance-by-followers mechanism
as a CPM in the modeling framework Morpheus [32]. Morpheus is
an extensible open-source software framework that supports user-
friendly declarative modeling. It offers a graphical user interface
(GUI) and the domain-specific modeling language MorpheusML
to easily compose and extend multicellular models. MorpheusML
provides a bio-mathematical language in which symbolic identifiers
in mathematical expressions describe the dynamics of and coupling
between the various model components. It represents the spatial
and mechanical aspects of interacting cells in terms of the
CPM formalism and follows the software design rule of the
separation of model from implementation, enabling model sharing,
versioning, and archiving in public model repositories. A numerical
simulation is then composed of parsing the MorpheusML model
definition and automatic scheduling of predefined components
in the simulator. Beyond its use in Morpheus, MorpheusML
is a model definition standard that enables interoperability
among multiple simulators, parameter estimation pipelines, and
model repositories [35]. Therefore, the FitMultiCell toolbox
(see https://gitlab.com/fitmulticell/fit) supports the estimation of
parameters for stochastic Morpheus models [36, 37].

2.2. Cellular Potts model formalism

Our CPM Hamiltonian is composed of three main energy
contributions: a contact energy, that applies to neighboring lattice
sites of different cells σ , and a perimeter and a volume conservation
constraint, that apply to all cells. Temporal evolution is sampled by
introducing sequentially hypothetical updates (local spin flips) in
a random manner. Based on the change of the Hamiltonian 1H,
these updates are either accepted or rejected (Metropolis kinetics as
defined in Equation 3).

H =
∑

〈i,j〉 neighbors,
σ (i) 6=σ (j)

Jσ (i),σ (j)+
∑

σ cells

λP(Pσ −P0)
2+

∑

σ cells

λA(Aσ −A0)
2

(1)
Here, Aσ is the cell’s area, Pσ is the cell’s perimeter, A0 is the

target area, P0 is the target perimeter, and Jσ1 ,σ2 is the contact energy
between cells σ1 and σ2.

In order to introduce active cell motion, the 1H is altered by
adding a term favoring updates that displace a cell into its preferred
direction Eθσ [33].

1H′ = 1H −
∑

σ cells

λ1(Eθσ · δ ECσ ) (2)
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TABLE 1 Model parameters with values estimated by Boutillon et al. [20].

Parameter Symbol Value Unit

Target cell area based on experimental measurements A0 326 µm2

Target cell perimeter P0
√
4πA0 µm

Fluctuation strength kT 1 1

Contact energy cell-medium Jcell-medium 0 1

Contact energy cell-cell Jcell-cell 0 1

Contact energy cell-confinement Jcell-conf. 20 1

Contact energy medium-confinement Jmedium-conf. 0 1

The strength of cell area constraint λA 1 1

The strength of cell perimeter constraint λP 1 1

The motion strength of polster cells fitted to single cell data λ1 0.5 1

The mean run time of polster cells fitted to single cell data T1 1.9 min

The maximum angle fitted to collective behavior αmax
π

6 1

Both, axial and polster cells, are subsumed in “cell” and are given identical contact energies. The positive contact energy, Jcell-conf. = 20, represents slight repulsion of cells from the lateral

confinement.

Here, Eθσ is the cell’s orientation, δ ECσ is the cell’s center
displacement due to the update, and λ1 is the motility strength.

The effective acceptance probability p now depends on 1H′.

p =







1 if ∆H′
< 0

e−
∆H′
kT if ∆H′ ≥ 0.

(3)

Our collective cell migration model is defined on a two-
dimensional hexagonal lattice with periodic boundary conditions
and a size of 500 × 1500 grid nodes. There are two static
obstacles on either side, leaving a channel of 200 nodes in the
middle for the cells to migrate. These obstacles are included to
mimic the observed lateral confinement, which is attributed to the
paraxial mesoderm, a tissue laterally lining the axial mesoderm
and the polster, see Figures 1A, B [38, 39]. Each grid interval
in the simulation represents 1 µm of space, and each time step
represents 1 min. The Monte Carlo step (MCS) duration is set
to 0.1min, corresponding to 10 MCS per model time step and
allowing for thousands of potential updates per lattice node over
the simulated time period. The shape of the cells in the simulations
is controlled using a target area of 326 µm2, which is an average
of 360 experimental measurements on 30 different polster cells
[20]. Cell sizes in the experiment are not significantly different
between polster and axial cells (Wilcoxon test p = 0.25). The target
circumference is taken from that of a circle with the chosen target
area, giving preference to compact cell shapes. Both volume and
surface constraints are included in the Hamiltonian with Lagrange
multipliers of λP = λA = 1, see Equation (1). In addition, the
posterior axial mesoderm cells (which are depicted as yellow in the
simulations) display a directed motion oriented toward the animal
pole (up). The speed of this motion can be adjusted by varying
the strength λ1 of the “DirectedMotion” in the Hamiltonian in
Equation (2).

2.3. Guidance-by-followers model

To characterize the cell-autonomous behavior of polster
cells (without guidance-by-followers), wild-type polster cells were
transplanted to the animal pole of wild-type embryos, and
the migration of isolated cells was tracked [20]. The tracks
showed alternating phases of relatively straight migration and
phases of slowed and poorly directed movement, indicating that
mesendodermal cells exhibit run-and-tumble motion in agreement
with earlier observations [21]. To model this behavior, we
implemented a run-and-tumble motility with a uniform probability
of reorienting (tumble) the target direction angle. In our two-
dimensional lattice, the cell’s orientation vector Eθσ in Equation (2)
is taken as the planar unit vector and hence, we directly updated its
angle. Second, we use a scaling factor “run_duration_adjustment”
for the probabilistic waiting times for reorientation (tumble)
events, which are distributed according to a gamma distribution.
Third, the adjustable Lagrange multiplier λ1 scales up the motion
speed in Equation (2). The values of the scaling factor and the
Lagrange multiplier were obtained via parameter estimation using
experimental data of single-cell trajectories [20] as shown in
Table 1.

In the model and besides the run-and-tumble motion, the
mechanical orientation of polster cells can be simulated using the
“PyMapper” plugin of Morpheus as described below. For each
cell, at fixed time steps of 1min, the neighbors are detected on
50 membrane points of a “MembraneProperty” data structure
(50 angular sectors) and using the “NeighborhoodReporter” in
Morpheus. Each cell may possess such a “MembraneProperty”,
which can be addressed in polar coordinates, that is automatically
mapped onto the membrane of the cell and moved and deformed
along with the changes of cell shape, and allows to execute
dynamical models involving multiple “MembraneProperties”, as
well as coupling to other cell properties. The dynamical model
along the membrane may comprise algebraic rules, ordinary
differential equations (ODEs) or partial differential equations
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(PDEs). An example of an activator-substrate-depletion pattern
formation (two coupled PDEs) on the membrane of a moving
cell is accessible from the Morpheus GUI under the menu
item “Examples → Multiscale → CellPolarity.xml” and in
the public model repository under MorpheusModelID:M0035
(https://identifiers.org/morpheus/M0035). Instead of PDEs, we
will use here rule-based logic to integrate multiple potentially
conflicting stimuli.

To implement guidance-by-followers, four scalar
“MembraneProperties” store the x- and y-components of the
position vector of the cell centroid and the velocity vector of each
neighbor contact of a considered cell. Next, a direction vector
toward the current cell is calculated for each neighbor from
the pair of centroids of the cell. Finally, the angle between the
velocity vector and the direction toward the current cell is then
calculated for each neighbor. If this angle is below a threshold
called “max_angle” (indicating that the neighbor is moving toward
the current cell), then the velocity vector of the neighbor is used to
update the direction of the considered cell in the “DirectedMotion”
plugin, see Figure 2A.

For tissue-scale simulations, a population of 400 cells is
initialized and is given 20min to settle and adjust their shapes
and packing. Once this initial phase is over, two events are
triggered by which the cells are assigned an identity based on
their position along the anteroposterior (top-down) axis, and the
appropriate motility characteristics are applied to them. Unless
stated otherwise, we choose to split the population in a position
such that one-third becomes polster and two-thirds become axial
cells (see Figure 3 left). In the embryo, this cell number ratio is
higher (with an order of five times more axial cells than polster
cells) but this ratio also changes over time as the axis elongates.
Our choice of axial to polster cell numbers of 2:1 is a compromise
between a faster simulation runtime at a lower cell number and
the observed insensitivity of model behavior to further added axial
cells, i.e., saturation of a metric above a ratio of 2 as confirmed
post hoc in Figure 8. The initial split of the overall cell population
into two cell types establishes a front between polster and axial
cells, and we will monitor the speed by which this front advances
by measuring the average displacement of the first axial cell. The
direction in which the front advances will be referred to as forward.
Only polster cells can react to guidance-by-followers but both
polster cells and axial cells can elicit this reaction in polster cells,
as shown in Figure 1D and described by Boutillon et al. [20].

2.4. Model extensions for integrating
multiple guidance signals

If there are multiple neighbor cells moving toward the
considered cell, then an additional rule for integrating potentially
multiple guidance-by-follower signals is needed, see Figure 2. To
investigate the impact of such signal integration, we here consider
and compare four hypothetical signal processing models. In the
model implementation, this can be chosen by setting the constant
“pushing_mode” to 0–3. The four signal processing models are
defined as follows and are illustrated in Figure 2.

- Model 0 ignores the guidance-by-followers interaction and
serves as a quantifiable baseline where cells will collide and
squeeze past each other due to steric interactions.

- Model 1 sets the cell velocity to the arithmetic mean of
neighbors’ velocity vectors which fall within a max_angle
sector, with the length of each cell-cell contact serving as the
weighting factor.

- Model 2 sets the cell velocity to that of the neighbor which
has the largest contact length given that its velocity vector
falls within the “max_angle” sector around the contact vector,
ignoring other candidates. If the largest contact does not
fulfill the “max_angle” sector criterion because it strikes more
tangential, then the next smaller contact is evaluated.

- Model 3 sets the cell velocity to that of the neighbor with the
best aligned velocity vector, i.e., the smallest angle between
velocity and contact vectors, ignoring other candidates.

These hypotheses serve as abstractions of the microscopic
biochemical and biophysical mechanisms. They yield distinct
behaviors for the test configuration in Figure 2, see also
Supplementary Movie 1. The Morpheus model generated during
this study was deposited in the public model repository under
MorpheusModelID:M0008 (https://identifiers.org/morpheus/
M0008).

2.5. Perturbation experiments

The key model parameters and values as estimated by Boutillon
et al. [20] are shown in Figure 8. Experimental data used for
Figure 8 also come from Boutillon et al.’s study [20]. In control
situations, where embryos were unmanipulated, we did not have
access to the exact number of axial cells since this tissue is
long and was partly out of the field of view in the movies used
for quantification. As a result, in Figure 8, we arbitrarily set the
axial vs. polster cell ratio to 5. To decrease this ratio, we used
two different experimental approaches: 3D-constrained deep laser
ablations and microsurgery [20, 40], see Figure 8. Laser ablation
was used to destroy two rows of cells either at the interface
between polster and axial cells (interface ablation) or further
away from the polster (posterior ablation), leaving, respectively,
no axial cell or some axial cells behind the polster. Microsurgery
through aspiration by a micro needle was used to remove the
posterior-most part of the axis, only leaving some axial cells
behind the polster. In conditions where only a fraction of axial
cells were left behind the polster, we could have access to their
exact number and then compute a precise ratio of axial/polster
cell number.

3. Results

3.1. Models of guidance-by-followers are
robust to multiple conflicting stimuli

First, we demonstrate that multiple cells can collide
simultaneously and that the direction signal is robustly transmitted
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FIGURE 2

A schematic representation of cell-cell interactions upon contact. (A) Three cells, here of di�erent sizes, move as indicated by their velocity vectors

(left). Upon contact (right), sectors up to the angle αmax around each velocity vector indicate whether guidance is exerted (when the direction to the

cell’s center of mass falls within, yellow) or not (gray). (B) Four cell-cell interaction models and their resulting velocity vectors (black unchanged, red

changed upon contact): Model 0 is considered as a baseline without velocity changes upon contact. Model 1 yields the mean of the impact

velocities, weighted by cell-cell contact length. Model 2 yields the velocity vector of the impact with the largest cell-cell contact length. Model 3

yields the velocity vector of the impact that is oriented closest to the cell center. The sketches represent snapshots from such model simulations with

just three polster cells. Full simulation time courses are shown in Supplementary Movie 1.

FIGURE 3

Snapshots of a simulation without the guidance-by-follower mechanism (model 0) and of three di�erent realizations of the guidance-by-follower

mechanism (models 1–3) at simulation times 20, 320, and 620 min. Cells are color-coded based on their identity, source of the velocity vector, and

alignment. Yellow: Axial cells with motility as indicated by the yellow arrow on the left. Leading axial cells define the front speed. Light green: Polster

cells guided by follower cells such that their orientation points to the same quadrant as the axial front velocity. Orange: Polster cells guided by

follower cells away from the quadrant of the axial front velocity. Dark green: Polster cells with orientation into the same quadrant as the axial front

velocity by chance due to run-and-tumble motion. Red: Polster cells with run-and-tumble motion away from the quadrant of the axial front velocity.

Visually, all three coupling mechanisms in models 1–3 yield very similar results as opposed to model 0. Simulation time courses are shown in

Supplementary Movie 2.

from axial cells to polster cells and among polster cells for
models 1–3, as shown in Figure 3 and Supplementary Movie 2.
Qualitatively, snapshots of the simulations already suggest that all
three coupling models 1–3 yield very similar results as opposed
to the baseline model 0 that just possesses steric interactions.
To analyze this in detail, we have varied the motion strength of
axial cells between zero and the nominal value (Table 1) in five
increments and ran 100 repetitions per parameter combination.
For each run, we have quantified the angular coherence of polster
cell orientation, which is defined as fraction of polster cells moving
in the forward quadrant (±45◦ around the vertical front velocity
of axial cells), and the speed of the axial cell front, which is
defined by the anterior-most axial cell, as shown in Figure 4. The
dependency of these two observables can be compared to our

previously published experimental data from Boutillon et al.’s
study [20]. For the experimental data points and for the simulation
data, a linear regression was calculated, as shown in Table 2, and
plotted along with the prediction error (68% interval) in Figure 4.
The differences between the coupling models 1-3 were found to
be negligible compared to the baseline model 0. Within error
margins, all three coupling models can explain the experimental
data equally well (Figure 4). Individual data points of all simulation
runs are shown in Supplementary Figure 1. Changing the system
geometry to wider channels and maintaining the same cell density
shows the same behavior. If a much narrower channel is studied,
then boundary effects at the channel walls affect the behavior
(starting at half the channel width that is used in all simulations
shown here).
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FIGURE 4

Quantification of angular coherence between guided and follower

cells. All three coupling mechanisms yield very similar results and,

considering the error margins, can explain the experimental data as

opposed to Model 0 without guidance-by-followers. Lines show

linear regression of the data and shaded bands are the 68 % intervals

of the prediction error. Individual data points of all simulation runs

are shown in Supplementary Figure 1.

3.2. Models of guidance-by-followers are
robust to variability in cell size

Since cell shape and cell size determine the arrangement
of cell-cell interfaces and thereby may modulate guidance-by-
followers signal transmission, we measured cell size variability in
the experiment and then tested it in model simulations. We found
that polster cells have an average area of 326 µm2 with an SD
of 81 µm2 while axial cells have an average area of 349 µm2 and
an SD of 113 µm2 (n = 30 and 22 cells, respectively), without a
significant difference between the two cell populations (Wilcoxon
test p = 0.25).

If cell sizes are no longer equal in the model, but distributed
uniformly across a range Ai

0 ∈ [0.1 · A0, 1.9 · A0] for both cell
types symmetrically around the originally identical cell area A0 and
thereby even more variable than experimentally measured, then
practically no deviation from the original behavior is observed (cf.
Figures 4, 5). This shows that the collective cell migration behavior
is very robust against variability and changes in cell size.

3.3. Models of guidance-by-followers are
robust to random cell motility parameters

For a uniform distribution of the polster cells’ individual
motility strength parameter λ

i
1 ∈ [0.5 · λ1, 1.5 · λ1] symmetrically

around the former strength parameter λ1, no significant difference
was observed (Figure 6A). This shows that the mechanism is very
robust against variation in the polster cells’ motility. As each
polster cell can, when not guided, perform an individual run-
and-tumble motion with gamma-distributed run duration and
uniformly random orientation reset at tumble events, we also let the

individual motility strength parameter λ
i
1 be drawn from a uniform

distribution on the interval [0.5 · λ1, 1.5 · λ1] at gamma-distributed
time points. However, no significant changes in cell movements
could be found (cf. Figure 6B).

3.4. Models of guidance-by-followers are
robust to variations in cell numbers

In order to test whether the coupling mechanisms are sensitive
to the ratio of cell numbers, simulations with ratios between axial
and polster cells of 5:1 and 1:5 were conducted for the same
total number of 400 cells (Figure 7 and Table 2). In the case of
5:1 with abundant axial cells, the number of additional axial cells
behind the front has no additional effect, and the front movement
is unchanged (Figure 7A) compared to the above cases with a
2:1 ratio because only the axial cells near the front can exert
their orienting effect on polster cells. In the case of 1:5 with
few axial cells, simulations show increasing disorder of the front
movement between axial and polster cells (Figure 7B). Movies of
the simulations reveal that the abundant polster cells invade the
group of axial cells and cause the disorder, thus disturbing the
collective effect of guidance-by-followers. Simulation results for a
systematic scan over cell number ratios with a constant total cell
number of 400 and a fixed front speed of 2 µm/min are shown in
Supplementary Figure 2. A range of slightly fewer axial cells than
polster cells is identified where model behaviors are distinguishable
as model 1 (with averaging over multiple stimuli) maintains higher
order than models 2 and 3. The same effect is evident in Figure 7B
at high front speed.

3.5. Models of guidance-by-followers
predict the outcome of variation in cell
number ratio

Among the above results, predictions by the model variants
only differed for the changed cell number ratio in Figure 7B. To
further focus on that interesting parameter range, we have fixed
the axial motion strength parameter such that a front speed of
2 µm/min is maintained since then the differences were visible as
shown in Figure 7B. We then generated model predictions by each
model variant for different numbers of axial cells while keeping
the number of polster cells fixed at 150. These model predictions
are shown in Figure 8A as colored lines connecting simulated data
points with mean and 1 SD as a function of the axial/polster cell
number ratio. The data points at a cell number ratio of 2 correspond
to the reference parameter set shown in Figure 4. The fraction of
forward moving polster cells has already saturated at around 80%
and does not increase further when adding more axial cells in
the simulations.

In contrast, when reducing the number of axial cells and
thereby the axial/polster cell number ratio below 2, then the
collective behavior breaks down to different degrees in the model
variants before all models converge to isotropic random behavior
(25% in the forward quarter) in the absence of any guidance and at
zero axial cell number. The significant differences between model
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TABLE 2 The summary of simulation results compared to the experimental data by Boutillon et al. [20].

Study, Figure Model Slope O�set Std

Experimental data, Figure 4 17.34 46.75 13.69

Original parameter values, Figure 4 0 3.89 28.99 4.70

1 27.35 28.53 6.56

2 27.39 27.58 6.27

3 27.14 28.52 6.30

Random cell volume, Figure 5 0 3.47 29.70 4.85

1 27.16 29.04 6.42

2 27.04 28.32 6.58

3 27.20 28.51 6.41

Random motion strength, Figure 6A 0 3.85 29.20 4.87

1 26.03 30.25 6.86

2 26.42 28.69 6.96

3 26.32 29.27 6.81

Time-varying motion strength, Figure 6B 0 4.08 29.38 4.67

1 27.79 28.09 6.57

2 26.85 28.02 5.89

3 27.44 27.18 6.41

Axial-polster cell ratio 5:1, Figure 7A 0 5.53 27.49 6.37

1 24.73 30.52 7.51

2 23.87 31.00 8.09

3 24.58 29.33 7.86

Axial-polster cell ratio 1:5, Figure 7B 0 1.44 27.37 2.95

1 19.84 27.01 7.89

2 13.75 28.16 7.04

3 14.03 29.87 6.97

Each simulation study (figure) comprises 100 runs for each of five different parameter values of axial cell motion strength. Front speed and fraction of forward moving cells were quantified for

each run, and the linear regression coefficients reported in this table were calculated from the 500 data points per model and simulation study.

behaviors occur at a cell number ratio of 0.5 (half as many axial cells
as polster cells). There, model 1 shows higher order (mean of 75%
forward moving polster cells, likely due to its averaging mechanism
incorporating more information from more cells) than model 2,
(62%) while model 3 shows intermediate order (68%), and model
0 shows unordered behavior (30%).

Testing these differing model predictions in experiments
requires techniques to perturb the normal axial cell number in
zebrafish embryos. As part of previous experiments described by
Boutillon et al. [20], three such perturbation techniques had been
applied, as shown in Figure 8B: (i) deep 3D laser ablation severing
the embryonic axis between polster and axial cells (interface
ablation), (ii) deep 3D laser ablation more posteriorly, in the
axial mesoderm (posterior ablation), and (iii) microsurgery, by
aspiration with a microneedle, of the posterior-most part of
the axial mesoderm. Overall, 27 perturbation samples (9 per
perturbation technique) and 10 unperturbed control samples for
comparison have been quantified regarding their axial/polster cell
number ratio and the forward fraction of polster cells. The cell

number ratio in control samples is difficult to quantify as the
microscope field did not cover the whole axis, therefore all control
samples are represented by an estimated ratio of 5.

While the experimental data scatter (partly due to wound
healing responses after a perturbation) approximately as much
as the observed differences in model behavior and cannot rule
out individual model variants yet, the experimental data generally
confirm the rather steep loss of collective order in models 1-3 when
the cell number ratio drops below 2. It is to be noted that there is no
free model parameter to adjust in this perturbation scenario. When
side effects of the perturbation techniques could be reduced, then
such refined experiments may discriminate and be selected among
the model variants.

4. Discussion

The robustness of collective cell migration to variation is a
classic question that falls within the broader framework of the
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FIGURE 5

(A) Uniformly distributed cell areas Ai
0 ∈ [0.1 · A0, 1.9 · A0] do not disturb the guidance-by-follower mechanism. (B) Typical snapshot at time 320 MCS,

model 2, illustrating the imposed cell size variability. Cells are color-coded based on their identity, source of the velocity vector, and alignment (cf.

Figure 3).

FIGURE 6

Uniformly distributed, static (A) and randomly time-varying (B) motility strengths for polster cells λ
i
1 ∈ [0.5 · λ1, 1.5 · λ1] causes no significant changes

in the simulations.

robustness of developmental processes. Recently, we described a
novel mechanism responsible for the collective guidance of polster
cells and cohesion of the embryonic axis during gastrulation in
zebrafish [20]. The molecular details of guidance-by-followers
are still not fully understood and, in particular, it is not clear
how a cell integrates input from different neighbors. Here, we
proposed different rule-based models with specific modalities of
neighbor information integration by polster cells. We found that
each of these models can to recapitulate robust guidance of polster
cells by the axial mesoderm, suggesting that the guidance-by-
followers process is robust to variation in cellular mechanisms.
Although these results cannot indicate one solution that is closer

to observations than another, we can at least support the idea
that different modalities of how cells integrate information from
multiple neighbors still allow guidance-by-followers to guide the
migration of a group of cells.

We then tested the robustness of these different models to
variations in cell properties or initial situations. First, we tested
whether the ratio between the number of polster and axial cells
affects collective guidance by running simulations with different
ratios. We observed that, for each type of the model, a large excess
of polster cells leads to a disruption of collective guidance. In this
case, the guidance cue and the collective behavior in the polster are
not sufficient to overcome the noise of individual cell behaviors.
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FIGURE 7

Axial cell to polster cell ratio of 5:1 (A) and 1:5 (B). A high polster cell fraction leads to less ordered front cell movement. Simulation results for a

systematic scan over cell number ratios with a constant total cell number of 400 are shown in Supplementary Figure 2.

FIGURE 8

(A) E�ect of changes in axial/polster cell number ratio on model predictions (colored lines connecting simulated data points with mean and 1 SD)

and in perturbation experiments [black symbols in (A) and insets in (B)]. The cell number ratio in control samples is di�cult to quantify as the

microscope field did not cover the whole axis, therefore all control samples are represented by an estimated ratio of 5. In simulations, polster cell

number is kept constant at 150, and the axial cell number is changed. Complementary simulation results with a constant total cell number of 400 are

shown in Supplementary Figure 2. (B) The schematics of the experimental perturbations of the axial cell number and the cell number ratio: a lateral

view of a zebrafish embryo during gastrulation, at 60% epiboly stage. Tissues are color coded as in Figure 1. Red rectangle corresponds to the

location of deep 3D laser ablation severing the embryonic axis between polster and axial cells (interface ablation) or more posteriorly, in the axial

mesoderm (posterior ablation). Microsurgery corresponds to the aspiration using a microneedle, of the posterior-most part of the axial mesoderm.

This result is particularly interesting as it suggests that there is
a critical ratio threshold below which collective guidance is not
possible, which is consistent with other studies reporting such a
threshold for proper collective guidance [41, 42].

Cell shape and size are also known to be critical factors in
collective cell migration. In a confluent monolayer, regions of
small cells and high density exhibit disordered movement, mainly
due to steric interactions [43, 44]. Some studies also suggest that
the intensity of juxtacrine signaling between cells is regulated by
the cell-cell contact area [45, 46]. Thus, cell size may affect both
contact-mediated guidance-by-follower signaling and cell mobility

in a dense group. We tested the effect of cell size on the collective
guidance of the polster by introducing cell-to-cell variability. We
observed that in the three models, the system is robust enough to
cope with heterogeneity in cell size. Interestingly, this observation
contradicts the only study that we are aware of on the effect of
cell size during gastrulation in zebrafish [47]. By manipulating
ploidy, the authors created embryos with larger or smaller cells and
observed mild gastrulation defects. In particular, they generated
chimeric embryos with larger or smaller cells placed in WT
embryos and observed that the abnormally sized cells displayed
fast but less directed migration. However, this study does not focus
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on axial cells and it is not clear which cell population has been
observed. Furthermore, it appeared that changing the size of a
cell affected its cortical dynamics and thus its cell-autonomous
migratory properties, whereas, in our proposed model, we assumed
that apart from the variation in cell size, the rest of the cell
properties were kept constant. Nevertheless, it would be interesting
to test the prediction of this model by introducing larger and
smaller cells in the axial mesoderm and measuring the effect on
collective cell guidance.

Furthermore, we tested the robustness of the different models
to variations in individual cell migration properties by varying
how straight and fast polster cells tend to move during a run
phase. Both heterogeneously distributed individual persistence
and temporal variations resulted in correct guidance of the cells,
suggesting that this phenomenon is robust to differences in
individual cell migration properties. This observation is particularly
interesting as it suggests that even in the case where individual
polster cells are particularly poorly persistent, once they are set in
motion by guidance-by-followers, they exhibit collective oriented
behavior. Such a phenomenon would ensure the robustness of
axis development even in the case where the intrinsic guidance
of polster cells is perturbed. Some molecular players are known
to control cell migration persistence, such as Arpin or the
CYFIP1/2 ratio in the WAVE complex [48, 49]. It would
therefore be interesting to experimentally test whether local or
global variations of individual polster cell persistence are buffered
by guidance-by-followers.

In most simulations, although we observe remarkable
robustness of the model to parameter variation (except for an
extreme cell number ratio), the slope of the oriented fraction as a
function of axial mesoderm speed is always higher for simulated
cells compared to the experimental data. Since the individual
migration behavior of cells is well-reproduced by this model, this
observation suggests that some biological properties of the embryo
are not fully recapitulated by this basic model.

Typically, under experimental conditions, the cell number ratio
between the polster and the posterior axial mesoderm cannot
be precisely measured: first, because of constraints on imaging;
second, because this ratio changes over time, as new cells internalize
and are added to the posterior axial mesoderm, see Figures 1A, B.
This ratio could only be measured in situations where the posterior
axial mesoderm was experimentally severed, leaving only a fixed
fraction of it behind the polster, see Figure 8. Furthermore, the
model approximates the movement of axial cells as a directed
migration, while the behavior of this tissue is likely more complex,
including convergence and extension movements. Hence, only a
fraction of the posterior axial mesoderm actually has a forward
(i.e., “animal-ward”, see Figure 1) movement, thus hampering the
evaluation of this cell ratio in the embryo. This might be the
reason for a slope closer to the experiment for a high polster to
axial cell ratio (5:1). Another difference is that both the tissues in
the embryo are multi-layered (3–4 cells thick) and migrate on a
curved surface, while they are simulated in two dimensions on a
flat surface, see Figure 1. Finally, the current version of the model
does not take into account adhesion, allowing cells to freely attach
and detach, although biological cells actually rely on adhesion to
migrate and interact. In model 0, simulated axial cells and polster
cells largely interpenetrate (see Figure 3), while the possibility of
interpenetration of the two tissues is much less obvious in the

embryo [20]. This could explain the difference in vertical intercept
between the model and the experimental data. Indeed, modeled
polster cells in the absence of guidance (low front speed) are free to
move in every direction, and thus 25% of them happen to be in the
forward quadrant. Actual polster cells, however, likely experience
an easier path forward, where the edge is free than backward and
the movement might be obstructed by (static) the posterior axial
mesoderm. This could explain the experimental forward fraction of
45% for a null front speed.

It is however interesting and surprising to note that such a
simple set of rules can quasi-quantitatively predict polster behavior
and is so robust to many variations. In addition, in this study,
we observed the robustness of the model to variations of a single
parameter. In future, it would be interesting to perturb several
parameters together to further test the robustness of the model.

Similarly, we here proposed three models differing only in
the mode of integration of multiple stimuli and compared them
by varying cell properties, especially more implementations of
guidance-by-followers could be considered. Typically, cells being
biological objects, there is likely a delay between the detection
of the signal, the modification of cell polarity, and the ability
to detect another signal. Models could thus be tested by varying
the time between the detection of two signals or reaction time
after receiving input. Other interesting results could be obtained
by changing the nature of the model, for example, by adding
a stabilization of cell movement by contact as it has already
been observed in some studies [50]. Naturally, such modifications
of the model would call for more experimental observations to
be validated.

Finally, from a modeling perspective, this study highlights
the role of individual-based approaches for understanding the
collective phenomena at the population scale that emerges from
cell-cell interactions. Here, we have specifically assessed the
robustness of our developed IBM to variations in modeling
assumptions and to cell-to-cell variations. From a data
management perspective, we ensure the reproducibility of
this computational study and the reusability and extensibility
of the developed IBM by the strict separation of model
definition from simulator code using the MorpheusML
model description language [35] and a public model repository
(https://morpheus.gitlab.io/model).
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