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We propose a novel framework for the regularized inversion of deep neural

networks. The framework is based on the authors’ recent work on training

feed-forward neural networks without the di�erentiation of activation functions.

The framework lifts the parameter space into a higher dimensional space

by introducing auxiliary variables, and penalizes these variables with tailored

Bregman distances. We propose a family of variational regularizations based

on these Bregman distances, present theoretical results and support their

practical application with numerical examples. In particular, we present the first

convergence result (to the best of our knowledge) for the regularized inversion

of a single-layer perceptron that only assumes that the solution of the inverse

problem is in the range of the regularization operator, and that shows that the

regularized inverse provably converges to the true inverse if measurement errors

converge to zero.
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1. Introduction

Neural networks are computing systems that have revolutionized a wide range of

research domains over the past decade and outperformedmany traditional machine learning

approaches [cf. [1, 2]]. This performance often comes at the cost of interpretability (or

rather a lack thereof) of the outputs that a neural network produces for given inputs. As

a consequence, a lot of research has focused on understanding representations of neural

networks and on developing strategies to interpret these representations, predominantly

with saliency maps [3–6]. An alternative approach focuses on understanding deep

image representations by inverting them [7]. The authors propose a total-variation-based

variational optimization method that aims to infer the network input from the network

output with regularized inversion.

While the concept of inverting neural networks is certainly not new [cf. [8–11]], there

has been increasing interest in recent years largely due to developments in nonlinear

dimensionality reduction and generative modeling that include (but are not limited to)

(variational) Autoencoders [12], Normalizing Flows [13, 14], Cycle-Consistent Generative

Adversarial Networks [15], and Probabilistic Diffusion Models [16, 17].
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While several approaches for the inversion of neural networks

have been proposed especially in the context of generativemodeling

[see for example [18, 19] in the context of normalizing flows,

[20] in the context of generative adversarial networks, and [21] in

the context of probabilistic diffusion models] an important aspect,

which is often overlooked, is that invertible operations alone are

not automatically stable with respect to small variations in the

data. For example, computing the solution of the heat equation

after a fixed termination time is stable with respect to variations

in the initial condition, but estimating the initial condition from

the terminal condition of the heat equation is not stable with

respect to perturbations in the terminal condition. This issue

cannot be resolved without approximation of the inverse with a

family of continuous operators, also known as regularization. The

research field of Inverse and Ill-posed Problems and its branch

Regularization Theory focus strongly on the stable approximation

of ill-posed and ill-conditioned inverses via regularizations [22] and

so-called variational regularizations [23, 24] that are a special class

of (nonlinear) regularizations. The optimization model proposed

in [7] can be considered as a variational regularization method with

total variation regularization; however, the work inMahendran and

Vedaldi [7] is purely empirical, and to the best of our knowledge no

works exist that rigorously prove that the proposed approach is a

variational regularization.

In this work, we propose a novel regularization framework

based on lifting with tailored Bregman distances and prove that

the proposed framework is a convergent variational regularization

for the inverse problem of estimating the inputs from single-

layer perceptrons or the inverse problem of estimating hidden

variables in a multi-layer perceptron sequentially. While there has

been substantial work in previous years that focuses on utilizing

neural networks as nonlinear operators in variational regularization
methods [25–29], this is the first work that provides theoretical

guarantees for the stable, model-based inversion of neural networks
to the best of our knowledge.

Our contributions are three-fold. (1) We propose a novel

framework for the regularized inversion of multi-layer perceptrons,

respectively feed-forward neural networks, that is based on the
lifted Bregman framework recently proposed by the authors in
[30]. (2) We show that for the single-layer perceptron case,

the proposed variational regularization approach is a provably
convergent regularization under very mild assumptions. To our
knowledge, this is the first time that an inversion method has

been proposed that does not just allow to perform inversion

empirically, but for which we can prove that the proposed method

is a convergent regularization method without overly restrictive

assumptions such as differentiability of the activation function and

the presence of a tangential cone condition. (3) We propose a

proximal first-order optimization strategy to solve the proposed

variational regularization method and present several numerical

examples that support the effectiveness of the proposed model-

based regularization approach.

The paper is structured as follows. In Section 2, we introduce

the lifted Bregman formulation for the model-based inversion

of feed-forward neural networks. In Section 3, we prove that

for the single-layer perceptron case the proposed model is

a convergent variational regularization method and provide

general error estimates as well as error estimates for a concrete

example of a perceptron with ReLU activation function. In

Section 4, we discuss how to implement the proposed variational

regularization computationally for both the single-layer and multi-

layer perceptron setting with a generalization of the primal-dual

hybrid gradient method and coordinate descent. Subsequently, we

present numerical results that demonstrate empirically that the

proposed approach is a model-based regularization in Section 5,

before we conclude this work with a brief section on conclusions

and outlook in Section 6.

2. Model-based inversion of
feed-forward networks

Suppose we are given an L-layer feed-forward neural network

N :R
n × P → R

m of the form

N (x,2) = σL(f (σL−1(f (. . . σ1(f (x,21)) . . .)),2L)), (1)

for input data x ∈ R
n and pre-trained parameters 2 ∈ P . Here,

{σl}Ll=1 denotes the collection of nonlinear activation functions and

f denotes a generic function parameterized by parameters {2l}Ll=1.

For ease of notation, we use 2 to refer to all parameters {2l}Ll=1.

For a given network output y ∈ R
m, our goal is to solve the inverse

problem

N (x,2) = y (2)

for the unknown input x ∈ R
n. The problem (2) is usually ill-posed

in the sense that a solution may not exist (especially if n ≪ m)

or is not unique (especially if m ≪ n, or if information is lost

through application of nonlinear activation functions). Moreover,

even for a network with identity activation functions σl and affine

linear transformation f , solving (2) is often ill-conditioned in the

sense that errors in y get heavily amplified when solving for x. We

therefore, propose to approximate the inverse of this nonlinear,

potentially ill-posed inverse problem via the minimization of a

lifted Bregman formulation of the form













xα

xα
1
...

xα
L−1













∈ argmin
x,x1 ,...,xL−1

{

L
∑

l=1

B9l
(xl, f (xl−1,2l))+ αR(x)

}

, (3)

where we assume x0 = x and xL = yδ for simplicity of notation.

The data yδ is a perturbed version of y, for which we assume

B9L [y
δ , f (x†

L−1,2L)] ≤ δ2, for some constant δ ≥ 0 and y =
σL[f (x

†
L−1,2L)]. Please note that this approach is referred to as

“lifted” because the solution space is lifted to a higher dimensional

space that also includes auxiliary variables xα
l
for all intermediate

layers. The functions B9l
for l = 1, . . . , L are defined as

B9l
(x, z) =

1

2
‖x‖2 + 9l(x)+

(

1

2
‖ · ‖2 + 9l

)∗
(z)− 〈x, z〉 , (4)

for a proper, convex, and lower semi-continuous function

9l : R
nl → R ∪ {∞}. The notation

( 1
2‖ · ‖

2 + 9l

)∗
refers

to the convex or Fenchel conjugate of 1
2‖ · ‖2 + 9l, i.e.,

( 1
2‖ · ‖

2 + 9l

)∗
(z) = supy〈z, y〉 − 1

2‖y‖
2 − 9l(y). Last but not

least, the function R :R
n → R ∪ {∞} is a proper, convex, and
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lower semi-continuous function that enables us to incorporate a-

priori information into the inversion process. The impact of this is

controlled by the parameter α > 0.

Please note that the functions B9l
are directly connected to the

chosen activation functions {σl}Ll=1. Following [30], we observe

B9l
(x, z) ≥

1

2
‖σl(z)− x‖2 ,

where σl :R
nl → R

nl is the proximal map with respect to 9l, i.e.

σl(z) = argmin
y∈Rnl

{

1

2
‖y− z‖2 + 9l(y)

}

,

for all l ∈ {1, . . . , L}. This means that we will solely focus on feed-

forward neural networks with nonlinear activation functions that

are proximal maps.

The advantage of using functions B9l
over more conventional

functions such as the squared Euclidean norm of the difference of

the network output and the measured output, i.e., 1
2‖N (x,2) −

y‖2, is that the functions B9l
are continuously differentiable with

respect to their second argument [along with several other useful

properties, cf. [30], Theorem 10]. If we define Flx(z) : = B9l
(x, z),

we observe

∇Flx(z) = σl(z)− x . (5)

Please note that the family of objective functions B9l
satisfies

several other interesting properties; we refer the interested reader

to [30], Theorem 10.

For the remainder of this work, we assume that the

parameterized functions f are affine-linear in the first argument,

with parameters 2l. A concrete example is the affine-linear

transformation f (x,2l) = Wlx + bl, for a (weight) matrix Wl ∈
R
nl×nl−1 , a (bias) vector bl ∈ R

nl and the collection of parameters

2l = (Wl, bl).

In the next section, we show that (3) is a variational

regularization method for L = 1 and prove a convergence rate

with which the solution of (3) converges toward the true input of

a perceptron when δ converges to zero.

3. Convergence analysis and error
estimates

In this section, we show that the proposed model (3) is a

convergent variational regularization for the specific choice L = 1

and the assumption f (x,2) = Wx + b for 2 = (W, b), which

reduces (3) to a variational regularization model for the perceptron

case studied in Wang and Benning [31]. In contrast to Wang and

Benning [31] we are not interested in estimating the perceptron

parameters W and b but assume that these are fixed, and that we

study the regularization operator

Rα : dom(9) ⇉ R
n ,

Rα : y
δ
⇉ xα ∈ argmin

x∈Rn

{

B9

(

yδ ,Wx+ b
)

+ αR(x)
}

, (6)

where dom(9) is defined as dom(9) : = {y ∈ R
m |9(y) <

∞}. We first want to establish under which assumptions (6) is

well-defined for all yδ .

3.1. Well-definedness

For simplicity, we focus on the finite-dimensional setting with

network inputs in R
n and outputs in dom(9). However, the

following analysis also extends to more general Banach space

settings with additional assumptions on the operator W, see for

instance [24], Section 5.1. Following [24], we assume that R is non-

negative and the polar of a proper function, i.e., R = H∗ for a

proper function H :R
n → R ∪ {∞}. Note that this automatically

implies convexity of R. Moreover, we assume that 9 is a proper,

non-negative and convex function that is continuous on dom(9),

which implies that B9 is proper, non-negative, convex in its second

argument and continuous in its first argument for every yδ ∈
dom(9). Then, for every g ∈ dom(9) there exists x with

B9 (g,Wx+ b)+ αR(x) < ∞ .

Last but not least, we assume that R and 9 are chosen such that

for each g ∈ dom(9) and α > 0 we have

‖x‖ ≤ c(a, b, ‖g‖), if B9 (g,Wx+ b) ≤ a and αR(x) ≤ d ,

for constants a, d, and a constant c that depends monotonically

non-decreasing on all arguments. With these assumptions, we can

then verify the following lemma.

Theorem 1. Let the assumptions outlined in the previous

paragraph be satisfied.

1. Then, for every y ∈
{

g ∈ dom(9)
∣

∣

∣
argminx,∈Rn ,R(x)<∞

B9 (g,Wx+ b) 6= ∅
}

the selection operator

S(y) = argmin
x∈Rn

{

R(x)

∣

∣

∣

∣

∣

x ∈ argmin
x̃∈Rn

B9 (y,Wx̃+ b)

}

is well-defined.

2. The regularization operatorRα as defined in (3) is well-defined

in the sense that for every y ∈ dom(9) there exists xα ∈ R
n with

xα ∈ Rα(y). Moreover, the setRα(y) is a convex set.

3. For every sequence yn → y ∈ dom(9) there exists a

subsequence xnk ∈ Rα(ynk ) converging to an element x∗ ∈
Rα(y).

Proof. The results follow directly from [24], Lemma 5.5, Theorem

5.6, and Theorem 5.7. The latter statement originally only implies

convergence in the weak-star topology; however, since we are in a

finite-dimensional Hilbert space, this automatically implies strong

convergence here.

3.2. Error estimates

Having established that (3) is a regularization operator, we now

want to prove that it is also a convergent regularization operator in

the sense of the estimate

DR(x
†, xα) ≤ Cδ , (7)
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such that

lim
δ→0

sup
{

DR(x
†, xα)

∣

∣ xα ∈ Rα(y
δ), yδ ∈ dom(9),

B9 (yδ ,Wx† + b) ≤ δ2
}

= 0 .

Here, the term DR denotes the (generalized) Bregman distance

[or divergence, [cf. [32, 33]] with respect to R, i.e.,

DR(x, x̃) = R(x)− R(x̃)− 〈q̃, x− x̃〉 ,

for two arguments x, x̃ ∈ dom(R) and a subgradient q̃ ∈ ∂R(x̃) =
{q ∈ R

n |R(x) ≥ R(x̃) + 〈q, x − x̃〉, ∀ x ∈ dom(R)}. The
vector xα is a solution of (3) with data yδ for which we assume

B9 (yδ ,Wx† + b) ≤ δ2, and C ≥ 0 is a constant. The vector

x† is an element of the selection operator as specified in Lemma

1. 1, i.e., x† ∈ S(y) for y ∈ dom(9). Note that x† ∈ S(y) is

equivalent to x† being a R-minimizing vector amongst all vectors

that satisfy 0 = W∗ (

σ (Wx† + b)− y
)

, where σ denotes the

proximal map with respect to 9 . This is due to the fact that x† ∈
argminx̃∈Rn B9 (y,Wx̃+b) is equivalent to 0 = ∇B9 (y,Wx†+b) =
W∗ (

σ (Wx† + b)− y
)

. Assuming that σ (Wx† + b)− y does not lie

in the nullspace ofW∗, this further implies y = σ (Wx† + b).

In order to be able to derive error estimates of the form (7), we

restrict ourselves to solutions x† that are in the range of Rα . This

means that there exists y† such that x† ∈ Rα(y†). Considering the

optimality condition of (3) for y†, this implies

W∗
(

y† − σ (Wx† + b)

α

)

∈ ∂R(x†) ,

which for v†
: = (y† − σ (Wx† + b))/α = (y† − y)/α is equivalent

to the existence of a source condition element v† that satisfies the

source condition [cf. [22, 24]].

W∗v† ∈ ∂R(x†) , (SC)

In the following, we verify that the symmetric Bregman distance

with respect to R between a solution of the regularization operator

and the solution of the inverse problem is converging to zero if the

error in the data is converging to zero. The symmetric Bregman

distance or Jeffreys distance between two vectors x and x̃ simply is

the sum of two Bregman distances with interchanged arguments,

i.e.,

D
symm
R (x, x̃) : = DR(x, x̃)+ DR(x̃, x) = 〈x− x̃, q− q̃〉 ,

for q ∈ ∂R(x) and q̃ ∈ ∂R(x̃); hence, an error estimate in the

symmetric Bregman distance also implies an error estimate in the

classical Bregman distance.

Before we begin our analysis, we recall the concept of the

Jensen-Shannon divergence [34], which for general proper, convex

and lower semi-continuous functions F :Rn → R∪{∞} generalizes
to so-called Burbea-Rao divergences [35–37] and are defined as

follows.

Definition 1 (Burbea-Rao divergence). Suppose F :Rn → R∪{∞}
is a proper, convex and lower semi-continuous function. The

corresponding Burbea-Rao divergence is defined as

JF(x, x̃) : =
1

2

(

F(x)+ F(x̃)− 2F

(

x+ x̃

2

))

, (8)

for all x, x̃ ∈ dom(F).

Another important concept that we need in order to establish

error estimates is that of Fenchel conjugates [cf. [38]].

Definition 2 (Fenchel conjugate). The Fenchel (or convex)

conjugate F∗ :Rn → R ∪ {−∞,∞} of a function

F :Rn → R ∪ {−∞,+∞} is defined as

F∗(w) : = sup
x∈Rn

〈x,w〉 − F(x) .

The Fenchel conjugate that is of particular interest to us is

the conjugate of the function B9 (y, z) with respect to the second

argument, which we characterize with the following lemma.

Lemma 1. The Fenchel conjugate of Fy(z) : = B9 (y, z) with respect

to the second argument z reads

F∗y (w) =
(

1

2
‖ · ‖2 + 9

)

(y+ w)−
(

1

2
‖ · ‖2 + 9

)

(y) .

Proof. From the definition of the Fenchel conjugate we observe

F∗y (w) = sup
z∈Rm

〈z,w〉 − Fy(z)

= sup
z∈Rm

〈z,w〉 −
(

1

2
‖ · ‖2 + 9

)

(y)−
(

1

2
‖ · ‖2 + 9

)∗
(z)

+ 〈y, z〉

= −
(

1

2
‖ · ‖2 + 9

)

(y)+ sup
z∈Rm

〈z,w+ y〉

−
(

1

2
‖ · ‖2 + 9

)∗
(z)

= −
(

1

2
‖ · ‖2 + 9

)

(y)+
(

1

2
‖ · ‖2 + 9

)

(w+ y) ,

which concludes the proof.

Having defined the Burbea-Rao divergence and having

established the Fenchel conjugate of B9 (y, z) with respect to the

second argument z for fixed y, we can now present and verify our

main result that is motivated by [39].

Theorem 2. Suppose R and 9 satisfy the assumptions outlined in

Section 3.1. Then, for data yδ and x† that satisfy B9 (yδ ,Wx† +
b) ≤ δ2 with δ ≥ 0, a solution xα ∈ Rα(yδ) of the variational

regularization problem (3), and a solution x† of the perceptron

problem y = σ (Wx† + b) that satisfies x† ∈ S(y) and (SC), we

observe the error estimate

(1− c)B9 (yδ ,Wxα + b)+ αD
symm
R (xα , x

†)

≤ (1+ c)δ2 +
α2

c
‖v†‖2,+2cJ9

(

yδ +
α

c
v†, yδ −

α

c
v†

) (9)

for a constant c ∈ (0, 1].

Proof. Every solution xα that satisfies xα ∈ Rα(yδ) can equivalently

be characterized by the optimality condition

W∗ (

σ (Wxα + b)− yδ
)

+ αpα = 0 ,
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for any subgradient pα ∈ ∂R(xα). Subtracting p† ∈ ∂R(x†) from

both sides of the equation and taking a dual product with xα − x†

then yields

〈σ (Wxα + b)− yδ ,Wxα −Wx†〉 + αD
symm
R (xα , x

†)

= −α〈p†, xα − x†〉 . (10)

We easily verify

DB9 (yδ ,W·+b)(x
†, xα) = B9 (yδ ,Wx† + b)− B9 (yδ ,Wxα + b)

−〈σ (Wxα + b)− yδ ,Wx† −Wxα〉 ;

hence, we can replace 〈σ (Wxα + b) − yδ ,Wxα − Wx†〉 with

DB9 (yδ ,W·+b)(x
†, xα)+ B9 (yδ ,Wxα + b)− B9 (yδ ,Wx† + b) in (10)

to obtain

DB9 (yδ ,W·+b)(x
†, xα)+ B9 (yδ ,Wxα + b)+ αD

symm
R (xα , x

†)

= B9 (yδ ,Wx† + b)− α〈p†, xα − x†〉 .

We know 0 ≤ DB9 (yδ ,W·+b)(x
†, xα) due to the convexity of

B9 (yδ ,W · +b), and we also know that (SC) enables us to choose

p† = W∗v†. Hence, we can estimate

B9 (yδ ,Wxα + b)+ αD
symm
R (xα , x

†) ≤ B9 (yδ ,Wx† + b)

−α〈v†,Wxα −Wx†〉 .

Next, we introduce the constant c ∈ (0, 1] to split the

loss functions B9 (yδ ,Wxα + b) and B9 (yδ ,Wx† + b) into (1 −
c)B9 (yδ ,Wxα + b) + cB9 (yδ ,Wxα + b) and (1 + c)B9 (yδ ,Wx† +
b)− cB9 (yδ ,Wx† + b), respectively. This means we estimate

(1− c)B9 (yδ ,Wxα + b)+ αD
symm
R (xα , x

†)

≤ (1+ c)B9 (yδ ,Wx† + b)

+ 〈αv†,Wx† + b〉 − cB9 (yδ ,Wx† + b)

− 〈αv†,Wxα + b〉 − cB9 (yδ ,Wxα + b) .

Next, we make use of Lemma 1 to estimate

〈αv†,Wx† + b〉 − cB9 (yδ ,Wx† + b) ≤ c

((

1

2
‖ · ‖2 + 9

)

(

yδ +
α

c
v†

)

−
(

1

2
‖ · ‖2 + 9

)

(

yδ
)

)

,

and

−〈αv†,Wxα + b〉 − cB9 (yδ ,Wxα + b) ≤ c

((

1

2
‖ · ‖2 + 9

)

(

yδ −
α

c
v†

)

−
(

1

2
‖ · ‖2 + 9

)

(

yδ
)

)

.

Adding both estimates together yields

〈αv†,Wx† + b〉 − cB9 (yδ ,Wx† + b)− 〈αv†,Wxα + b〉
− cB9 (yδ ,Wxα + b) ,

≤
α2

c
‖v†‖2 + c

(

9

(

yδ +
α

c
v†

)

+ 9

(

yδ −
α

c
v†

)

− 29(yδ)
)

,

=
α2

c
‖v†‖2 + 2cJ9

(

yδ +
α

c
v†, yδ −

α

c
v†

)

,

which together with the error bound B9 (yδ ,Wx† + b) ≤ δ2

concludes the proof.

Remark 1. We want to emphasize that for continuous9 and c > 0

we automatically observe

lim
α→0

J9

(

yδ +
α

c
v†, yδ −

α

c
v†

)

= 0 ,

in which case the important question from an error estimate point-

of-view is if the term converges quicker to zero than α, as we would

need to guarantee limα→0 J9
(

yδ + α
c v

†, yδ − α
c v

†
)

/α = 0 in order

to guarantee that the symmetric Bregman distance in (9) converges

to zero for α → 0.

Example 1 (ReLU perceptron). Let us consider a concrete example

to demonstrate that (6) is a convergent regularization with respect

to the symmetric Bregman distance of R. We know that for

σ (z) = prox9 (z) = max(0, z) to hold true we have to choose

9(z) =
{

0 z ∈ [0,∞)m

∞ else
. This means that for B9 (yδ , z) to be

well-defined for any z we require yδ
i ≥ 0 for all i ∈ {1, . . . ,m}. In

order for the Burbea-Rao divergence to be well-defined, we further

require

−
c

α
yδ
i ≤ v†

i ≤
c

α
yδ
i ,

for all i ∈ {1, . . . ,m}, or ‖v†‖∞ ≤ (c‖yδ‖∞/α) in more compact

notation. If ‖v†‖∞ ≤ (c‖yδ‖∞/α) is guaranteed, we observe

J9
(

yδ + α
c v

†, yδ − α
c v

†
)

= 0. Hence, we can simplify the estimate

(9) to

1− c

α
B9 (yδ ,Wxα + b)+ D

symm
R (xα , x

†) ≤
1+ c

α
δ2 +

α

c
‖v†‖2 ,

where we have also divided by α on both sides of the inequality. If

we choose α(δ) =
√
c(1+ c)δ/‖v†‖, we obtain the estimate

(1− c)‖v†‖
δ
√
c(1+ c)

B9 (yδ ,Wxα(δ) + b)+ D
symm
R (xα(δ), x

†)

≤ 2

√

1+ c

c
‖v†‖δ ,

as long as we can ensure

∥

∥

∥

∥

v†

‖v†‖

∥

∥

∥

∥

∞
≤

√

c

1+ c

∥

∥

∥

∥

yδ

δ

∥

∥

∥

∥

∞
.

Together with D
symm
R (xα(δ), x

†) ≥ DR(x†, xα(δ)) we

have established an estimate of the form (7), with constant

C = 2
√

1+c
c ‖v†‖. Hence, we have verified that the variational

regularization method (3) is not only a regularization method but

even a convergent regularization method in this specific example.

We want to briefly comment on the extension of the

convergence analysis to the general case L > 1 with the following

remark.

Remark 2. The presented convergence analysis easily extends to a

sequential, layer-wise inversion approach. Suppose we have L layers

and begin with the final layer, then we can formulate the variational

problem

xα
L−1 ∈ argmin

xL−1

{

B9L (y
δ ,WLxL−1 + bL)+ αL−19L−1(xL−1)

}

,
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which is also of the form of (6), but where R has been replaced

with 9L−1. Alternatively, one can also replace 9L−1 with another

function RL−1 if good prior knowledge for the auxiliary variable

xL−1 exists. Once we have estimated xα
L−1, we can recursively

estimate

xα
l−1 ∈ argmin

xl−1

{

B9l
(xα

l ,Wlxl−1 + bl)+ αl−19l−1(xl−1)
}

,

for l = L − 1, . . . , 2 and subsequently compute xα as a solution of

(3) but with data xα
1 instead of yδ .

The advantage of such a sequential approach is that every

individual regularization problem is convex and the previously

presented theorems and guarantees still apply. The disadvantage is

that for this approach to work in theory, we require bounds for

every auxiliary variable of the form B9l
(xα

l
,Wlx

α
l−1 + bl) ≤ δ2

l
,

which is a rather unrealistic assumption. Moreover, it is also not

realistic to assume that good prior knowledge for the auxiliary

variables exist.

Please note that showing that the simultaneous approach (3) is

a (convergent) variational regularization is beyond the scope of this

work as it is harder and potentially requires additional assumptions

for the following reason. The overall objective function in (3) is

no longer guaranteed to be convex with respect to all variables

simultaneously, which means that we cannot simply carry over the

analysis of the single-layer to the multi-layer perceptron case.

Remark 3 (Infinite-dimensional setting). Please note that almost

all theoretical results presented in this section also apply to neural

networks that map functions between Banach spaces instead of

finite-dimensional vectors. The only result that changes is Theorem

1, Item 3, where the statement in an infinite-dimensional setting

only implies convergence in the weak-star topology.

This concludes the theoretical analysis of the perceptron

inversion model. In the following section, we focus on how to

implement (6) and its more general counterpart (3).

4. Implementation

In this section, we describe how to computationally implement

the proposed variational regularization for both the single-layer

and the multi-layer perceptron setting. More specifically, we show

that the proposed variational regularization can be efficiently

solved via a generalized primal-dual hybrid gradient method and

a coordinate descent approach.

4.1. Inverting perceptrons

To begin with, we first consider the example of inverting a

(single-layer) perceptron. For L = 1, Problem (3) reduces to (6),

which for a composite regularization function R ◦ K reads

xα ∈ argmin
x

{

B9

(

yδ , f (x,2)
)

+ αR(Kx)
}

. (11)

Here K is a matrix and αR(Kx) denotes the regularization

function acting on the argument x. The above Problem (11) can

be reformulated to the saddle-point problem

min
x

max
z

B9

(

yδ , f (x,2)
)

+ 〈z,Kx〉 − αR∗(z) , (12)

where R∗ denotes the convex conjugate of R. Computationally, we

can then solve the saddle-point problem with a generalized version

[40] of the popular primal-dual hybrid gradient (PDHG) method

[41–45]:

xk+1 = xk − τx

((

prox9

(

f (xk,2)
)

− yδ
)

J x
f (x

k,2)+ αK⊤zk
)

(13a)

zk+1 = proxτzR∗

(

zk + τzαK
(

2xk+1 − xk
))

. (13b)

where we alternate between a descent step in the x variable and

an ascent step in the dual variable z. Since (11) is a convex

minimization problem, (13) is guaranteed to converge globally for

arbitrary starting point, given that τx and τz are chosen such that

τxτz < 1/‖K‖2 and such that (13a) is contractive [check [40],

Theorem 5.1 for details].

In this work, we will focus on the discrete total variation

‖∇x‖p,1, [46, 47], as our regularization function R(Kx), but other

choices are certainly possible. If we consider a two-dimensional

scalar-valued image x ∈ R
H×W , we can define a finite forward

difference discretization of the gradient operator ∇ :R
H×W →

R
H×W×2 as

(∇x)i,j,1 =
{

xi+1,j − xi,j if 1 ≤ i < H,

0 else,
,

(∇x)i,j,2 =
{

xi,j+1 − xi,j if 1 ≤ j < W,

0 else.
.

The discrete total variation is defined as the ℓ1 norm of the

p-norm of the pixel-wise image gradients, i.e.

‖∇x‖p,1 =
H

∑

i=1

W
∑

j=1

| (∇x)i,j |p =
H

∑

i=1

W
∑

j=1

(

(∇x)
p
i,j,1 + (∇x)

p
i,j,2

)1/p
.

For our numerical results we consider the isotropic total

variation and consequently choose p = 2. Hence for a perceptron

with affine-linear transformation f (x,2) = Wx + b, and with

σ = prox9 denoting the activation function, the PDHG approach

(13) of solving the perceptron inversion problem (6) can be

summarized as

xk+1 = xk − τx

(

W⊤
(

σ (Wxk + b)− y
)

− αdivzk
)

, (14a)

zk+1 = proxτz‖·‖∗2,1

(

zk + τz

(

2α∇xk+1 − α∇xk
))

. (14b)

Please note that we define the discrete approximation of

the divergence div such that it satisfies div = −∇⊤ in order

to be the negative transpose of the discretized finite difference

approximation of the gradient in analogy to the continuous case,

which is why the sign in (14a) is flipped in comparison to (13a).

The proximal map with regards to the convex conjugate of ‖ · ‖∗2,1
is simply the argument itself if the maximum of the Euclidean

vector-norm per pixel is bounded by one or the projection onto

this unit ball.
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4.2. Inverting multi-layer perceptrons

We now discuss the implementation of the inversion of multi-

layer perceptrons with L layers as described in (3). Note that in

this case in order to minimize for x, we also need to optimize with

respect to the auxiliary variables x1, . . . , xL−1.

For the minimization of (3) we consider an alternating

minimization approach, also known as coordinate descent [48–

50]. In this approach we minimize the objective with respect to

one variable at a time. In particular, we focus on a semi-explicit

coordinate descent algorithm, where we linearize with respect to

the smooth functions of the overall objective function. This breaks

down the overall minimization problem into L sub-problems,

where for x0 and each xl variable for l ∈ {1, . . . , L − 1}, we have
individual minimization problems of the following form:

xt+1
0 = argmin

x0

{(

1

2
‖ · ‖2 + 91

)∗
(

f (x0,21)
)

−
〈

xt1, f (x0,21)
〉

+ αR(Kx0)
}

, (15a)

xt+1
l

= argmin
xl

{(

1

2
‖ · ‖2 + 9l

)

(xl)−
〈

xl , f (x
t+1
l−1 ,2l)

〉

+
1

2τxl
‖xl − xtl‖

2

+
〈

xl,
(

prox9l+1

(

f (xtl ,21+1)
)

− xtl+1

)

J
x
f (x

t
l ,21+1)

〉

}

.

(15b)

Note that one advantage for adopting this approach is that

we exploit that the overall objective function is convex in each

individual variable when all other variables are kept fixed. In the

following, we will discuss different strategies to computationally

solve each sub-problem.

When optimizing with respect to the input variable x0, the

structure of sub-problem (15a) is identical to the perceptron

inversion problem that we have discussed in Section 4.1. Hence, we

can approximate xt+1
0 with (12), but now with respect to xt1 instead

of yδ , which yields the iteration

xk+1
0 = xk0 − τx0

((

prox9

(

f (xk0,21)
)

− xt1

)

J x
f (x

k
0,21)

+αK⊤zk
)

, (16a)

zk+1 = proxτzR∗

(

zk + τzαK
(

2xk+1
0 − xk0

))

. (16b)

For each auxiliary variable xl with l ∈ {1, . . . , L − 1}, the
sub-problem associated with (15b) amounts to solving a proximal

gradient step with suitable step-size τxl , which we can rewrite to

xt+1
l

= prox τxl
1+τxl

9l

(

1

1+ τxl

(

xtl − τxl

((

prox9l

(

f (xtl ,2l+1)
)

− xtl+1

)

J
x
f (x

t
l ,2l+1)− f (xt+1

l−1 ,2l)
)))

.

(17)

This concludes the discussion on the implementation of the

regularized single-layer and multi-layer perceptron inversion. In

the next section, we present some numerical results to demonstrate

the effectiveness of the proposed approaches empirically.

5. Numerical results

In this section, we present numerical results for the perceptron

inversion problem implemented with the PDHG algorithm as

outlined in (14), and for the multi-layer perceptron inversion

problem implemented with the coordinate descent approach as

described in (16) and (17). In the following, we first demonstrate

that we can invert a perceptron with random weights and bias

terms and ReLU activation function via (11) with total variation

regularization and the algorithm described in (14). We then

proceed to amore realistic example of inverting the code of a simple

autoencoder with perceptron encoder, before we extend the results

to the total variation-based inversion of encodings frommulti-layer

convolutional autoencoders. All results have been computed using

PyTorch 3.7 on an Intel Xeon CPU E5-2630 v4.

5.1. The perceptron

We present results for two experiments: the first one is the

perceptron inversion of the image of a circle from the noisy output

of the perceptron, where we compare the Landweber regularization

and the total-variation-based variational regularization (6). For the

second experiment, we perform perceptron inversion for samples

from the MNIST dataset [51], where we compare the performance

of the proposed inversion strategy with the performance of linear

and nonlinear decoders on the collection of (approximately)

piecewise constant images of hand-written digits.

5.1.1. Circle
We begin with the toy example of recovering the image of a

circle from noisy measurements of a ReLU perceptron. To prepare

the experiment, we generate a circle image x† ∈ R
64×64, as shown in

Figure 1. We construct a perceptron with ReLU activation function

using random weights and biases where W ∈ R
512×4,096, b ∈

R
512×1. The weights operates on the column-vector representation

of x, where x ∈ R
4,096×1. The noise-free data is generated via the

forward operation of the model, i.e., y = σ (Wx† + b). We generate

noisy data yδ by adding Gaussian noise with mean 0 and standard

deviation 0.005. Note that we clip all the negative values of yδ to

ensure yδ ∈ dom(9).

A first attempt to solve this ill-posed perceptron inversion

problem is via Landweber regularization [52]. In Figure 2, we see

the reconstructed image obtained with Landweber regularization in

combination with early stopping following Morozov’s discrepancy

principle [22, 53]. Even though the Landweber regularized

reconstruction matches the data up to the discrepancy value

‖σ (WxK + b) − yδ‖, the recovered image does not resemble the

image x†. We will discuss shortly the reason for this visually poor

inversion. In comparison, we see a regularized inversion via the

total variation regularization approach following (14) in Figure 3.

The regularization parameter for this reconstruction is chosen as

α = 1.5 × 10−2. Both x0 and z are initialized with zero vectors.

The stepsize-parameters are chosen as τx = 1.99/‖W‖22 and τz =
1/(8α), see [54]. We stop the iterations when changes in x0 and z

in norm are less than a threshold of 10−5 or when we reach the
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FIGURE 1

Groundtruth image x† of a circle.

FIGURE 2

Inverted image via Landweber regularization.

maximum number of iterations, which we set to 10, 000. As shown

in Figure 3, the TV-regularization approach is capable of finding a

(visually) more meaningful solution.

To explain why the Landweber iteration performs worse

compared to the total variation regularization for this specific

example, we compare the ℓ2 norms of each two solutions and the

groundtruth image x†. The ℓ2 norm of the Landweber solution

in Figure 2 measures 6.58 while the TV-regularized solution as in

Figure 3 and the groundtruth image x† measure 25.69 and 28.07,

respectively. This is not surprising, as the Landweber iteration is

known to converge to a minimal Euclidean norm solution if the

noise level converges to zero. On the other hand, when we compare

the TV semi-norm of each solution, the groundtruth image in

measures 128.0, while the Landweber solution in Figure 2 and

TV-regularized solution in Figure 3 measure 707.02 and 114.93,

respectively, suggesting that the TV-semi-norm is a more suitable

regularization function for the inversion of cartoon-like images

such as x†.

FIGURE 3

Inverted image via TV regularization.

5.1.2. MNIST
In this second example, we perform perceptron inversion on

the MNIST dataset [51]. In particular, we consider the following

experimental setup. We first train an autoencoder A(x) =
D[E(x,2E ),2D], where D(·,2D) and E(·,2E ) denotes the

decoder and the encoder, parameterized by parameters 2D and

2E , respectively. We pre-train the autoencoder A, compute the

code E(x,2E ) and assign it to the noise-free data variable y, and

solve the inverse problem for the input x from the perturbed code yδ

E(x,2E ) = yδ .

To be more precise, we first train a two-layer fully connected

autoencoder x̃ = W2[σ (W1x+b1)]+b2 using the vanilla stochastic

gradient method (SGM) by minimizing the mean squared error

(MSE) on the MNIST training dataset. We set the code dimension

to 100 and use ReLU as the activation function. Hence 2E =
(W1, b1) whereW1 ∈ R

784×100 and b1 ∈ R
100×1.

We then invert the code yδ = σ (W1x + b1) via (11)

with Equation (14). All MNIST images are centered as a means

of pre-processing. The stepsize-parameters are chosen at τx =
1.99/‖W1‖22 and τz = 1/(8α). We choose the regularization

parameter α in the range [10−4, 10−2] and set to 5 × 10−3 for all

sample images from the training set, and to α = 5 × 10−2 for all

sample images from the validation set. These choices work well with

regards to the visual quality of the inverted images.

In Figure 4, we show visualizations of five sample images

from the training set, and from the validation set respectively.

In comparison, we have also visualized the decoder output. As

can be seen, using the code that contains the same compressed

information, the inverted images show more clearly defined edges

and better visual quality than the decoded outputs. This is to be

expected as we compare a nonlinear regularized inversion method

with a linear decoder.
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FIGURE 4

Groundtruth input images from the MNIST training dataset (Left) and validation dataset (Right), together with the corresponding autoencoder output

images x̃ and inversions xα of the encoding via (11).

5.2. Multi-layer perceptrons

In this section, we present numerical results for inverting

multi-layer perceptrons. In particular, we consider feedforward

neural networks with convolutional layers (CNN), where in

the network architecture two-dimensional convolution operations

are used to represent the linear operations in the affine-linear

functions f (x,2). Similar to the experimental design described in

Section 5.1, we consider a multi-layer neural network inversion

problem where we infer input image x from a noise perturbed

code yδ .

More specifically, we first train a six-layer convolutional

autoencoder on the MNIST training dataset via stochastic gradient

method to minimize the MSE. The encoder E(x,2E ) consists of

two convolutional layers, both with 4×4 convolutions with stride 2,

each followed by the application of a ReLU activation function. As

image spatial dimension reduces by half, we double the number of

feature channels from 8 to 16. We use a fully-connected layer with

weightsW3 ∈ R
300×784 and bias b3 ∈ R

300×1 to generate the code.

The decoder network first expands the code with an affine-linear

transformation with weightsW4 ∈ R
784×300 and bias b4 ∈ R

784×1.

This is followed by two layers of transpose convolutions with kernel

size 4 × 4, where each is followed by a ReLU activation function.

The number of feature channels halves each time as we double the

spatial dimension.

Following the implementation details outlined in Section 4.2,

we iteratively compute the update steps (16) and (17) to recover x

from y = E(x,2). For the PDHG method, we choose the stepsize-

parameters as τx = 1.99/‖W1‖22 and τz = 1/(8α). The initial values

x0 and z are both zero. The update steps stop either after reaching

the maximum iterations of 1, 500 or when the improvements on x0
and z are<10−5 in norm. For the coordinate descent algorithm, the

stepsize-parameters are set to τxl = 1.99/‖Wl+1‖2 for each layer,

where ‖ · ‖ denotes the spectral norm.

In Figure 5, we visualize the inverted images, the decoder

output images, along with the groundtruth images, from the

training dataset and validation dataset, respectively. For each

image, α is chosen in the range [10−4, 10−2] and set at 9 × 10−3

for both training sample images and validation sample images for

best visual inversion quality.

In Figure 6, we further compare how total variation

regularization and decoder respond to different levels of data

noise. The noisy data is produced by adding Gaussian noise to

perturb the code of each image. We start with zero mean Gaussian

noise with standard deviation 0.33 and gradually reduce the noise

level, this translates to decreasing δ2 from 6.80 down to 0.00.

Please note that for each noise level the regularization factor

α is manually selected in the range [10−4, 10−2] for the best PSNR

value. As we can see, for the noise level with standard deviation 0.33

where δ2 is at 6.80, the decoder is only capable of producing a blurry
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FIGURE 5

Groundtruth input images from the MNIST training dataset (Left) and validation dataset (Right), together with the corresponding CNN autoencoder

output images x̃ and inversions xα of the encoding via (3).

distorted output, while the inverted image shows the structure of

the digit more clearly. When we decrease the noise level down to

0.00, the inverted image becomes more clean-cut while the decoded

image is still less sharply defined.

Figure 7 plots the PSNR value of the decoded and inverted

image against decreasing noise level. We want to emphasize that it

would be more rigorous to compute and compare D
symm
R (xα(δ), x

†)

as suggested in the error estimate bound in (9), but empirically

the PSNR value does also support the notion of a convergent

regularization.

6. Conclusions and outlook

We have introduced a novel variational regularization

framework based on a lifted Bregman formulation for the stable

inversion of feed-forward neural networks (also known as multi-

layer perceptrons). We have proven that the proposed framework

is a convergent regularization for the single-layer perceptron case

under the mild assumption that the inverse problem solution has

to be in the range of the regularization operator. We have derived a

general error estimate as well as a specific error estimate for the case

that the activation function is the ReLU activation function. We

have also addressed the extension of the theory to the multi-layer

perceptron case, which can be carried out sequentially, albeit

under unrealistic assumptions. We have discussed implementation

strategies to solve the proposed scheme computationally, and

presented numerical results for the regularized inversion of the

image of a circle and piecewise constant images of hand-written

digits from single- and multi-layer perceptron outputs with total

variation regularization.

Despite all the positive achievements presented in this work,

the proposed framework also has some limitations. The framework

is currently restricted to feed-forward architectures with affine-

linear transformations and proximal activation functions. While it

is straight-forward to extend the framework to other architectures

such as ResNets [55] or U-Nets [56], it is not straight-forward to

include nonlinear operations that cannot be expressed as proximal

maps of convex functions, such as max-pooling. However, for

many examples there exist remedies, such as using average pooling

instead of max-pooling in the previous example.

An open question is how a convergence theory without

restrictive, unrealistic assumptions can be established for the

multi-layer case. One issue is the non-convexity of the proposed

formulation. A remedy could be the use of different architectures

that lead to lifted Bregman formulations that are jointly convex in

all auxiliary variables.

And last but not least, one would also like to consider other

forms of regularization, such as iterative regularization, data-

driven regularizations [57], or even combinations of both [58].

However, a convergence analysis for such approaches is currently

an open problem.
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FIGURE 6

Visualization of the comparison between inverted image and decoded image against various levels of noise. (Top) Decoded output image from the

trained convolutional autoencoder. (Bottom) Inverted input image from the CNN with total variation regularization.

FIGURE 7

Comparison of PSNR values of total variation-based reconstruction and decoder output per noise level. Each curve reports the change of PSNR

value over gradually decreasing levels of Gaussian noise, with δ2 ranging from 0.00 to 6.80.
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