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Calibration methods to fit
parameters within complex
biological models

Pariksheet Nanda and Denise E. Kirschner*

Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI,

United States

Mathematical and computational models of biological systems are increasingly

complex, typically comprised of hybrid multi-scale methods such as ordinary

di�erential equations, partial di�erential equations, agent-based and rule-based

models, etc. Thesemechanistic models concurrently simulate detail at resolutions

of whole host, multi-organ, organ, tissue, cellular, molecular, and genomic

dynamics. Lacking analytical and numerical methods, solving complex biological

models requires iterative parameter sampling-based approaches to establish

appropriate ranges of model parameters that capture corresponding experimental

datasets. However, these models typically comprise large numbers of parameters

and therefore large degrees of freedom. Thus, fitting these models to multiple

experimental datasets over time and space presents significant challenges. In

this work we undertake the task of reviewing, testing, and advancing calibration

practices across models and dataset types to compare methodologies for model

calibration. Evaluating the process of calibrating models includes weighing

strengths and applicability of each approach as well as standardizing calibration

methods. Our work compares the performance of our model agnostic Calibration

Protocol (CaliPro) with approximate Bayesian computing (ABC) to highlight

strengths, weaknesses, synergies, and di�erences among these methods. We

also present next-generation updates to CaliPro. We explore several model

implementations and suggest a decision tree for selecting calibration approaches

to match dataset types and modeling constraints.

KEYWORDS

multi-scale modeling, hybrid models, non-linear, stochastic, datasets, spatial, dynamical,

Bayesian

1. Introduction

Building computational and mathematical models to simulate complex non-linear
biological processes requires many key steps in defining both the model as well as
identifying ranges of values for many corresponding parameters. Complex models often
require concurrent estimation of dozens of parameters using reference datasets derived
from biological experiments. However, the step of identifying relevant ranges of parameter
values in a complex model complicates the step of parameter estimation because traditional
methods that find parameter point estimates are not useful and instead parameter
estimation methods must identify ranges of biologically plausible parameter values. For
example, models built to study infectious diseases would require parameter ranges wide
enough to produce biological variation that would span healthy and disease outcomes.

Frontiers in AppliedMathematics and Statistics 01 frontiersin.org

https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://www.frontiersin.org/journals/applied-mathematics-and-statistics#editorial-board
https://doi.org/10.3389/fams.2023.1256443
http://crossmark.crossref.org/dialog/?doi=10.3389/fams.2023.1256443&domain=pdf&date_stamp=2023-10-18
mailto:kirschne@umich.edu
https://doi.org/10.3389/fams.2023.1256443
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fams.2023.1256443/full
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Nanda and Kirschner 10.3389/fams.2023.1256443

This atypically broad objective function of finding multiple
solutions is sometimes referred to as suboptimal non-linear
filtering [1]. In this paper, identifying acceptable ranges of
model parameters is called calibration which is contrasted against
traditional parameter estimation in Figure 1.

The choice of calibration method depends on the reference
experimental datasets as well as the model type being calibrated.
Calibrating to reference experimental datasets such as dynamical
and/or spatial experimental datasets are discussed in the next
section. The remaining sections cover the calibration of different
model types. Models that have tractable likelihood functions and
therefore are non-complex, do not require the methods discussed
in this paper. Models of ordinary differential equations (ODEs)
that fall under this non-complex scenario are briefly discussed.
Complex models contain many structurally unidentifiable
parameters requiring particular attention to calibration [2]. For
the remaining complex models such as complex ODEs, partial
differential equations (PDEs), agent-based models (ABMs),
hybrid models, etc., we provide a decision tree to suggest which
calibration method is most appropriate by examining both model
type as well as characteristics of corresponding datasets. We
explore three calibration methods, namely, calibration protocol
(CaliPro), approximate Bayesian computing (ABC), and stochastic
approximation. To aid discussion of this wide range of methods,
we provide descriptions of phases and keywords for quick reference
(see Table 1).

1.1. Characteristics of reference
experimental datasets

A defining feature of complex biological systems is their
incomplete, partially observable, and unobservable datasets. The
uncertainty of incomplete and partially observable experimental
results favors fitting model simulations to the boundaries of
such datasets more often than considering modes within their
distribution ranges as significant. Therefore, the limitation
of these partial datasets justifies calibrating to ranges of
data rather than to individual data points. On the other
hand, unobservable data require modelers to assign parameters
representing biological processes that may not be experimentally
validated, but whose parameter ranges need to be calibrated
alongside other experimental datasets. The number of non-
experimentally bound parameters typically exceed the parameters
that can be directly bound to available datasets, creating many
degrees of freedom in the calibration process.

Several types of reference experimental datasets such as
numerical, categorical, temporal, spatial, and synthetic datasets
may be used to calibrate complex models. Numerical datasets
can either be continuous or discrete and are well supported by
inference methods even when missing data [6–8]. Calibrating a
dynamical model to temporal datasets typically requires several
comparisons along simulated trajectories to the temporal datasets.
Calibrating a model to spatial datasets requires finding appropriate
numerical or categorical summary statistics that may include
image pre-processing steps to identify and match features of
interest [9–11].

1.2. Calibrating non-complex models with
numerical likelihood evaluation

Non-complex models, such as biological models that are
comprised of systems of ordinary differential equations (ODEs),
it is much easier to identify ranges for parameter values from
corresponding datasets. Likelihood functions describe the joint
probability of observed datasets and the chosen model. Thus,
evaluating the likelihood function directly links model parameters
with experimental data and guides the calibration process to
directly identify parameter ranges. Likelihood calculation is
central to probabilistic modeling [12]. Although likelihood-based
parameter estimation methods are typically used when analytical
solutions are not available, likelihoods can be found for such
models to calibrate their parameters. For example, ODEs can
produce exact probability density functions using the method of
characteristics, which are used to calculate their likelihood [13].
However, calculating likelihood becomes unobtainable for complex
models therefore requiring a different approach.

1.3. Background concepts to calibrate
complex models

Above we described the case for models that can obtain
parameters using a likelihood function determined from direct fits
to data. In the next section wewill review twomethods that estimate
parameter ranges for complex biological systems where likelihood
functions are not obtainable. We describe two published methods,
the Calibration Protocol (CaliPro) [14] and approximate Bayesian
computing (ABC) [15–18]. In this work, our goal is to review these
model calibration methods and to compare and contrast them.
We first set up background information that is applicable to both
approaches and then provide more detail for each approach via
examples. We provide a decision tree to help guide which approach
to use (Figure 2).

1.3.1. Inapplicability of stochastic approximation
Although stochastic approximation methods can also be

used in contexts when the likelihood function is unavailable, this
method does not directly serve our purpose of calibration.
Stochastic approximation either uses a variant of finite
differences to construct a stochastic gradient or stochastic
perturbations that are gradient-free [19, 20]. However, both
variants attempt to converge to an approximate maximum
likelihood and then find the variance around the converged
result using bootstrap. This is not the same as the intended
calibration goal of preserving broad parameter sampling around
parameter space containing multiple solutions that fit the
experimental data.

1.3.2. Sampling outcome and parameter spaces
Sampling experimental datasets can be thought of as

sampling multidimensional outcome space (Figure 3).
Datasets may not be available for some outcomes and thus
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FIGURE 1

Calibration di�ers from traditional parameter estimation goals. The outcome of calibration is to fit to a range of experimental data. The goal is to

adjust the set of parameter range boundaries to loosely limit model simulations to the biological boundaries of the reference experimental datasets.

TABLE 1 Keyword descriptions of model and parameter estimation concepts.

Concept grouping Model and parameter estimation concepts

Model implementations 1. Multi-scale: A mixture of models at different spatial resolutions and/or different temporal resolutions. They typically have
mixtures of discrete and continuous data, and different implementation approaches making them hybrid models.

2. Hybrid: Models containing multiple formulations such as ordinary differential equations, discrete, or stochastic components that
must be evaluated concurrently to simulate the system of interest.

3. Dynamical: Models with a time dimension.
4. Mechanistic: Models where the underlying mechanism is known or can be approximated without entirely relying on probabilistic

events.
5. Probabilistic: Models that do not require knowledge of mechanisms but instead rely on propagating probability distributions of

parameters. Although the models discussed in this paper are mechanistic, calibrating these complex models uses a
probabilistic process.

Model parameters 6. Structural identifiability: Whether a parameter can be uniquely estimated when fitting the model to experimental datasets [3, 4].
7. Parameter calibration: Tuning parameter boundaries or distributions to capture broad ranges and types of reference experimental

datasets.
8. High-dimensional parameter space: Large numbers of parameters that characterize a complex model. Also called a multi-

dimensional hypercube.
9. Summary statistics: Numerical description of parameter samples or experimental datasets. For example, mean, median, and

variance describe a single variable, and correlations and covariance describe a pair of variables.
10. Sufficient summary statistics: Sufficient summary statistics contain all available information of the original distribution [5].

Sufficient summary statistics are not necessarily parameters of the distribution (such as themean, standard deviation, shape, scale,
etc.) because they can summarize conditional distributions. More formally, a distribution is sufficient if it can be Fisher–Neyman
factorized.

11. Dimensional reduction: Creating summary statistics of high dimensions to aid comparisons between model outcomes and
experimental datasets.

12. Prior distribution: Fixed model parameter probability distribution from a priori knowledge or experimental data that, ideally,
was obtained earlier and therefore independent from data generated within a current study.

13. Posterior distribution: Probability distribution specified by Bayes theorem combining the prior distributions with a model and
experimental datasets.

Parameter sampling 14. Global search: Sampling parameter space simultaneously rather than iteratively using previously sampled regions.
15. Local search: Sampling parameter space of interest in relation to previous sampled regions.
16. Particle: Multiple parameter probability density functions intersecting at a point in parameter space.
17. Filtering: Resampling particles to generate parameter distributions.
18. Markov process: A data smoothing technique that assigns samples to an underlying state machine. Such a model infers the

underlying state, and smoothing is created by a state (probabilistically) remaining unchanged as opposed to transitioning to
another state with different data generation characteristics.

19. Confidence/credible intervals: Range of parameter values with an associated sampling probability.

Objective functions of
sampling parameter space

20. Likelihood: The joint probability of the observed data and the model. For example, the likelihood using the model of fair dice
yielding an observed roll of 18 dice showing all 5s is ( 16 )

18 , whereas a model where all the dice have 5s on all sides would have
absolute certainty with a likelihood of 1 for the same observation of the dice.

21. Pseudo-likelihood: Any objective function that does not require direct numerical evaluation of the likelihood. Approximates
the unknown likelihood function with a distance function or kernel density estimator based on simulations of the model. This
approach is often chosen when computing the likelihood function is intractable.

22. Approximate Bayesian computing (ABC): Typical Bayesian inference fully evaluates the model likelihood function, or partially
evaluates the likelihood function when only comparing its ratio. ABC instead avoids numerically computing the likelihood
function by simulating model data and comparing it against experimental data using pseudo-likelihood.

23. Boolean function: A function which outputs only true and false values.

Several definitions are summarized for background completeness.

Frontiers in AppliedMathematics and Statistics 03 frontiersin.org

https://doi.org/10.3389/fams.2023.1256443
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Nanda and Kirschner 10.3389/fams.2023.1256443

FIGURE 2

Decision tree for calibration. Calibrating models to datasets heavily depend upon model behaviors, dependencies between calibration parameters,

and type(s) of data available for calibration. Calibration without dimension reduction or distance evaluations is possible with CaliPro and with the

probability density approximation variant of approximate Bayesian computing. The methods are detailed as follows: stochastic approximation is

detailed in Section 1.3.1, CaliPro is detailed in Section 1.4.1, ABC with sequential Monte Carlo is detailed in Section 1.4.2, and ABC with probability

density approximation is detailed in Section 1.4.2.1.

FIGURE 3

Complex model simulations connect samples in parameter space to samples in outcome space. In addition to parameter space, there also exists

high dimensional outcome space, connected by simulations from a complex model. A model with parameters p1. . .pn produces outputs o1. . .om. (A)

Experimental samples help set putative parameter ranges. However, not all model outputs may be practical to sample experimentally. (B) Simulations

generated by the model from sampled parameter ranges try to match the experimental samples.

increase the burden of parameter sampling. The challenges
of limited datasets and high-dimensional parameter and
outcome spaces motivate the need to use careful parameter
sampling schemes.

1.3.3. Parameter sampling schemes
Complex models with their many parameters can be thought

of as forming a hypercube of high-dimensional parameter space.
Increasing the number of model parameters or dimensions
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FIGURE 4

Globally sampling parameters evenly using the cumulative probability density transformation. The probability density function (PDF) is a line under

which the area is 1. Parameters can have di�erent types of PDFs such as uniform, log-uniform and normal distributions shown in (A–C). (A) Shows a

simple uniform distribution. The log-normal distribution helps sample parameters with wide ranges and in this example in (B) the x-axis represents

the exponent, namely Parameter 2 varies from 102 to 106. The shape of the normal distribution is set by the µ (mean) and σ (standard deviation)

values. However, non-uniform PDFs (B, C) have their densities concentrated at high probability regions as shown by the uneven vertical grid spacing

in (B, C) that mark 5 regions each of 20% probability. To evenly sample from these non-uniform distributions, it is first necessary to generate the

cumulative density function (CDF) which evens out the probability space in the y-axis as shown by the corresponding horizontal grid lines in (D–F)

corresponding to the original 5 regions each of 20% probability. Random samples drawn from each of the 5 probability intervals [0.0, 0.2), [0.2, 0.4),

[0.4, 0.6), [0.6, 0.8), and [0.8, 1.0] on the y-axis of the CDF are represented by solid circles and their x-axis parameter values are labeled next to the

solid circles. Randomly sampled parameter values have been rounded for easier reading.

exponentially increases the combinatorial complexity of visiting
parameter space on an evenly spaced grid of a discretized
parameter hypercube.

However, an evenly and finely spaced parameter grid required
to sample these regions adequately in parameter space is not
necessarily linear. Each parameter has an associated probability
value for a particular parameter value. Only uniform probability
distributions are linear for a given range because any value of such
a parameter within the bounds of the uniform distribution has the
same probability. On the other hand, parameters with non-uniform
probability distributions require generating samples in accordance
with their cumulative probability density (Figure 4). This allows
measurements to better capture characteristic skewness, etc., to
adjust for inferring the true parameter distribution.

Another consequence of high-dimensional parameter space
is that it cannot be exhaustively sampled. Thus, sampling
methods need to strategically stratify the space and choose
parameter values for a particular calibration method. The
two main strategies are global and local sampling. Global
sampling schemes such as Latin hypercube sampling (LHS)
(Table 2), Sobol sampling, and random sampling—also called
Monte Carlo sampling—provide a means of broadly exploring
parameter space, studied extensively in Renardy et al. [22]. On

TABLE 2 Globally sampling parameters evenly using the cumulative

probability density transformation.

LHS sample
combination

Parameter
1 (Uniform

distr.)

Parameter 2
(Log-unif.
distr.)

Parameter
3 (Normal

distr.)

1 96 3.12 84

2 72 2.36 99

3 196 2.96 58

4 155 4.89 116

5 12 4.59 131

In Latin hypercube sampling (LHS), combinations of random parameter samples without
replacement are used to globally sample model outcomes, such as the five-sample
combination shown in Figure 4. Although only five samples are shown to explain the principle
of LHS, in practice many more samples than the number of varied parameters would be used
to reach high levels of accuracy although there is no agreed upon guideline for choosing the
number of samples; see Marino et al. [21] for more details.

the other hand, local sampling schemes depend on previously
sampled values to suggest future values. We review such local
sampling schemes in more detail in the section on Approximate
Bayesian Computing.
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1.3.4. Parameter sampling with pseudo-likelihood
evaluation

Complexmodels lack both closed-form analytical solutions and
numerical approximations of likelihood, which restricts parameter
range estimationmethods to iterative parameter sampling. Between
iterations many parameters need to be varied and the model
outcomes need to be continuously re-evaluated for goodness of fit
to available experimental datasets.

For non-complex models, goodness of fit to experimental
data would involve likelihood functions as described above (and
in Table 1). However, complex models do not have tractable
likelihood functions and therefore require alternative methods
of comparing to experimental datasets. Instead of evaluating
likelihood functions, methods for fitting complex models rely on
comparisons to experimental data (Figures 5, 6). Such pseudo-
likelihood evaluations are therefore used for fitting complex
model parameters.

1.4. Methods to calibrate complex models

Now that we have narrowed the scope of calibration to models
requiring pseudo-likelihood functions, as well as observed the need
for iterative sampling to fully explore data fits for parameter space,
we will detail two broad classes of methods we use to accomplish
this task: CaliPro and ABC. CaliPro is introduced first because it is
the more intuitive of the two methods and derives from published
work from our own group.

1.4.1. Calibration protocol
We recently formalized a calibration protocol (CaliPro)

method to calibrate complex biological models while also
remaining agnostic to model type [14]. The goal of CaliPro is to
adjust parameter boundaries to capture large and disparate datasets
using a minimal number of iterations to converge to an acceptable
fit. CaliPro classifies simulations into pass and fail sets (Figure 6).
We use both pass and fail classifications of model simulations
to adjust parameter boundaries using CaliPro’s alternative density
subtraction (ADS) method. Alternatively, for parameters with
smaller ranges and less variance, the highest density region (HDR)
parameter adjustment method provides faster convergence because
HDR adjusts parameter ranges to regions of higher probability
density whereas ADS first subtracts the probability density of fail
sets to output smaller changes. Finally, we use Boolean function
thresholds to define pass rates. In practice,>75–90% of simulations
passing is sufficient to end calibration, as over constraining the
convergence function risks overfitting parameters.

Using CaliPro in practice requires attention to several
details. To establish model-specific pass-fail constraints of model
simulations, we require a priori knowledge of the biological system
and thus this step is based on user discretion. We previously
discussed several examples of establishing such pass-fail constraints
[14]. Secondly, when we first use CaliPro or after making significant
changes to the model, the pass rate may be very low and may not
improve after several iterations. This is because the low pass rate
is too uninformative for the parameter range adjustment method

to propose useful new parameter ranges. In such cases, the more
stringent among the constraints employed should be disabled after
measuring the pass set from each individual constraint and then
those stringent constraints can be reapplied later after achieving
higher pass rates. Thirdly, to calibrate large numbers of unknown
parameters, one can reduce the number of fail set outcomes by
paying attention to starting values of the most sensitive parameters.
The most sensitive parameters that affect the model can be
determined using partial rank correlations (PRC) [21]. Lastly, for
stochastic models that have variable outcomes even with fixed
parameters, the number of pass sets can plateau in an undesirable
part of parameter space therefore requiring multiple starting seeds
for at least some simulations to converge.

A larger framework to which CaliPro belongs for complex
model calibration is approximate Bayesian computing (ABC)
because of the many similarities between the independently
developed techniques. Approximate Bayesian computing was
mentioned in Figure 2 of the CaliPro method paper [14], but the
techniques were not directly compared. This paper helps address
that gap.

1.4.2. Approximate Bayesian computing
Approximate Bayesian computing (ABC) works around the

difficulty of numerically evaluating model likelihood functions by
simulating model outcomes and then often applying a distance
function or a kernel density estimator to compare to reference
datasets (Figure 5).

ABC requires a parameter sampling strategy to generate
distributions of parameters of interest. Nearly all sampling
strategies used in practice for ABC are techniques that sample
around previously sampled locations using Markov processes and
weights that are iteratively updated to guide subsequent sampling
[18]. Sequential Monte Carlo (SMC) sampling uses hidden states
to affect a slowly changing distribution to efficiently reach the
true parameter distributions [18, 24]. Unlike most other Monte
Carlo sampling schemes used in Bayesian inference where chains
primarily measure the r-hat quality of sampled parameters, SMC
chains accelerate exploration of parameter space and is therefore
the sampling technique frequently used for ABC calibration.

1.4.2.1. Summary statistics and their su�ciency

Summarizing model outcomes or experimental datasets is
necessary in these pseudo-likelihood parameter sampling situations
when the model output does not exactly match the type of data.
Applying summaries to model outcomes or datasets allow them
to be numerically compared. An example of a model summary
statistic would be the total diameter of a tumor calculated from the
corresponding model simulated spatial components.

For some applications, the general case of summarizing
many outcomes of non-linear complex models is prone to
inefficient inference or even non-convergence to the true parameter
distribution when the summary statistics are not sufficient [25]
as described in Table 1. The error introduced by not having
sufficient summary statistics is not measurable because the
likelihood function is not available [26]. Sufficient statistics
are the property of summary statistics containing as much
information as the parameter samples (see Table 1 for definitions).
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FIGURE 5

Using a distance function to replace likelihood. We replace likelihood functions with a distance function between data and model outcomes to avoid

numerical evaluation. For models where it is not feasible to evaluate their likelihood function, model-generated outcomes can instead be compared

to experimental data to approximate the likelihood function by penalizing sampled-parameter draws that predict model outcomes farther away from

experimental data. The graphs shown in (A, B) are a simple 2 dataset model. Models with greater dataset dimensions can be similarly visualized in two

dimensions using a t-statistic stochastic neighbor embedding (t-SNE) plot [23]. The red circles in (B) represent a distance function for comparing the

data to model outcomes.

FIGURE 6

Evaluation loop of our Calibration Protocol (CaliPro). The schematic shows the evaluation steps of CaliPro, which consists of a pass-fail run

classification that we use for adjusting parameter ranges. Unlike the Bayesian method which generates parameter distributions, CaliPro adjusts

parameter ranges using either alternative density subtraction (ADS) using both the pass and fail parameter densities, or the highest density region

(HDR) using only the pass set if the parameter started with a narrow range and low variation. Left box: simulation trajectories (curves) overlays with

data points (black dots) colored as blue (pass set) and red (fail set).

As mentioned, truly knowing whether a summary statistic is
sufficient also requires a likelihood function, therefore this
validation is impractical for a complex model [26]. If a summary
statistic is not sufficient, convergence to the true parameter
distribution is not guaranteed. As a workaround, one can use
probability density approximation (PDA) to avoid using summary
statistics [25].

Due to this risk of insufficiency when using summary statistics,
it is preferable to avoid using summary statistics or to limit
their use to cases that require it, such as calibrating to spatial
datasets, where simulations, for example, of cell type ratios
or intercellular proximities must be collectively expressed as
summaries rather than raw counts. Summary statistics are used
in the first place to reduce the model outcome dimensionality
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to compare with experimental datasets. Therefore, given the
importance of sufficiency and difficulty of knowing the quality
of summary statistics, it is useful to have alternative calibration
methods that do not require using sufficient statistics such as our
method, CaliPro, and also ABC-PDA [25].

In addition to using summary statistics, another strategy to
improve convergence is to use a Markov process (described in
Table 1). This improves fitting parameter ranges by smoothing the
changing parameter distribution from its initial samples to the
true distribution. Using a Markov process makes it efficient to
process many parameter samples [18] and is the basis of sequential
Monte Carlo sampling and sequential importance sampling. Both
algorithms are widely used and are known in different fields
by different names such as bootstrap filtering, the condensation
algorithm, particle filtering, interacting particle approximations,
survival of the fittest, and recursive Bayesian filtering [1]. Particle
filtering is often used to describe these sampling algorithms;
therefore, we define a particle in this context. Simulation outcomes
are thought of as particles consisting of intersecting probability
distributions of lower dimensional model parameter summaries.
Particles have associated weights and those weights are used to
iteratively resample or move particles to better approximate the
true parameter distributions [27]. Thus, calibration requires using
sampling techniques that can scale to a large number of parameter
samples of complex models using particle filtering and Markov
smoothing techniques.

2. Method

Here we outline how we perform both the CaliPro and
ABC calculations. In our previously published work, CaliPro
was only used to tune uniform distributions; to compare
CaliPro more directly to ABC, here we extend CaliPro’s uniform
distribution boundaries to non-uniform distributions. We do
this by fitting non-uniform distribution parameters using both
the boundaries along with their globally sampled percentiles.
To perform ABC, we used the PyMC package [28] with the
Metropolis–Hastings kernel. We also tried using the pyABC
package [29], but each calibration attempt ran out of memory even
on large memory computer clusters. The conceptual Figures 1–
6 were creating using LaTeX with the PGF-TikZ package [30,
31]. For the remaining figures, all example models with their
associated data, commented code, and output files are archived on
Zenodo [32].

2.1. Calibration protocol with Latin
hypercube sampling

To improve useability and understanding of LHS and
CaliPro, these general methods have been implemented in R
using the lhs package [33]. The CaliPro pass–fail criteria are
described in the results section for each of the models. No
termination pass percentage was used and instead calibration
was allowed to continue for a pre-determined number
of iterations.

All parameter updates are done using the alternative density
subtraction (ADS) algorithm. ADS outputs parameter boundaries
are originally intended for uniform distributions. To extend ADS
to other types of distributions, we use the LHS percentiles sampled
along with the new distribution drawn boundaries to fit the
parameter distributions between iterations (see Section 2.1.1).

2.1.1. Fitting probability distributions using both
percentiles and distribution draws

Probability distributions are conventionally fit using many
distribution draws. However, both CaliPro’s HDR or ADS
algorithms provide uniform distribution boundaries as outputs,
which we then need to fit to non-uniform distributions. To
meaningfully use the limited two distribution draws of the
boundaries, we also need to know the percentiles to which those
data points belong. This idea of using both the distribution
draws and their percentiles is also useful for setting initial
parameter distributions from biological journals and clinical trial
datasets that are often reported in the form of 3 data points:
the median and interquartile range, which together provide
distribution draws for the 25, 50, and 75% quantiles. This was
necessary for fitting distributions to the parameters of the immune-
HIV-1/AIDS example model. Reporting experimental parameters
using quantiles implies that distributions cannot be fit in the
conventional way using maximum likelihood of a large collection
of distribution draws. Instead, we use both the known distribution
draws x, and their corresponding known percentiles, p, to fit
the unknown distribution parameters, θ̂ , using optimization. We
supply percentiles, p, with the estimated distribution parameters,
θ̂ , to the inverse cumulative density function to obtain estimated
distribution draws, x̂, and then compare x̂ against the known
distribution draws, x, to minimize the prediction error while
tuning θ̂ . We detail the corresponding equations for obtaining
this distribution fit below. We used the L-BFGS-B bounded
optimization method [34] implemented by the optim() function of
the stats R package [35] to fit the distribution parameters.

F (x, θ) =

∫ x

−∞

f (t, θ) dt = p

Q
(

p, θ
)

= F−1 (

p, θ
)

= x

Minimize :
∑

||x̂i − xi|| ∀i ∈ 1..n

Subject to : x̂i = Q
(

pi, θ̂
)

where,
f ≡ Distribution probability density function (PDF)
F ≡ Distribution cumulative density function (CDF)
Q ≡ Distribution percentile function or inverse CDF
xi ≡ Known distribution draws
pi ≡ Known percentiles corresponding to known distribution

draws
θ̂ ≡ Estimated distribution parameters that are being

optimized/fit
x̂i ≡ Estimated distribution draws from the known percentile

and estimated parameters
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n ≡ Number of known distribution draws with corresponding
known percentiles.

2.1.2. T-statistic stochastic neighbor embedding
plots

The t-SNE coordinates were calculated using the Rtsne package
[36–38]. These plots help visualize higher-dimensional parameter
space sampled by LHS.

2.2. Approximate Bayesian computing with
sequential Monte Carlo sampling

We ran the ABC-SMC inference method for the example
models using the PyMC package [28] version 5.3.0 in the
python programming language. For the immune-HIV-1/AIDS
model, we customized the solver and distance comparison
as follows:

1. We replaced the default SMC multivariate-normal kernel to
the metropolis–hastings kernel as a workaround for crashes
from incomplete model simulations.

2. Instead of comparing simulations against multiple patient
CD4+ cell count timeseries, we chose only a single patient
timeseries to avoid use of summary statistics due to hard-
to-diagnose errors from deferred evaluations of the pytensor
symbolic expressions when attempting to run a summary
statistics function.

3. The patient timeseries is known to be non-progressive
HIV infection. Therefore, to minimize the fixed error from
the distance function while the simulation reaches steady
state, the first 5 years of the simulation are omitted, and
the 5th year onward is compared against the 10 years of
patient timeseries.

3. Results

Our goal is to apply both CaliPro and ABC approaches
to calibrate two different examples and compare them: a
non-complex and complex model. The following models of
ordinary differential equations (ODEs), will be evaluated:
the classic predator–prey model [39, 40], and a viral–
host response model of HIV-1/AIDS infection [41]. While
stochastic models including agent-based models are of
particular interest for these calibration techniques, directly
calibrating such large models is beyond the scope of this
work and instead we discuss these models using examples
already published.

Finally, we will compare calibration performances
of CaliPro-LHS against ABC-SMC to show practical
strengths and weaknesses of each. These approaches
will guide modelers to explore parameter space
of complex non-linear models to incomplete
experimental datasets.

3.1. Ordinary di�erential equation models

3.1.1. Lotka–Volterra
The two-equation predator–prey ODE model [39, 40] is

one of the simplest systems to evaluate fitting against noisy
simulated data:

dx

dt
= +αx− βxy

dy

dt
= −γ y+ δxy

where,
x ≡ prey populationg
y ≡ predator population
α ≡ prey growth rate = 1.0

[

per year
]

β ≡ prey death rate = 0.1
[

per year
]

γ ≡ predator death rate = 1.50
[

per year
]

δ ≡ predator growth rate = 0.75
[

pear year
]

Initial values:
x0 ≡ initial prey population = 10.0
y0 ≡ initial predator population = 5.0
Priors:
α ∼ Half-Normal (µ = 1.0, σ = 1.0)

[

per year
]

β ∼ Half-Normal (µ = 1.0, σ = 1.0)
[

per year
]

(

detuned from µ = 0.1 training data
)

γ = 1.50
[

pear year
] (

fixed
)

δ = 0.75
[

per year
] (

fixed
)

The simulated data instead uses the parameter β =

0.1 and adds random noise drawn from a standard Normal
distribution. The uncalibrated prey death rate parameter β =

1.0 causes the prey population to crash early on and therefore
the predator population to also crash; they only recover
values close to their original population levels starting from
year 5 onward. The uncalibrated population trajectories are
shown by sampling from the prior distribution. We show
results of varying and calibrating the α and β parameters
to a noisy dataset using while keeping parameters γ and
δ fixed.

When we use CaliPro for this set of dependent parameters
even for this non-complex model, we see a limitation of
global LHS sampling: the α and β parameters are dependent,
but LHS assumes the sampled parameters are independent.
We show the parameter ranges adjusted by CaliPro oscillate
between two very similar ranges (Figures 7, 8). The way to
work around this issue of parameter dependence is to simply
fix one of the parameters and calibrate the other. Nevertheless,
we show this calibration result of varying both parameters to
directly compare with the calibration result from the ABC-
SMC method.

For ABC-SMC, we sample 2000 samples for each iteration
until SMC beta convergence (Figure 9A). We subsample
trajectories from parameters before and after calibration. The
calibrated parameters are much closer to the noisy dataset from
using the distance function rather than the wider CaliPro
boundaries, and the expected value of the β parameter
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FIGURE 7

Calibration trajectories of Lotka–Volterra model using CaliPro. (A) We obtain CaliPro pass criteria shown in translucent shaded region by kernel

smoothing to denoise the data and then relax the fit by 8 times the largest residual. Purple curves indicate predator population and green curves

indicate prey population. (B) Pass percentages of simulation replicates start at 4% and reach a maximum of 51% by iteration 28. (C) We consider

simulations to pass if all points of the trajectory are the CaliPro boundaries of (A). Trajectories of simulations at later iterations show oscillation

between the two varied parameters, because the parameters are dependent whereas LHS global sampling assumes parameters are independent.

Calibrating this model with dependent parameters with CaliPro-LHS therefore requires one of the parameters to be fixed. The passing simulations are

colored blue and failing simulations are colored red.
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FIGURE 8

Calibration parameters of Lotka–Volterra model using CaliPro. (A) Parameter 3–97% percentiles for each iteration with iteration 28 yielding the

highest 51% pass rate highlighted in red. (B) Trajectories corresponding to the 51% pass rate showing a wide range of matching parameters. Blue

curves indicate passing simulations and red curves indicate simulations that failed the CaliPro criteria. (C) Parameter space represented as a t-SNE

plot showing tight grouping between pass and fail parameter sets. Blue and red points indicate passing and failing simulations, respectively. Although

a t-SNE plot is not necessary for only two parameters, we use this representation to analyze higher-dimensional parameter space exploration in the

immune-HIV-1/AIDS model. (D) Separated density plots of pass and fail parameter sets of (C).
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FIGURE 9

Calibration of the Lotka–Volterra model using ABC-SMC. (A) We sample from the prior distributions to simulate model outcomes (before fitting to

noisy data), and from the posterior after calibration using ABC-SMC. Purple curves are predator populations and green curves are prey populations.

Out of 2,000 samples, 75 translucent curves of predator-prey population counts illustrate calibration to the noisy data points. (B) The broad

half-Normal priors for the uncalibrated parameters α and β after calibration are sampled very close to the true dataset values of 1.0 and

0.1, respectively.

is closer to the 0.1 value used to generate the noisy data
(Figure 9B).

3.1.2. Immune-HIV-1/AIDS model
The four equation model of immune-HIV-1/AIDS infection

[41] offers additional complexity over Lotka–Volterra model as it
has 8 parameters and also oscillatory regions of parameter space.
The oscillatory regions are challenging for the solver and the solver
will often fail for combinations of parameters that produce sharp
oscillations. Therefore, a calibration method needs to be resilient

to sampled parameter combinations that result in incomplete or
unavailable simulations. The model is:

dT

dt
= s− µT + rT

(

1−
T + Tli + Tui

Tmax

)

− k1VT

dTli

dt
= k1VT − µTTli − k2Tli

dTai

dt
= k2Tli − µbTai

dV

dt
= NµbTai − k1VT − µVV
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where,
T ≡ Uninfected CD4+ cells
Tli ≡ Latently infected CD4+ cells
Tai ≡ Actively infected CD4+ cells
V ≡HIV cells
s ≡ Rate of supply of CD4+ cells from precursors

(day−1mm−3)
r ≡ Rate of growth for the CD4+ cells (day−1)
Tmax ≡Maximum CD4+ cells (mm−3)
µT ≡Death rate of uninfected and latently infected CD4+ cells

(day−1)
µb ≡ Death rate of actively infected CD4+ cells (day−1)
µV ≡ Death rate of free virus (day−1)
k1 ≡ Rate constant for CD4+ becoming infected (mm3day−1)
k2 ≡ Rate latently to actively infected conversion (day−1)
N ≡ Number of free viruses produced by lysing a CD4+ cell

(counts)
Initial values:

T (0) = T0 = 1000

Tli (0) = Tli,0 = 0

Tai (0) = Tai,0 = 0

V (0) = V0 = 1000

Priors:
s ∼ Gamma

(

k = 1.99, θ = 5.68
)

[day−1mm−3]
r ∼ Gamma

(

k = 4.53, θ = 6.99× 10−3
)

[day−1]
Tmax = 1500 [mm−3] (fixed)
µT ∼ Gamma

(

k = 2.11, θ = 0.01
)

[day−1]
µb ∼ Gamma

(

k = 1.99, θ = 0.136
)

[day−1]
µV ∼ Gamma

(

k = 1.99, θ = 1.36
)

[day−1]

k1 ∼ Gamma
(

k = 1.98, θ = 1.35× 10−5
)

[mm3day−1]
k2 ∼ Gamma

(

k = 1.59, θ = 0.002
)

[day−1]
N ∼ Negative-Binomial

(

n = 13.5, p = 0.0148
)

[counts]
The immune-HIV-1/AIDS model that we originally published

used uniform distribution boundaries for all parameters. However,
to make the Bayesian and CaliPro approaches comparable, we
treated the bounds of the uniform distributions as percentiles to fit
the gamma and negative-binomial distributions so that the sampler
could more widely explore parameter space. In addition to the
oscillatory regions of parameter space, this wider parameter space
is an additional challenge imposed rather than the approach of
detuning parameters that we used in the previous example.

Applying CaliPro classifies simulations into pass and fail sets
to adjust parameter ranges, and these classifications are based on
user discretionary boundaries that fit the reference data [14]. We
overlay shows the uninfected CD4+ T-cell counts of 6 patients
[42] with the CaliPro Boolean pass-fail region surrounding all
the tracks rounded to the nearest hundred counts, namely 300
and 2100 (Figure 10A). Across the 5 LHS replicates, 83−92%
of simulations pass using this criterion without making any
adjustments and therefore we do not need to further calibrate as
it risks overfitting the model. Nevertheless, to better understand
how CaliPro and ABC methods handle the immune-HIV-1/AIDS
model with its problematic regions of outcome space, we simulated
CaliPro for 50 iterations so that the parameter fitting can be

compared against ABC. CaliPro was able to identify parameter
ranges with >90% passing simulations at four later iterations
(at iterations 27, 29, 42, and 48) indicated by the peak dots in
Figure 10B, that summarize the pass-fail graphs in Figure 10C,
and the corresponding parameters highlighted in Figure 11A. The
grouping of pass and fail simulations in parameter space is shown
in Figures 11B, C.

Applying ABC, the parameters settled on were nearly a
magnitude away on either side of the reference patient data even
when fixing most of the parameters to values we know do not
produce oscillations (Figure 12). One reason for this may be that
the kernel parameter updates are less tolerant than CaliPro to any
missing model simulations, caused by failing with certain sets of
parameters. To handle missing simulations, the ABC calibration
framework may need to assign infinite distances to incomplete
simulations and treat those specifically when computing the next
proposed parameters in the SMC chains. Together, these two ODE
examples shed light on the strengths and weaknesses of these
methods when applied to dependent parameters and to models
with holes in parameter space. We compare the two approaches in
more detail next.

3.2. Calibration of stochastic models

Comparing the CaliPro-LHS and ABC-SMC methods on
identical complex stochastic models is beyond the scope of this
work. Use of these methods separately on stochastic models been
previously described as follows. CaliPro-LHS has been used to
calibrate the GranSim stochastic agent-based model that captures
formation of lung structures called granulomas during infection
withMycobacterium tuberculosis [14]. ABC-SMC has been used to
calibrate a tumor spheroid growth stochastic agent-based model
[43] and stochastic models of cell division and differentiation [44].

Stochastic models have both aleatory and epistemic
uncertainty. Aleatory arises due to uncertainty in parameter
estimates, and additional uncertainty (epistemic) arises from
stochastic components of the model. We have talked mostly
about aleatory in this work; however, the main difference when
calibrating stochastic models, is this epistemic uncertainty. Thus,
there is an additional requirement to use the same parameter
set but the model must be simulated with different random
number generator seeds at least 3–5 times and then model outputs
aggregated. This reduces the epistemic uncertainty. To prevent any
additional complexity in the calibration code, the model executable
itself can wrap the underlying replicates and aggregation so that
the calibration code only sees the aggregated model outputs in the
same dimensionality as model outputs without using any replicates
[see [14] as an example of this].

3.3. Comparison of CaliPro with ABC-SMC

We present a summary of the differences between CaliPro and
ABC in Table 3. We also point to Figure 2 that further elucidates a
decision flowchart for choosing between thesemethods or choosing
them amongst the landscape of other available methods. Table 3
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FIGURE 10

Calibration trajectories of the immune-HIV-1/AIDS model using CaliPro. (A) Colored dots represent longitudinal data from 6 patients from which we

establish the pass criterion requiring the simulation trajectory to be within the clinical range of 300 to 2100 CD4+ T-cell counts shown with the gray

shading. (B) The simulation pass rate across the 5 replicates starts at 83-92% and therefore the parameters do not require calibration, but we still

simulate CaliPro to explore holes in parameter space. The method shows resilience in recovering high calibration values at iterations 27, 29, 42, and

48. (C) We color trajectories of simulations blue if they pass (i.e., are within the clinical range of 300 to 2100 CD4+ T-cell counts) and red if they fail

(i.e., any point in the trajectory is outside the clinical range).

Frontiers in AppliedMathematics and Statistics 14 frontiersin.org

https://doi.org/10.3389/fams.2023.1256443
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Nanda and Kirschner 10.3389/fams.2023.1256443

FIGURE 11

Calibration parameters of the immune-HIV-1/AIDS model using CaliPro. (A) Parameter 3–97% percentiles for each iteration. Parameter combinations

with more >90% pass percentage are highlighted in red. (B) t-SNE plot of all parameters sampled colored by their pass or fail result (blue or red,

respectively) showing the complexity of the parameter space. (C) Separated density plots of pass and fail parameter sets.

and Figure 2 provide a comprehensive comparison of CaliPro
and ABC.

One significant difference between CaliPro and ABC, is the
implementation difference of employing global or local sampling
to explore parameter space when proposing parameter ranges.

CaliPro typically uses Latin Hypercube Sampling (LHS), which
is a global sampling technique [45]. ABC starts with global
sampling using the initial priors and then progressively updates
the priors using local sampling with sequential Monte Carlo
weight adjustment; the weight adjustment methods are often called
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FIGURE 12

Calibration of the immune-HIV-1/AIDS model using ABC-SMC.

(A) Comparison of posterior draws when varying all parameters,

(B) varying four parameters (and fixing µT = 0.02, r = 0.03,

k1= 2.4× 10−5, k2= 3 × 10−3), and (C) varying three parameters (by

also fixing µb = 0.24). Patient data is shown with the blue line, and

simulated samples after calibration with the orange lines.

particle filtering or importance sampling. Global sampling using
rejection sampling [46] is a simple method used with ABC but
is generally considered too slow to be practical. Therefore, the
approaches of CaliPro and ABC have complementary strengths:
ABC is guaranteed to converge to the true posterior distribution
with sufficient samples, but CaliPro requires fewer iterations and
employs global sampling for all iterations.

The advantages of using CaliPro include a reduced risk
of overfitting to partial experimental data by setting the pass
constraints to accept simulated values that fall within ranges of
experimental data. Secondly, CaliPro is often used with global

TABLE 3 Conceptual di�erences between CaliPro and the probability

density approximation variant of approximate Bayesian computing.

Property CaliPro ABC

Sampling Global: typically, Latin
hypercube sampling (LHS)

Local: typically,
sequential Monte Carlo
(SMC)

Pseudo-
likelihood

Binary: classification into
pass–fail sets

Continuous: distance or
kernel function

Filtering ADS or HDR using pass–fail
sets

Weights of
pseudo-likelihood
particles

Tuning Coverage threshold (only if
using HDR)

Epsilon or kernel
distance

Convergence Absolute pass rate, typically
between 75−90%

Relative autocorrelation
threshold

User discretion Constraint choices Sufficient summary
statistics

Use cases 1. Wide range of outputs
2. Avoid summary statistics
3. Intractable regions of

outcome space

Avoid local maxima

parameter sampling such as Latin hypercube sampling (LHS)
and therefore samples broadly from parameter space [45], which
more robustly captures wider ranges of experimental outcomes.
Lastly, CaliPro is resilient to holes in outcome space because such
outcomes are classified into the fail set to inform future sampling.

4. Discussion

Calibration of complex models often needs to be performed
when building complex models or when adding equations or
reparametrizing. Both CaliPro and ABC rely on pseudo-likelihood
to tune model parameters so that they capture full ranges of
biological and clinical outcomes. As we detail in Table 3, CaliPro’s
use of binary constraints make it possible to encode any number
of constraints from experimental and synthetic datasets. In larger
models, applying these constraints is often done in stages: once
the pass rate is sufficiently high, more stringent constraints can
be applied at later stages of calibration. However, the system of
binary constraints also limits CaliPro, but not limit ABC. Using
CaliPro, a single “bad” parameter value rejects the entire parameter
set whereas the local search of ABC-SMC particle weighting can
help adjust and improve the “bad” parameter value. Said another
way, the discrete binary encoding of CaliPro is not smooth and can
propose narrower parameter sets than ABC. However, the ADS and
HDR functions smooth these discrete pass-fail results into adjusted
parameter ranges. Lastly, ABC is more resilient to getting stuck
on local maxima; CaliPro relies on using replicates to mitigate the
effects of local maxima.

The two different examples we discussed highlights cases where
one method performs better than the other. CaliPro’s LHS assumes
independent parameters. When calibrating the two dependent
parameters of the predator-prey model, CaliPro oscillates between
two sets of these two parameters highlighting the behavior one
may encounter where the parameters being sampled violate the
parameter independence assumption. Fixing one of the dependent
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parameters to calibrate the other is necessary in such a case.
Conversely, ABC-SMC assumes complete data and seems to have
trouble with not-a-number (NaN) model output values. Some
of these errors were mitigated by using the simpler Metropolis–
Hastings kernel of PyMC instead of the default multivariate
Normal kernel. CaliPro accommodates such incomplete simulation
output by assigning such parameters into the fail set for updating
parameter ranges for the next iteration. Thus, CaliPro is resilient to
such discontinuities in parameter space.

The SMC sampler in ABC makes the technique useful for
slow models and/or exploring high dimensional parameter space,
because unlike most other Bayesian samplers where adding more
chains serve only to check intra- and inter-chain parameter
variance, each SMC chain adjusts particle weights to effectively
explore more parameter space. Frameworks like pyABC further
offer the unique feature of adaptively spawning more chains to
minimize sampler wall time.

We encountered several practical challenges with using ABC
software. Surprisingly, even when starting from well-behaved,
published parameter ranges of the immune-HIV-1/AIDS model,
the pyABC software would never complete calibration, even
though 75–84% of simulations passed CaliPro’s more relaxed
Boolean criterion of data-fitting. We encountered two sources
of failures with pyABC: “prior density zero” errors during
sampling, and memory resource exhaustion due to limited
control of the adaptive population samplers. PyMC, another
ABC-SMC framework, was able to complete calibration but we
had challenges troubleshooting errors when attempting complex
distance functions to multiple patient timeseries trajectories
because computation is deferred until much later during execution
making it difficult to relate error messages to the relevant code.
The complex implementations of both pyABC and PyMC makes
it difficult to reason about sources of model fitting errors.
Therefore, the immune-HIV-1/AIDS model example highlights
the simplicity and usefulness of CaliPro for earlier stages of
parameter inference.

Tuning stochastic models requires aggregating additional
model simulations to reduce epistemic uncertainty on parameter
tuning. As mentioned, the simplest way to integrate stochastic
models into calibration frameworks is to make the stochasticity
blind to the calibration framework by wrapping the model
replicates to produce aggregated output with the same
dimensionality as unaggregated output.

Further work for developing CaliPro would entail improving
the numerical complexities with fitting small distributions with
draws close to zero. To work around the numerical stability
of fitting these small draws to distributions, we used rescaling
factors, but appropriately using rescaling factors is specific to the
type of distribution being fit. Rather than using rescaling factors,
an alternative approach that can be used in such probability
algorithm implementations is to convert to log-scale for fitting
and converting back after fitting. Besides fitting small distribution
values, another complexity arising from using the optimizer is
choosing useful initial values of the distribution parameters. More
work is necessary to automatically choose initial values or find

an off-the-shelf software library that provides this feature. Such
work toward improving the distribution tuning method of using
both percentiles and draws allows CaliPro to meaningfully tune
non-uniform parameters from a limited number of simulations.
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