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A mathematical analysis of the
corruption dynamics model with
optimal control strategy
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Nekemte, Ethiopia

Corruption is a global problem that a�ects many countries by destroying

economic, social, and political development. Therefore, we have formulated

and analyzed a mathematical model to understand better control measures

that reduce corruption transmission with optimal control strategies. To verify

the validity of this model, we examined a model analysis showing that the

solution of the model is positive and bounded. The basic reproduction number

R0 was computed by using the next-generation matrix. The formulated model

was studied analytically and numerically in the context of corruption dynamics.

The stability analysis of the formulated model showed that the corruption-free

equilibrium is locally and globally asymptotically stable for R0 < 1, but the

corruption-endemic equilibrium is globally asymptotically stable for R0 > 1.

Furthermore, the optimal control strategy was expressed through the Pontryagin

Maximum Principle by incorporating two control variables. Finally, numerical

simulations for the optimal control model were performed using the Runge-

Kutta fourth order forward and backward methods. This study showed that

applying bothmass education and law enforcement is themost e�cient strategy

to reduce the spread of corruption.
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1 Introduction

Corruption is an ancient and worldwide problem that destroys the economic

development associated with all companies and human associations [1]. Corruption is an

unlawful activity carried out for personal benefit, and the benefit of corruption is obtained

by misuse of power by public or private officeholders [2]. Corruption is considered one

of the frightening components for sustainable economic growth, moral values, and justice

because it disturbs social life and the rule of law [3, 4]. Corruption affects the development

of many countries around the world by reducing the national economy and the internal

peace and security [5, 6]. Corruption is the major cause of poverty around the world,

especially in Africa, and it hinders economic development, undermines democracy, and

damages social justice and the rule of law [7, 8]. In Ethiopia, corruption affects political

systems such as democratic power sharing, accountable and transparent institutions, and

procedures. Furthermore, it is one of the causes of instability and conflict as observed in

the present situations [9, 10].
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The spread of corruption can be understood just as it is

similar to the spread of diseases from one infected person to

another susceptible individual in society, which means a non-

corrupt individual gets infected with a high probability if the

number of corrupt individuals in the social neighborhood exceeds

a certain threshold value; in the case of mean field dependence, an

individual can get corrupted because there is a high prevalence in

society [10]. Introducing strong measures against the corruption

is a very difficult task, since the nature of corruption practices is

very secretive and illicit. However, within a society or country,

it is possible to educate people and change their attitude against

corruption [11]. However, it requires a thorough understanding of

corruption processes to develop intervention strategies to prevent

and mitigate corruption practices [12].

In epidemiology, mathematical modeling plays an important

role. It is an effective tool to understand and describe the dynamics

and transmission of infectious diseases [13]. Therefore, several

authors, including the study mentioned in the references [14–

19], have developed and analyzed mathematical models that

represent the approach of corruption dynamics as a disease

transmissionmodel to evaluate the effects of corruption on national

development. Furthermore, several researchers have developed

mathematical models to represent corruption dynamics following

the approaches adopted in epidemiology. Let us now review some

of such models here.

Hathroubi [20] explained the dynamics of corruption in a

closed population using the epidemiological SIR (Susceptible,

Infected and Removed) model. He has determined the threshold

for the transmission of corruption based on the size of the honest

population. However, he did not perform stability analyses of both

corruption-free and endemic equilibrium points.

Abdulrahman [11] proposed a deterministic mathematical

model with constant recruitment rates and standard incidence

rates for the transmission dynamics of corruption as a disease.

He extended the study by Hathroubi [20] and formulated a

non-linear mathematical model for describing the corruption

transmission. Furthermore, he divided the total population into

four compartments depending on their status of corruption:

Susceptible S(t), Corrupt C (t), Jailed J (t), and Honest H (t).

Employing the Jacobian matrix method and Lyapunov function

approach, he examined and analyzed the stability of both

corruption-free and endemic equilibrium points, respectively.

Numerical simulations were also carried out and confirmed

the analytical results. Additionally, these results revealed that

corruption can only be reduced to a manageable level but cannot

be completely eliminated.

Legesse and Shiferaw [10] proposed a mathematical model for

corruption by considering awareness created by anticorruption

and counseling in jail. They divided the total population into

four compartments, namely, Susceptible S(t), Corrupt C (t), Jailed

J (t), and Honest H (t) individuals and proved that the model

is both epidemiological and mathematically well-posed. In their

model, stability analyses of both corruption-free and endemic

equilibrium were carried out. In addition, the simulation result

shows agreement with the analytical result. However, they did

not design optimal control strategies to minimize the spread of

corruption. Alemneh [21] developed a mathematical model of

corruption dynamics by dividing the total population into five

compartments; such as Susceptible S(t), Exposed to corruption

E (t), Corrupt C (t), Recovered R (t), and Honest H (t) individuals.

He analyzed both the local and global asymptotic stability of the

corruption-free and endemic equilibrium. He extended the model

to optimal control and explored its numerical simulation. He also

suggested that an integrated control strategy should be taken to

combat corruption.

Despite many researchers conducting mathematical modeling

to control corruption transmission, this problem remains present.

The present study developed a mathematical model that represents

corruption dynamics by modifying the study conducted in

Alemneh [21] to understand better control measures of corruption.

This model is further extended to include optimal control strategy

with the following two time-dependent control measures: (i) mass

education of the susceptible individuals and (ii) law enforcement

on the corrupted individuals. Therefore, the study is organized as

follows. Section 2 explains the formulation and description of the

model that represents corruption dynamics. Section 3 represents

basic properties and model analysis including positivity, invariant

region, existence of equilibrium, and stability of the model. In

Section 4, the optimal control strategy is presented. In Section 5, the

numerical simulation of the model is also analyzed. The conclusion

is presented in Section 6.

2 Formulation and description of the
model

The present corruption dynamics model is a modification of

the existing model done by Alemneh [21] by dividing the total

population N (t) into six compartments based on their corruption

status. These are susceptible individuals S(t), exposed individuals

E (t) , corrupted individuals C(t), jailed individuals J(t), recovered

individuals R(t), and honest individuals H(t). Therefore, the total

population is given asN (t) = S(t)+E(t)+C(t)+R(t)+ J(t)+H(t)

and the six compartments are further described as follows:

(i) Susceptible individuals S (t): This compartment contains

individuals who have not been involved so far in any

type of corruption. In addition, it contains individuals who

are already involved in corruption activities but completed

the jail and thus became susceptible. People enter into

this compartment naturally by birth and from the jailed

compartment after finishing their jail term. However, some

of them can leave this compartment and move to exposed

and honest compartments.

(ii) Exposed individuals E (t): This compartment contains

individuals who are already exposed to corruption. Although

these people are already corrupted, they cannot influence or

convert any susceptible individual into corrupted. People will

enter from a susceptible compartment only. However, some

of them can leave this compartment and move to corrupted

and honest compartments.

(iii) Corrupted individuals C(t): These people are capable of

influencing or converting any susceptible individual to be

corrupted. In other words, these individuals can encourage
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and facilitate susceptible individuals to participate in

corruption activities. This compartment contains individuals

who are generated only from the exposed compartment.

However, some of them can leave this compartment and

move to jailed and recovered compartments.

(iv) Jailed individuals J (t): These are the people who were already

engaged in corruption activities and caught. As a result,

these people are imprisoned for a specified period of time,

and hence they are now in jail. People will enter into

this from corrupted and recovered compartments. Similarly,

after they finish their imprisonment period, people can

move either to the susceptible or honest compartment as

they wish.

(v) Recovered individuals R(t): These are the people who had

earlier participated in corruption activities but later left

voluntarily. However, these individuals will move to the

jailed compartment if they are proven to be involved

in corrupted activities. Otherwise, they will move to

the honest compartment.

(vi) Honest individuals H (t): These are the people who do

not participate in any corruptive activity and have no

negative impact on their country’s development. People in

susceptible, exposed, recovered, and jailed compartments can

enter this compartment.

We now describe the flow rates of individuals from one

compartment to the others as follows:

Flow of susceptible individuals S (t): Individuals are recruited

with a constant birth rate 5. Furthermore, after release from

jail, individuals will join susceptible individuals at a rate (1 −

ϕ)θ . Similarly, whenever susceptible individuals contact corrupted

people, they become exposed at a rate ρβ , while others can join the

honest compartment at a rate γ .

Flow of exposed individuals E (t): When influenced by

corrupted people, susceptible individuals will be exposed to

corruption and will enter this compartment at a rate of ρβ .

However, individuals of the exposed compartment will go to

the corrupt compartment at the rate of ωϕ and to the honest

compartment at a rate of (1− ω ) φ.

Flow of corrupted individuals C (t): Individuals from the

exposed compartment will move into the corruption compartment

at a rate of ωϕ. However, people will move out of the corrupted

compartment to the jailed compartment at a rate of τ and to the

recovered compartment at a rate of δ , respectively.

Flow of recovered individuals R (t): Upon leaving corruptive

activities, individuals in the corrupted compartment will move to

the recovery compartment at a rate of δ. However, they move to

jailed compartments at a rate of ηα and honest compartment at a

rate of (1−η)α, respectively. Finally, we assumed the natural death

rate µ in all compartments.

Depending on the assumptions and descriptions of the

parameters and variables, the flow diagram of the compartmental

model is shown in Figure 1.

Based on the flow diagram in Figure 1, we obtained the system

of non-linear ordinary differential equations that represent the

corruption dynamics as follows:



































dS
dt

= 5 + (1− ϕ) θ J − ρβCS− (γ + µ) S,
dE
dt

= ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= τC + ηαR− (θ + µ) J,
dH
dt

= γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH,

(1)

With the following initial condition

S (0) > 0, E (0) ≥ 0, C (0) ≥ 0, R (0) ≥ 0,

J (0) ≥ 0, H (0) ≥ 0. (2)

Descriptions of the parameters in the model are presented in

Table 1.

Descriptions of the variables in the model are presented in

Table 2.

FIGURE 1

Compartmental flow diagram of corruption model.
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TABLE 1 Description of the parameters in the model.

Parameter Description

5 Positive recruitment rate of corruption-free individuals

µ The natural death rate of people in all compartments

ρ Probability of corruption transmission per contact

β The transmission rate of corruption

γ The rate at which susceptible individuals flow into the

honest compartment willingly

ω Proportion of individuals that joins the corrupt

compartment from the exposed compartment

φ The rate at which exposed individuals enter the corrupt

compartment

δ The rate at which corrupt individuals move to the

recovered compartment

τ The rate at which corrupt individuals are caught and

imprisoned.

α The rate at which recovered individuals join the jailed

compartment

η Proportion of individuals that join the jailed

subpopulation from the recovered compartment due to

corruption prosecution

ϕ Proportion of individuals that enter the honest

compartment willingly from jailed compartment

θ The average rate of a person stays in jail

TABLE 2 Description of the variables in the model.

Variables Description

S(t) Number of susceptible individuals

E(t) Number of exposed individuals

C(t) Number of corrupt individuals

R(t) Number of recovered individuals

J(t) Number of jailed individuals

H(t) Number of honest individuals

3 Model analysis

In this section, we investigate the positive solution of the system

(1), its boundedness, and positive invariance. In addition, the basic

reproduction number, the existence of equilibrium, and the stability

of the model are explored and analyzed.

3.1 Positivity solution of the model

Examining the positivity of the solution of dynamical systems

is an imaginary approach to ensure the non-negativity of the

solution [22]. This investigation has been carried out in several

works on mathematical and epidemiological modeling. Therefore,

to show that the presented model (1) is epidemiologically and

mathematically meaningful, we consider the state variables of the

model to be non-negative for all given time t > 0. Thus, we state

the following result.

Theorem 1 The initial population S (0) ≥ 0, E (0) ≥ 0, C (0) ≥

0, R (0) ≥ 0, J (0) ≥ 0 and H (0) ≥ 0 such that the solutions of the

system (1) S (t) , E (t) , C (t) , R (t) , J (t) , H(t) are non-negative for

all t ≥ 0.

Proof: Assume that all state variables are continuous. Then,

from the third equations system of (1) which is given as follows:

dC

dt
= ωφE− (δ + τ + µ )C,

dC

C
=

[

ωϕE

C
− (δ + τ + µ)

]

dt,

C (t) = A1 e

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
. Here, A1 is the

integral constant.

By using the initial condition of Equation (2) that is C (0) ≥ 0,

we obtain C (0) = A1 e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0 . Eliminating the

integral constant A1 the particular solution is obtained as follows:

C (t) = C (0) e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt−
{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0

}

By using the initial condition C (0) ≥ 0, every exponential

function is a positive quantity regardless of the sign of the exponent,

i.e., ex ≥ 0.

Hence,C (t) = C (0) e

{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt−
{

∫

[

ωϕE
C −(δ+τ+µ)

]

dt
}

t=0

}

≥ 0, thus we conclude that C (t) is positive.

Similarly, we have:

R (t) ≥ R (0) e−(α+µ)t ≥ 0,

J (t) ≥ J (0) e−(θ+µ)t ≥ 0,

S (t) ≥ S (0) e
{∫

[−(ρβC+γ+µ)] dt−{
∫

[−(ρβC+γ+µ)] dt}t=0

}

≥ 0,

E (t) ≥ E (0) e−(φ+µ)t ≥ 0,

H(t) ≥ H (0) e−µt ≥ 0.

(3)

Hence, from Equation (3) we concluded that the solutions

S (t) , E (t) , C (t) , R (t) , J (t), and H (t) of the system (1)

are positive for all t ≥ 0. This result is very essential because the

state variables denote human beings and cannot be represented by

negative values.

3.2 Invariant region

Furthermore, to show that the formulated corruption model is

mathematically and epidemiologically meaningful, we consider the

analysis of the system (1) in the feasible region � ⊆ R6+ such that

� =

{

(S, E, C, R, J, H) ∈ R6+ : 0 ≤ S+ E+ C

+ R+ J +H = N (t) ≤
5

µ

}

. (4)

Theorem 2 The feasible solutions of system (1) all entered and

bounded in the region �.

Proof: The invariance region Ω of Equation (4) is obtained by

adding all equations in system (1), and the simplified equation is

written as follows:

dN

dt
= 5 − µN. (5)
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By rearranging and multiplying both sides of Equation (5)

by integrating factors, and after some simplification, we obtained

the following:

N (t) =

(

5

µ

)

+

[

N (0) −

(

5

µ

)]

e−µt . (6)

From Equation (6), we find limt→∞ N(t) ≤ 5
µ
. This indicates

that the total population N (t) takes off from the initial value

N (0) at the beginning and ends up with the bounded value 5
µ

as

time tends to infinity. Thus, it can be concluded that N (t) is

bounded, i.e., 0 ≤ N (t) ≤ 5
µ
. Hence, the solution set of the system

(1) enters and remains in the feasible region �, where the model

is said to be mathematically and epidemiologically well-posed [23,

24].

3.3 The point of corruption-free
equilibrium of the model

To find the corruption-free equilibrium point P0 =

(S0, E0, C0, R0, J0, H0) in the model, we equate the right-hand

sides of the system of Equation (1) to zero and take the corruption-

free compartment E = C = 0. This yields R = 0 and J = 0.

Thus, the corruption-free equilibrium point of system (1) is written

as follows:

P0 =
(

5
(γ+µ)

0, 0, 0, 0, γ5
µ(γ+µ)

)

. (7)

3.4 Basic reproduction number

The basic reproductive number R0 is the average number of

new corrupts formed after the susceptible and corrupt population

contact each other [25–27]. Now, as explained in Theorem 2

in [26], we used the basic reproduction number to determine

the spread of corruption. Thus, for R0 < 1, the corruption

will not be able to spread in the population, but if R0 > 1,

corruption will be able to spread in the population, which allows

control measures of corruption. In the following result, we compute

the basic reproduction number using the next-generation matrix

technique described by the study mentioned in the reference [28].

In particular, using the notation in the study mentioned in the

reference [28], the Jacobian matrix of the new infection terms (F),

and the transfer terms (V), we compute the basic reproduction

number. Thus, the matrix of new corrupt terms and transition

terms is obtained from the corrupt compartments (i.e., E, C, R, and

J) at corruption-free equilibrium and given as follows:

dE
dt

= ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= τC + ηαR− (θ + µ) J.

(8)

From system Equation (8), we obtained the general transition

matrix fi and the transmission matrix V i as follows:

fi =











ρβCS

0

0

0











, and Vi =















(φ + µ)E

(δ + τ + µ)C − ωφE

(α + µ)R− δC

(θ + µ) J − τC − ηαR















,

Where thematrix V i (x) is defined as V i (x) = V
−
i (x)−V

+
i (x)

with V
−
i (x) =











(φ + µ)E

(δ + τ + µ)C

(α + µ)R

(θ + µ) J











, V
+
i (x) =















0

ωϕEJ

δC

τC + ηαR















,

The Jacobian matrices at the corruption-free equilibrium point

(P0) yield the matrices F and V , respectively, where

F =

[

∂fc

∂xj
(P0)

]

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 ρβ5
(γ+µ)

0 0

0 0 0 0

0 0 0 0

0 0 0 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

V =

[

∂Vc

∂xj
(P0)

]

=















(φ + µ) 0 0 0

−ωφ (δ + τ + µ) 0 0

0 −δ (α + µ) 0

0 −τ −ηα (θ + µ)















,

FV−1 =















ρβ5ωφ

(δ+τ+µ)(γ+µ )(φ+µ)
ρβ5

(γ+µ )(δ+τ+µ)
0 0

0 0 0 0

0 0 0 0

0 0 0 0















,

Thus, the basic reproduction number R0 of the corruption

model is the largest eigenvalue of the next generation

matrix. Therefore,

R0 =
ρβ5ωφ

(δ + τ + µ) (γ + µ )(φ + µ)
. (9)

3.5 Stability of corruption-free equilibrium
point

Theorem 3 The corruption-free equilibrium point (P0) of the

system (1) is locally asymptotically stable in � if R0 < 1.

Proof: We used the Jacobian stability techniques on system (1)

to determine the corruption-free equilibrium point (P0) as follows:

J (P0)

=



















−(γ + µ) 0 −
ρβ5

(γ+µ)
0 (1− ϕ) θ 0

0 −(φ + µ) ρβ5

(γ+µ)
0 0 0

0 ωϕ − (δ + τ + µ) 0 0 0

0 0 δ −(α + µ) 0 0

0 0 τ ηα − (θ + µ) 0

γ (1− ω) φ 0 (1− η)α ϕθ −µ



















. (10)
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From the Jacobian matrix of system Equation (10), we obtained

the characteristic polynomial equation of the following form:

(−µ − λ) (− (γ + µ) − λ) (− (θ + µ) − λ) (− (α + µ) − λ)
[

λ2 + k1λ + k2
]

= 0. (11)

where

k1 = φ + δ + τ + 2µ,

k2 = (δ + τ + µ) (φ + µ) −
ρβ5ωϕ
(γ+µ)

.
(12)

Hence, from Equation (11), we have eigenvalues,

λ1 = −µ < 0, λ2 = − (γ + µ) < 0,

λ3 = − (θ + µ) < 0, λ4 = − (α + µ) < 0. (13)

The two lasting eigenvalues are solutions of the quadratic

equation λ2 + k1λ + k2 = 0. After substituting the value of k1
and k2 from the system of Equation (12), we obtain the following:

λ2 + (φ + δ + τ + 2µ) λ + (δ + τ + µ) (φ + µ)

−
ρβ5ωϕ
(γ+µ)

= 0. (14)

Using the Routh–Hurwitz criterion principle [29],

Equation (14) has negative real eigenvalues if and only if

k1 > 0, and k2 > 0. As we observe, k1 = (φ + δ + τ + 2µ) >

0 because it is the sum of positive parameters in the model. In

addition, the value of k2 is explained as follows:

k2 = (δ + τ + µ) (φ + µ) −
ρβ5ωϕ

(γ + µ)

= (δ + τ + µ) (φ + µ) (1− R0) . (15)

From Equation (15), the value of k2 > 0 if and only if R0 < 1

and hence, all the determinants of the eigenvalues of Equation (11)

will have negative real eigenvalues. Therefore, the corruption-free

equilibrium point (P0) is locally asymptotically stable if R0 < 1.

The epidemiological implication of Theorem 3 is that corruption

can be reduced in the population based on the initial sizes of

the sub-populations.

Theorem 4 The corruption-free equilibrium point (P0) of the

system (1) is globally asymptotically stable in � if R0 < 1.

Proof : Let us consider the following Lyapunov function for the

model (1)

F = r1E+ r2C. (16)

Differentiating the Lyapunov function of Equation (16) with

respect to time t, we have:

dF

dt
= r1

dE

dt
+ r2

dC

dt
. (17)

By substituting the value of dE
dt

and dC
dt

from the system of

Equation (1) into Equation (17), we obtain the following:

dF

dt
= r1

[

(ρβ5CS − (φ + µ)E
]

+ r2
[

(ωφE− (δ + τ + µ)C
]

,

= r1(ρβ5CS − r2 (δ + τ + µ)C − r1(φ + µ)E+ r2ωϕE,

=
ωϕ

(φ + µ)
(ρβ5CS− (δ + τ + µ)C.

By taking the value of r1 =
ωϕ

(φ+µ)
r2 and r2 = 1, since S ≤ S0

we get the following:

dF

dt
≤

[

ρβ5ωϕ

(φ + µ) (γ + µ)
− (δ + τ + µ)

]

C,

=

[(

ρβ5ωϕ

(δ + τ + µ) (φ + µ) (γ + µ)
− 1

)

(δ + τ + µ)

]

C,

= [(R0 − 1) (δ + τ + µ)]C. (18)

Hence, from Equation (18) we obtained dF
dt

< 0 for R0 < 1 and
dF
dt

= 0 when C = 0. Therefore, using LaSalle [30], corruption-free

equilibrium point is globally asymptotically stable for R0 < 1.

3.6 Corruption endemic equilibrium point

The corruption endemic equilibrium (P1) is the existence

of corruption in a population and denoted by (P1) =

(S∗, E∗, C∗, R∗, J∗, H∗). It is obtained by setting the system of

Equation (1) to zero as explained in the study mentioned in the

reference [31].

dS

dt
=

dE

dt
=

dC

dt
=

dR

dt
=

dJ

dt
=

dH

dt
= 0. (19)

Hence, the corruption-existent equilibrium point was derived

as follows:































S∗ =
5+(1−ϕ)θ J∗

ρβC∗+(γ+µ)
,

E∗ =
ρβC∗S∗

(φ+µ)
,

R∗ = δC∗

(α+µ)
,

J∗ =
δC∗+ηαR∗

(θ+µ)
,

H∗ =
γ S∗+(1−ω)φE∗+(1−η)αR∗+ϕθ J∗

µ
.

(20)

After some simplification of Equation (20), the value of C∗ was

obtained from the equation three of system (1) as follows:

C∗ =
k1(R0 − 1)

ρβ
(

k2 + k3
) . (21)

where

k1 = (θ + µ) (α + µ) (δ + τ + µ) (φ + µ) (γ + µ) ,

k2 = (θ + µ) (α + µ) (δ + τ + µ) (φ + µ) ,

k3 = (ωθτα + ωθτµ + ωθηαδ) (1− φ) .

Recalling that all the parameters of the model are positive.

Hence, if R0 > 1, from Equation (21), we obtain the value of

C∗ =
k1(R0−1)

ρβ(k2+k3)
> 0. This indicates the existence of corruption

in the entire population and the presence of corruption-endemic

equilibrium point.

3.7 Stability of corruption-endemic
equilibrium point

Theorem 5 The corruption endemic equilibrium point (P1) of

the system (1) is globally asymptotically stable in � if R0 > 1.
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Proof: We used the following Lyapunov function as explained

in the study mentioned in the reference [32, 33], to prove the global

stability of the endemic equilibrium point.

L =
1

2
[B1 + B2 + B3 + B4 + B5 + B6]

2 . (22)

where

B1 =
(

S− S∗
)

, B2 =
(

E− E∗
)

,

B3 =
(

C − C∗
)

, B4 =
(

R− R∗
)

,

B5 =
(

J − J∗
)

, B6 =
(

H −H∗
)

.

By differentiating Equation (22) with respect to time (t), we
obtain the following result:

dL

dt
=

(

[(S− S∗) + (E− E∗) + (C − C∗) + (R− R∗) + (J − J∗) + (H −H∗)]
[

dS
dt

+ dE
dt

+ dC
dt

+ dR
dt

+ dJ
dt

+ dH
dt

]

)

,

dL

dt
=
[(

S− S
∗∗
)

+
(

E− E
∗∗
)

+
(

C − C
∗∗
)

+
(

R− R
∗∗
)

+
(

J − J
∗∗
)

+
(

H −H∗
)

] dN

dt
.

(23)

By substituting Equation (4) into Equation (23) and

simplifying, we get the following expression:

dL
dt

= [(S+ E+ C + R+ J +H)

− (S∗ + E∗ + C∗ + R∗ + J∗ +H∗)] [5 − µN ] .

dL
dt

≤
[

N − 5
µ

]

[5 − µN] . (24)

By simplifying Equation (24), we achieve the following result:

dL

dt
≤ −

1

µ
[5 − µN]2 . (25)

Thus, Equation (25) shows that dL
dt

< 0 and also dL
dt

= 0, if

and only if S = S∗, E = E∗, C = C∗, R = R∗, J = J∗, and

H = H∗. Then, the largest invariant set of the system (1) on the set

(S, E, C, R, J, H) ∈ � ⊂ R6+ :
dL
dt

≤ 0 is the endemic equilibrium

point. Using the LaSalle invariance principle [30], we indicated

that the endemic equilibrium point (P1) is globally asymptotically

stable in � if R0 > 1. The epidemiological implication of Theorem

5 is that corruption will continue to spread in the population.

4 Optimal control strategy analysis

An optimal control strategy is another powerful mathematical

tool widely used in applications that make decisions involving

complex situations [34, 35]. Hence, we use an optimal control

strategy to reduce the transmission of corruption and the costs

associated with control strategies. In this case, the two control

variables were added to system (1) to minimize the spread

of corruption.

The first control variable u1(t) represents the corruption

prevention mechanism (mass education). The second control

variable u2(t) represents the effort rate to reduce the spread

of corruption by implementing law enforcement on corrupted

individuals. Adding the two control strategies to the system (1), the

optimal control model is given by the following non-linear ordinary

differential equations:



































dS
dt

= 5 + (1− ϕ) θ J − (1− u1) ρβCS− (γ + µ) S,
dE
dt

= (1− u1) ρβCS − (φ + µ)E,
dC
dt

= ωφE− (δ + τ + µ + u2)C,
dR
dt

= δC − (α + µ)R,
dJ
dt

= (τ + u2)C + ηαR− (θ + µ) J,
dH
dt

= γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH.

(26)

With the following initial condition,

S (0) ≥ 0, E (0) ≥ 0, C (0) ≥ 0, R (0) ≥ 0, J (0) ≥ 0, H (0) ≥ 0.

(27)

The objective of using optimal control strategies is to find the

values of u+ =
(

u1
+, u2

+
)

of the control u = (u1, u2), which are

bounded between 0 and 1 , such that the associated state trajectories

S, E, C, R, J, and H are solutions of the system (26) in the fixed

period of time [0, tf ].

Our cost functional considers the number of exposed

individuals, the number of corrupted individuals, and the

implementation cost of strategies related to the controls ui, i =

1, 2. Hence, we intend to examine the optimal control strategy that

minimizes the following objective function:

F (u1, u2) = min
u1 ,u2

∫ tf

0

(

a1E+ a2C +
1

2

[

b1u1
2 + b2u2

2
]

)

. (28)

where constants a1, a2, b1, and b2 are positive. The coefficients

a1 and a2 represent the cost weight for exposed and corrupted

individuals, respectively. The coefficients b1 and b2 represent the

relative cost weights associated with control variables u1 and u2,

respectively [36, 37]. tf , represent the final time. Thus, to find the

optimal control functions u1
+ and u2

+, we use the following:

F
(

u1
+, u2

+
)

= min
(u1 ,u2)∈8

F
(

u1(t), u2(t)
)

. (29)

where the set of admissible controls functions 8 is defined

as follows:

8 =
{

(u1, u2) : 0 ≤ ui (t) ≤ 1, i = 1, 2, ui

(t) are Lebesgue measurable on
[

0, tf
]}

. (30)

4.1 Existence of an optimal control function

In this section, we show the existence of optimal control

functions that minimize the cost function over a fixed period

of time. Hence, we obtain the existence of optimal control

using the result of the study mentioned in the reference [38,

39]. The following result guarantees the existence of optimal

control functions.

Theorem 6 There exist optimal control functions u+ =
(

u1
+, u2

+
)

in 8 such that

F
(

u1
+, u2

+
)

= min
(u1 ,u2)∈8

F
(

u1(t), u2(t)
)

. (31)
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Subject to the optimal control model of the system (26) and the initial

condition of Equation (27).

Proof: All the state variables involved in the model are

continuously differentiable. Therefore, we need to verify the

following four conditions given in the study mentioned in the

reference [38, 39].

(i) The set of controls and the corresponding solution to the

system (26) and (27) are non-empty.

(ii) The admissible control set 8 is convex and closed.

(iii) The state system is bounded by a linear function in the control

variables and state variables.

(iv) The integrand I of Equation (28) is convex on 8 and

I(S, E, C, R, J, H, u) ≥ h(u), where h is continuous and

‖u‖−1
h (u) → +∞ as ||u|| → ∞.

To prove condition (i), consider that all the state variables

S, E, C, R, J, H ∈ C′
(

R+, R+
)

and the total human population

are defined as follows:

N (t) = S (t) + E (t) + C (t) + R (t) + J (t) +H (t) (32)

Substitute the governing system (26) into Equation (32) and

after some simplification, we obtain the following:

dN

dt
= 5 − µN. (33)

From Equation (33), we obtain limt→∞ N(t) ≤ 5
µ
.

From this, it follows that the solutions of the state system

are continuous and bounded for each admissible control function

in 8. Therefore, the initial value problem (26) and (27) has a

unique solution corresponding to each admissible control function

8 [40, 41].

To prove conditions (ii), consider the admissible control set

8 =
{

u ∈ R2 : ‖u‖ ≤ 1− ε
}

.

Let u1, u2 ∈ 8, such that ‖u1 ‖ ≤ 1 − ε and ‖u2 ‖ ≤

1 − ε. Then, for any η ǫ [0, 1 ], ‖ηu1 + (1− η) u2 ‖ ≤ η ‖u1 ‖ +

(1− η) ‖u2 ‖ ≤ 1 − ε. This indicates that admissible control set

8 is convex and closed. The condition (iii) is explicitly verified

using the algorithm as proved in Theorem 1.1 of [42]. The

integrand of objective function Equation (28) a1E(t) + a2C(t) +
1
2

[

b1u1
2 + b2u1

2
]

is clearly convex on 8. Moreover,

I (S, E, C, R, J, H, u) = a1E (t) + a2C (t) +
1

2

[

b1u1
2 + b2u1

2
]

≥
1

2

[

b1u1
2 + b2u1

2
]

. (34)

Let ρ = min
(

b1
2 ,

b2
2

)

> 0 and define a continuous

function h (u) = ρ ‖u‖2. Then, from the Equation (34), we

have I (S, E, C, R, J, H, u) ≥ h (u) and ‖u‖−1
h (u) →

+∞ as ||u|| → ∞. Hence, condition (iv) is satisfied. Therefore,

the existence of an optimal control pair satisfies the theorem.

4.2 Description of optimal control function

In this section, we solve the optimal control problem that

satisfies the necessary conditions by using the Pontryagin

maximum principle. Based on the objective function Equation (28)

and the optimal control model (26), we establish the Hamiltonian

function Q with respect to control variables u1(t) and

u2 (t) as follows:

Q = a1E+ a2C + 1
2

[

b1u1
2 + b2u2

2
]

+π1 [5 + (1− ϕ) θ J − (1− u1) ρβCS− (γ + µ) S]

+π2 [(1− u1) ρβCS − (φ + µ)E ]

+π3 [ωφE− (δ + τ + µ + u2)C]

+π4

[

δC − (α + µ)R
]

+π5 [(τ + u2)C + ηαR− (θ + µ) J]

+π6 [γ S+ (1− ω) ϕE+ (1− η) αR+ ϕθ J − µH] .

(35)

where π1, π2, . . . , π6 are the adjoint functions which are

determined using Pontryagin’s minimum principle [37], with the

evidence of [38], we state the theorem as follows:

Theorem 7 Let us consider the optimal control u+ =
(

u1
+, u2

+
)

and the unique solution of
(

S, E, C, R, J, and H
)

from the system (26) corresponding to the state equation that

minimizes u = (u1, u2) over 8. Then, there exist adjoint function,

π1, π2, . . . , π6 satisfying the following established equations:

dπ1
dt

= π1 [(1− u1) ρβC + (γ + µ)]− π2 (1− u1) ρβC − π6γ ,
dπ2
dt

= −a1 + π2 (φ + µ) − π3ωφ − π6 (1− ω) φ,
dπ3
dt

= −a2 + π1 (1− u1) ρβS− π2 (1− u1) ρβS

+π3 (δ + τ + µ + u2) − π4δ − π5 (τ + u2) ,
dπ4
dt

= π4 (α + µ) − π5ηα − π6 (1− η) α,
dπ5
dt

= −π1 (1− ϕ) θ + π5 (θ + µ) − π6ϕθ ,
dπ6
dt

= π6µ.

(36)

With transversality condition

π1(tf ) = π2(tf ) = π3(tf ) = π4(tf ) = π5(tf ) = π6(tf ) = 0. (37)

TABLE 3 Standard values for parameter of the system (1).

Parameter Standard value Source

5 500 Assumed

β 0.0234 [10]

ρ 0.036 [11]

µ 0.016 [10]

γ 0.000001 [11]

ω 0.3 [18]

φ 0.02 [10]

δ 0.007 [18]

τ 0.000001 [11]

α 0.0001 [12]

η 0.03 [18]

ϕ 0.04 Assumed

θ 0.143 [11]
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Moreover, for t ∈
[

0, tf
]

, the optimal controls u1
+ and u2

+ are

given as follows:

u1
+ = min

{

1,max
(

0, (π2−π1)ρβCS
b1

)}

,

u2
+ = min

{

1,max
(

0, (π3−π5)C
b2

)}

,
(38)

Proof: The co-state equations can be computed by the

Pontryagin maximum principle, which is given in the study

mentioned in the reference [38]. By differentiating the Hamiltonian

Equation (35), with S, E, C, R, J , andH respectively, we obtain the

adjoint system as follows:

dπ1
dt

= −
∂Q

∂S(t) = π1 [(1− u1) ρβC + (γ + µ)]− π2 (1− u1)

ρβC − π6γ ,
dπ2
dt

= −
∂Q

∂E(t) = −a1 + π2 (φ + µ) − π3ωφ − π6 (1− ω) φ,
dπ3
dt

= −
∂Q

∂C(t) = −a2 + π1 (1− u1) ρβS− π2 (1− u1) ρβS

+π3 (δ + τ + µ + u2) − π4δ − π5 (τ + u2) ,
dπ4
dt

= −
∂Q

∂R(t) = π4 (α + µ) − π5ηα − π6 (1− η) α,
dπ5
dt

= −
∂Q

∂J(t) = −π1 (1− ϕ) θ + π5 (θ + µ) − π6ϕθ ,
dπ6
dt

= −
∂Q

∂H(t) = π6µ .

(39)

With transversality condition

π1

(

tf
)

= π2

(

tf
)

= π3

(

tf
)

= π4

(

tf
)

= π5

(

tf
)

= π6

(

tf
)

= 0.

(40)

Furthermore, using the optimality condition, we can find the

value of optimal control functions u1
+ and u2

+ for t ∈
[

0, tf
]

,

∂Q
∂u1

= 0, at u1 = u1
+,

∂Q
∂u1

=
∂Q

∂u1+
= b1u1 + π1ρβCS− π2ρβCS = 0,

u1
+ =

(π2−π1)ρβCS
b1

.

∂Q
∂u2

= 0, at u2 = u2
+,

∂Q
∂u2

=
∂Q

∂u2+
= b2u2 − π3C + π5C = 0,

u2
+ =

(π3−π5)C
b2

.

(41)

Moreover, by using the boundary condition and simplifying the

solution of Equation (41), we obtain the following optimal controls:

u1
+ = min

{

1, max
(

0, (π2−π1)ρβCS
b1

)}

,

u2
+ = min

{

1, max
(

0, (π3−π5)C
b2

)}

,
(42)

Hence, the optimal control function is described, and we can

use the simulation of an optimality system to determine the best

strategies that minimize corruption dynamics.

5 Numerical simulations of the model

In this section, we used the forward–backward sweep to solve

the state and adjoint systems in order to obtain the optimal strategy.

Therefore, to solve the state Equations (26) due to the initial value

of the state variables, we used the forward fourth-order Runge–

Kutta method.

Similarly, to solve the adjoint equations, we used the backward

fourth-order Runge–Kutta method due to the transversality

condition Equation (37) having the solution of state functions and

the value of optimal controls. The initial conditions that we used

for the numerical simulation of the optimality system are S (0) =

50, 000, E (0) = 200, C (0) = 500, R (0) = 100, J (0) =

50, and H (0) = 100, as well as the weight constant values for

the states and controls variables are a1 = 60, a2 = 80, b1 =

60, and b1 = 40. The standard parameter values of the model are

displayed in Table 3, as follows.

Therefore, we consider the following three strategies to

determine the impact of each control on corruption reduction.

5.1 Strategy (i): strategy with only mass
education (u1) as prevention measure

Here, to optimize the objective function of the system (26), we

used only mass education (u1) on susceptible individuals while the

control strategy (u2) is not applied. As shown in Figure 2A, the

number of exposed individuals decreases and then is constant over

a fixed period of time. This indicates that the number of exposed

population increases if there are no control strategies. Similarly,

as shown in Figure 2B, we observe that the number of corrupt

population decreases as the control strategy is used over a fixed

period of time. In another way, the number of populations that

participate in corruption activity increases if there are no control

strategies. Therefore, we conclude that the mass education strategy

plays an important role in the prevention of corruption activity.

5.2 Strategy (ii): strategy with only law
enforcement (u2) as reduction measure

Here, we use only the law enforcement (u2) strategy on

corrupted individuals in order to optimize the objective function

of the system (26), while the control strategy (u1) is equal to zero.

We observe in Figure 3A that due to the law enforcement control

strategy, the number of exposed individuals slowly decreased.

However, as shown in Figure 3B, we observed that the number of

corrupt population decreases significantly as the law enforcement

control strategy is used. Therefore, we conclude that the law

enforcement control strategy decreases both the number of exposed

and corrupted populations. However, the number of corrupt

populations spreads rapidly if the law enforcement control strategy

is not applied.

5.3 Strategy (iii): Using both mass education
(u1) and law enforcement (u2) control
strategy

In this strategy, we use the combination of mass education

(u1) and law enforcement (u2) control strategy on susceptible and

corrupted individuals, respectively, that can optimize the objective

function of the system of the study mentioned in the reference [26].

We observe in Figure 4A that the number of exposed individuals

decreases significantly if we apply the control strategies, whereas

if not, the number of exposed populations increases. Similarly,
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A B

FIGURE 2

The e�ect of using only the mass education control strategy (u1 6= 0).

A B

FIGURE 3

The e�ect of using only the law enforcement control strategy (u2 6= 0) .

as shown in Figure 4B we show that the number of corrupted

populations decreases significantly as control strategies are used,

while the number of corrupted populations increases if there is

no control strategy. Therefore, we conclude that applying both

mass education and law enforcement strategies against corruption

decreases both the number of exposed and corrupted populations

in a given fixed period of time. This increases the number of jailed

population, as shown in Figure 4C.

6 Result, discussion, and conclusion

In this study, we develop a deterministic mathematical model

for the transmission of corruption dynamics to study the effect

of corruption in the population based on the corrupt status. To

show that the formulated corruption model is mathematically

and epidemiologically meaningful, we conducted a qualitative

analysis of the model by showing that the solution of the model

is positive and bounded. The basic reproduction number was

calculated using the next-generation matrix method. The stability

of the corruption-free and endemic equilibrium for the corruption

dynamics model was analyzed in terms of the reproduction

number. The analysis shows that for R0 < 1, the corruption-

free equilibrium point is asymptotically stable both locally and

globally. It means that if the average number of new corrupted

individuals generated by a single corrupted individual introduced

into a susceptible population under any condition is less than

one, the corruption will be minimized from the population.

On the other hand, for whatever conditions if R0 > 1, the

corruption endemic equilibrium point is both locally and globally

asymptotically stable. It means that corruption will increase in

the population.

Furthermore, we extended the model to an optimal control

strategy by incorporating two control variables, such as mass

education and law enforcement. The necessary conditions for

optimal controls such as existence and characterization were

investigated with the help of Pontryagin’s Maximum Principle.

Finally, we have examined the numerical simulations of the

optimal control model by considering individually and combining

the control variables. Based on the results of the numerical

analysis, we propose that using both mass education and law

enforcement against corruption is the best strategy to minimize

the number of exposed and corrupted populations. Therefore,

anticorruption institutions and policymakers can use this finding

as a good effort to reduce the corruption spread in the population.

A significant and interesting aspect of the future study is to

implement parameter estimation and cost-effectiveness analysis in

the corruption dynamics model.
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A

C

B

FIGURE 4

The e�ect of using both mass education (u1 6= 0) and law enforcement (u2 6= 0) strategies on the state variables.
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