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This research article presents a mathematical model that tracks and monitors

the spread of COVID-19 strains in a discrete time frame. The study incorporates

two control strategies to reduce the transmission of these strains: vaccination

and providing appropriate treatment and medication for each strain separately.

Optimal controls were established using Pontryagin’s maximum principle in

discrete time, and the optimality system was solved using an iterative method.

To validate the e�ectiveness of the theoretical findings, numerical simulations

were conducted to demonstrate the impact of the implemented strategies in

limiting the spread of COVID-19 mutant strains.
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1 Introduction

Optimal Control Theory is a significant framework for optimizing dynamic systems.

It was developed in the mid-twentieth century to find the best way to control systems

over time while considering constraints and specific goals. Dynamic programming was

introduced by Richard Bellman in the 1950’s, and Lev Pontryagin developed the maximum

principle in the 1960’s, both of which were breakthroughs in the field. Since its inception,

optimal control theory has become increasingly important in various fields, including

engineering, epidemiology, and economics, owing to advancements in computing and

mathematics. It is a crucial tool for decision making and improving system performance,

making it essential for designing and optimizing dynamic processes.

In epidemiology, the optimal control theory is a valuable tool for enhancing control

strategies against infectious diseases. Unlike conventional methods, which often rely on

fixed interventions, optimal control theory adopts a dynamic approach that considers

changing control measures over time. By considering factors such as transmission rates,

intervention costs, and resource limits, optimal control models can identify strategies that

maximize intervention impact while minimizing costs. This perspective provides a more

comprehensive understanding of how epidemics work, which helps identify the best timing

and intensity for interventions. Consequently, optimal control theory can lead to more

adaptable, efficient, and personalized strategies that ultimately help manage and contain

infectious diseases more effectively in populations. There have been several studies that

utilized this method, such as Zakary et al. [1] who provided a comprehensive assessment

of the impact of the Ebola virus and examined strategies for combating it using the optimal
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control approach. This approach also plays a role in transferring

knowledge and raising awareness about serious diseases. Laarabi et

al. [2] utilized amathematical model of an SIR epidemicmodel with

a saturated incidence rate and used optimal vaccination strategies

to reduce the number of infected individuals and susceptible

people while increasing the number of recovered individuals.

Furthermore, many studies have focused on continuous modeling

[3–7].

In this research, we employ discrete-time modeling, which is

highly applicable in practical contexts. This is because numerous

real systems naturally operate in discrete time, making discrete-

time modeling a more precise representation. The accuracy of

this method enhances the usefulness of the results in real-world

situations, allowing for more effective decision-making in diverse

circumstances. The data collected for this study were obtained

at regular intervals, such as daily, weekly, monthly, or annual

periods. Furthermore, providing treatment and medication for

infected individuals and administering vaccinations for susceptible

individuals were also conducted at specific times. Additionally, the

use of discrete-time models streamlines the mathematical analysis

by avoiding the intricate issues encountered in continuous-time

modeling, such as the need to choose functional domains and

ensure solution uniformity. Discrete-timemodels operate at precise

intervals, such as days, weeks, months, or years. The discrete nature

of these time intervals guarantees solution uniformity.

The appropriateness of numerical simulation methods for

accurately simulating discrete-time optimal control systems and

the computational efficiency of these methods for implementing

discrete-time optimal control models are examined. Several

studies have been conducted on the discrete-time modeling of

dynamic systems. For instance, Kouidere et al. [8] proposed a

discrete mathematical model that described the dynamics of a

population of diabetics, emphasizing the impact of the living

environment, such as unhealthy food and poor health habits, on

diabetics without complications. El Bhih et al. [9] presented a

study on optimal control strategies for a discrete model of the

spread of Novel Coronavirus Disease, where the population is

categorized into six compartments, representing different stages

of infection, and an optimal strategy is proposed to combat

the spread, utilizing controls such as media and education

for sensitization and prevention, home quarantine for infected

individuals, hospital quarantine for those with complications,

and specialized hospital quarantine for individuals with multiple

health conditions requiring breathing assistance. Balatif et al.

[10] introduced a discrete mathematical model capturing citizens’

dynamics and electoral behavior during awareness programs or

election campaigns. The authors El Bhih et al. [11] proposed

a mathematical model to analyze the spread of rumors in a

social network. This model comprises four compartments, each

representing a subpopulation’s reaction to the rumor. They

introduced control measures to curb the spread of the rumor.

Toufga et al. [12] introduced a spatiotemporal discrete model for

tuberculosis (TB), dividing individuals into susceptible, infected,

exposed, and recovered categories. They proposed a control

strategy that aims to reduce the number of infected and exposed

individuals. Three controls were implemented: a public awareness

campaign to educate the public about TB symptoms, signs,

and treatments; chemoprophylaxis efforts for latently infected

individuals; and treatment efforts for actively infected individuals.

Several studies have focused on related topics [13–17].

The emergence and evolution of SARS-CoV-2 variants have

posed significant challenges to global public health efforts

combatting the COVID-19 pandemic. Notable variants include

Alpha (B.1.1.7), first identified in the United Kingdom in

September 2020 and designated as a variant of concern (VOC)

in December 2020. Beta (B.1.351), which originated in South

Africa in May 2020, was labeled as a VOC in December 2020.

Gamma (P.1), which emerged in Brazil in November 2020, was

designated as a VOC in January 2021. Delta (B.1.617.2), first

detected in India in October 2020, was initially classified as a

Variant of Interest (VOI) in April 2021 and later upgraded to a

VOC in May 2021. Finally, the Omicron parent lineage (B.1.1.529),

identified in multiple countries in November 2021, was initially

classified as a variant under monitoring (VUM) in November 2021

and was later designated as a VOC in November 2021. These

classifications and designations reflect the evolving understanding

of SARS-CoV-2 variants and their potential impact on global

public health, as documented by the World Health Organization.

To access the WHO link and view the document on Historical

working definitions and primary actions for SARS-CoV-2 variants

[the World Health Organization].

Multiple studies have been conducted on the dynamics of

population and transmission of different strains of COVID-

19 with optimal control. Khajji et al. [18] proposed control

strategies to reduce the number of infectious people and minimize

the cost spent on vaccination and awareness programs. They

divided the population into n + 5 compartments: Susceptible,

Exposed, Infected with ith strain Ii, Hospitalized, Quarantined, and

Recovered. The optimal control problem and related optimality

conditions of the Pontryagin’s maximum principle type were

discussed to minimize the number of infected individuals. Gao

et al. [19] developed a multi-strain model with infectious

asymptomatic classes and applied it to COVID-19 dynamics

in the US. They obtained the basic reproduction numbers for

the two strains and interpreted their biological significance.

Rigorous analyzes of the local and global stability of DFE

were performed. Explicit formulas for two strain-dominant

equilibria were also derived and analyzed for their local and

global stability. Khajji et al. [14] formulated a multi-region

discrete mathematical model that describes the dynamics of the

transmission of COVID-19 between humans and animals in a

region and between different regions. The strategies used in

this study include awareness programs, health measures, and

security campaigns. Efforts were made to encourage exposed and

infected individuals to join quarantine centers. The last control

is the disposal of infected animals to reduce the number of

infected individuals and infected animals. Elqaddaoui et al. [20]

developed a stochastic model that describes the propagation of

COVID-19 variants, they assumed that the transmission rates of

variants change over time due to the fluctuation of the weather
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and the temperature. Many studies have focused on this aspect

[18, 19, 21–23].

1.1 Problem statement

Based on the advantages we previously mentioned of discrete-

time mathematical modeling, as well as its compatibility with other

mathematical theories, and its suitability for numerical simulation,

in addition, noting the absence of the researches addressing

this mathematical mechanism for monitoring the evolution and

propagation of mutated strains of the COVID-19 virus. This

study employed mathematical modeling in discrete time to track

developments in the spread of COVID-19 variants. Due to the

emergence of several COVID-19 variants that were mentioned

previously, as mentioned on The World Health Organization

website [24], in this study, the population is divided into n +

2 compartments, S presents the susceptible, Ij presents the jth

strain, where j = 1, 2, 3, ..., n, and R represents the recovered

people. In addition, we proposed two strategies: a vaccination

strategy for the susceptible and a strategy of providing the

appropriate treatment and medication for individuals infected

with each strain separately to control and limit the spread of

these strains at the minimum costs possible, deliberately avoiding

the quarantine strategy because of its negative economic effects

on individuals and different areas of economy, society, and life,

and most studies used this strategy such that El Bhih et al. and

Khajji et al. [9, 14, 18]. The goal was to evaluate the efficiency of

the two strategies used to fight the spread of mutant strains by

developing a discrete-time mathematical model that approximates

a realistic picture of the spread of these strains by integrating

the two aforementioned strategies into this model, which leads

to an optimal control problem. In the followings sections, we

used some mechanisms of optimal control theory, especially

Pontryagin’s maximum principle is used to obtain the desired

results.

The remainder of this study is organized as follows. Section

2 introduces a discrete-time mathematical model, describes the

model, and presents an optimal control problem. Section 3

describes the existence of optimal controls and characterizes them

using Pontryagin’s maximum principle in discrete time. Section

4 presents numerical simulations to further illustrate the model.

Finally, Section 5 concludes the study.

2 A Mathematical model and
description of the model

In this study, we assume that there are n mutant strains that

are denoted by I1, I2, I3, ..., In. Note that each strain Ii spreads

at transmission rate βi. The proportions P(i), S(i), Ij(i), (j =

1, 2, ..., n), and R(i) represent the number of the entire population,

the number susceptible to infection, the number of people infected

with strain Ij, and the number of people recovered respectively at

time i. We consider the population denoted by P(i) = S(i) +
∑n

j=1 Ij(i) + R(i). Figure 1 describes interactions between all

compartments with their rates of this population.

FIGURE 1

Description diagram of the multi-strains spread.

The following dynamic system represents the mathematical

model that describes the spread of all mutant strains of this disease.















































S(i+ 1) = 3 +

(

1− µ

)

S(i)−
n
∑

j=1
βjIj(i)S(i).

Ij(i+ 1) =
(

1− γj − ωj − µ

)

Ij(i)+ βjIj(i)S(i) j = 1, 2..., n.

R(i+ 1) =
n
∑

j=1
γjIj(i)+

(

1− µ

)

R(i).

(1)

whereµ is the natural death rate,3 is the recruitment rate, βj is the

transmission rate of strain Ij, γj is the recovery rate from strain Ij,

and ωj is the death rate due to strain Ij. Figure 2 shows the spread of

two strains in the natural state, that is, without any interventionist

policy to limit the spread of these strains.

FIGURE 2

The states variables without controls.
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2.1 The optimal control problem

This study aimed to evaluate the evolution of the spread of

mutant strains using strategies that do not have negative effects on

other areas to limit the excessive spread of these strains, such as

the vaccination strategy and the strategy of providing appropriate

treatment andmedication while avoiding strategies that might have

negative repercussions in other areas. In this study, we intentionally

avoided the quarantine strategy due to its negative impacts on

the economic sector for both individuals and society and the

service sector and other areas. The important role of this study is

to assess the efficiency of both strategies, vaccination u, and the

provision of appropriate treatment andmedication vj for strain Ij in

limiting the spread ofmutant strains, without relying on quarantine

strategy measures. We incorporate both strategies into this model

(Equation 1). Then, we obtain the following:























































S(i+ 1) = 3 +

(

1− µ

)

S(i)−
n
∑

j=1
βjIj(i)S(i)− u(i)S(i).

Ij(i+ 1) =
(

1− γj − ωj − µ

)

Ij(i)+ βjIj(i)S(i)− v(i)jIj(i)

j = 1, 2..., n.

R(i+ 1) =
n
∑

j=1
γjIj(i)+

(

1− µ

)

R(i)+
n
∑

j=1
vj(i)Ij(i).

(2)

The quantities S(0) = S0, Ij(0) = Ij,0, (j = 1, 2....n), and

R(0) = R0 are the initial conditions.

The objective function is defined, and the purpose of the

optimal control problem is to find the control inputs that minimize

this objective function while satisfying System Dynamic Equation

(2) and its initial conditions.

J(u, v1, v2..., vn)

=

T−1
∑

i=1

(

n
∑

j=1

AjIj(i)− BR(i)+
1

2
Cu2(i)+

1

2

n
∑

j=1

Djv
2
j (i)

)

+

n
∑

j=1

AjIj(T)− BR(T) (3)

where Aj > 0, B > 0, C > 0, and Dj > 0 for j ∈ {, 1, ...T} are

cost coefficients. We chose these constants to weigh their relative

importance of I1(i), I2(i), ..., In(i),R(i), u(i), v1(i), v2(i), ..., and vn(i)

at time i, and T is the final time. Our objective is to reduce the

number of infected persons while also reducing systemic expenses

by striving to maximize the number of people recovered from each

Ij strain. In other words, we are looking for the optimal control

(u∗, v∗1 , v
∗
2 ..., v

∗
n) such that:

J(u∗, v∗1 , v
∗
2 ..., v

∗
n) ≤ J(u, v1, v2..., vn), ∀u ∈ U, ∀vj ∈ Vj.

where U and Vj, j = 1, 2..., n are admissible control sets defined

as follows:

U =

{

u : u(i) ∈
[

0, umax

]

, i ∈
[

0, T − 1
]

}

.

Vj =

{

vj : vj(i) ∈
[

0, vmax
j

]

, i ∈
[

0, T − 1
]

}

, j = 1, 2, .....n.

2.2 Existence of the optimal control

The sufficient condition for the existence of an optimal controls

for problem (Equation 2) comes from the following theorem.

Theorem 2.1. There exist the optimal controls (u∗, v∗1 , v
∗
2 ..., v

∗
n) such

that:

J(u∗, v∗1 , v
∗
2 ..., v

∗
n) ≤ J(u, v1, v2..., vn), ∀u ∈ U, ∀vj ∈ Vj.

subject to the discrete-time control system (Equation 2) with initial

conditions.

Proof: Because the number of time steps is finite and the

coefficients of all the states of the equations are bounded, S =

(S0, S1, ..., ST), for j = 1, 2, ..., n, we have Ij = (I0j , I
1
j , ..., I

T
j ) and

R = (R0,R1, ...,RT) are uniformly bounded for all u ∈ U and

vj ∈ Vj, j = 1, 2, ..., n. Thus, J(u, v1, v2..., vn) is bounded for all

u ∈ U and vj ∈ Vj, j = 1, 2, ..., n. Because J(u, v1, v2..., vn) is

bounded,

inf

u∈U, (v1 ,v2 ,...,vn)∈
n
∏

j=1
Vj

J(u, v1, v2..., vn) is finite.

Moreover, there exists a sequence (uk, vk1, v
k
2..., v

k
n) with u ∈ U

and vj ∈ Vj, j = 1, 2, ..., n such that:

lim
k→+∞

J(uk, vk1, v
k
2..., v

k
n) = inf

u∈U, (v1 ,v2 ,...,vn)∈
n
∏

j=1
Vj

J(u, v1, v2..., vn)

and the corresponding sequences of the states Sk, Ik1 , I
k
2 , ..., I

k
n, and

Rk. Because there are a finite number of uniformly bounded

sequences, there exist (u∗, v∗1 , v
∗
2 ..., v

∗
n), u ∈ U, vj ∈ Vj with

j = 1, 2, ..., n and S∗, I∗1 , I
∗
2 , ..., I

∗
n , and R∗ ∈ R

T+1 such that,

on a subsequence, (uk, vk1, v
k
2..., v

k
n) −→ (u∗, v∗1 , v

∗
2 ..., v

∗
n) ,S

k −→

S∗, Ik1 −→ I∗1 , I
k
2 −→ I∗2 , ..., I

k
n −→ I∗n , and Rk −→ R∗. In the

last, due to the finite dimensional structure of system (Equation 2)

and the objective function, J(u, v1, v2..., vn) and (u∗, v∗1 , v
∗
2 ..., v

∗
n) are

optimal controls with corresponding states S∗, I∗1 , I
∗
2 , ..., I

∗
n , and R∗.

Therefore :

inf

u∈U, (v1 ,v2 ,...,vn)∈
n
∏

j=1
Vj

J(u, v1, v2..., vn) has been achieved.

We utilized the discrete form of Pontryagin’s maximum

principle, as detailed in references [25–28]. The main concept

involves introducing a co-state function that links the set of

difference equations representing the system to the objective

function. This linkage results in the creation of the Hamiltonian

function. Essentially, this principle transforms the task of

determining the optimal control to enhance the objective function

(Equation 3) by considering the state difference equation with

an initial condition. The objective is to identify the control that
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optimizes the Hamiltonian at each point concerning the control,

so the Hamiltonian H at time step k is defined as follows:

Hk =

n
∑

j=1

AjIj(k)−BR(k)+
1

2
Cu2(k)+

1

2

n
∑

j=1

Djv
2
j (k)+

n+2
∑

j=1

λj,k+1fj,k+1

(4)

where fj,k+1 represents the right side of the equation in a dynamic

system (Equation 2) of the jth state variable at time step k+ 1.

By replacing fj,k+1 with its expression found in system

(Equation 2) in the Hamiltonian (Equation 4) we get:

Hk =

n
∑

j=1

AjIj(k)− BR(k)+
1

2
Cu2(k)+

1

2

n
∑

j=1

Djv
2
j (k)+ λ1,k+1

(

3 + (1− µ)S(k)− 6n
j=1βjIj(k)S(k)− u(k)S(k)

)

+

n+1
∑

j=2

λj,k+1

(

(

1− γj−1−ωj−1−µ
)

Ij−1(k)+βj−1Ij−1(k)S(k)− v(k)j−1Ij−1(k)

)

+ λn+2,k+1

( n
∑

j=1

γjIj(k)+ (1− µ)R(k)+

n
∑

j=1

vj(k)Ij(k)

)

The states S∗, I∗1 , I
∗
2 , ..., I

∗
n , and R∗ describe the evolution of

the system’s state variables of (Equation 2) over time under the

influence of the optimal controls (u∗, v∗1 , v
∗
2 ..., v

∗
n) . These state

variables represent different compartments of a population.

Theorem 2.2. Given optimal controls (u∗, v∗1 , v
∗
2 ..., v

∗
n) and the

associated solutions S∗, I∗1 , I
∗
2 , ..., I

∗
n , and R∗ of the corresponding

states system (Equation 2),

there exists co-states λ1,k, λ2,k, ..., λn+2,k satisfying:

i) The co-state equations:































































































































































λ1,k = λ1,k+1

(

1− µ −
n
∑

j=1
βjIj(k)− u(k)

)

+
n+1
∑

j=2
λj,k+1βj−1Ij−1(k).

λ2,k = A1 − λ1,k+1β1S(k)+ λ2,k+1

(

β1S(k)+ 1− γ1 − ω1 − µ − v1(k)
)

+λn+2,k+1

(

γ1 + v1(k)
)

.

λ3,k = A2 − λ1,k+1β2S(k)+ λ3,k+1

(

β2S(k)+ 1− γ2 − ω2 − µ − v2(k)
)

+λn+2,k+1

(

γ2 + v2(k)
)

.

λ4,k = A3 − λ1,k+1β3S(k)+ λ4,k+1

(

β3S(k)+ 1− γ3 − ω3 − µ − v3(k)
)

+λn+2,k+1

(

γ3 + v3(k)
)

.

.

.

.
λn,k = An−1 − λ1,k+1βn−1S(k)+ λn,k+1
(

βn−1S(k)+ 1− γn−1 − ωn−1 − µ − vn−1(k)
)

+ λn+2,k+1

(

γn−1 + vn−1(k)
)

λn+1,k = An − λ1,k+1βnS(k)+ λn+1,k+1
(

βnS(k)+ 1− γn − ωn − µ − vn(k)
)

+ λn+2,k+1

(

γn + vn(k)
)

.

λn+2,k = −B+ λn+2,k+1

(

1− µ

)

(5)

ii) The transversality conditions at time T:

λ1,T = 0

λj,T = Aj−1, j = 2, ..., n+ 1

λn+2,T = −B

iii) The optimal controls:

For k = 0, 1, ...,T − 1, the expressions of optimal controls

u∗(k), v∗1(k), v
∗
2(k), ..., v

∗
n(k) were obtained as follows:

u∗(k) = min

{

1,max

{

λ1,k+1S(k)

C
, 0

}

}

v∗j (k) = min

{

1,max

{

λn+2,k+1Ij(k)− λj+1,k+1Ij(k)

Dj
, 0

}

}

,

j = 1, 2, ..., n.

Proof: i) For the co-state equations:

The Hamiltonian of the optimal control problem at time step k is

given as follows:

Hk =

n
∑

j=1

AjIj(k)− BR(k)+
1

2
Cu2(k)+

1

2

n
∑

j=1

Djv
2
j (k)+ λ1,k+1

(

3 +
(

1− µ
)

S(k)−

n
∑

j=1

βjIj(k)S(k)− u(k)S(k)

)

+

n+1
∑

j=2

λj,k+1

(

(

1− γj−1−ωj−1−µ
)

Ij−1(k)+βj−1Ij−1(k)S(k)− v(k)j−1Ij−1(k)

)

+ λn+2,k+1

( n
∑

j=1

γjIj(k)+
(

1− µ
)

R(k)+

n
∑

j=1

vj(k)Ij(k)

)

According to Pontryagin’s maximum principle version in

discrete time, given in Ding et al., Zhang and Shi, Guibout and

Bloch, Hwang and Fan [25–28], by taking the derivatives of the

Hamiltonian with respect to the state variables as follows:

λ1,k+1 =
∂H(k)

∂S(k)
; λj,k+1 =

∂H(k)

∂Ij(k)
, j = 1, 2, ..., n+ 1 ;

λn+2,k+1 =
∂H(k)

∂D(k)

With calculation, the co-state variables (Equation 5) will be

obtained.
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ii) For the transversality conditions:

Transversality conditions are necessary for ensuring that the

terminal states of the system aligns with the objective of the

optimization problem. We put 9(T) =
n
∑

j=1
AjIj(T) − BR(T) by

using also Pontryagin’s maximum principle, in discrete time, such

that:

λ1,T =
∂9(T)

∂S(T)
= 0

λj,T =
∂9(T)

∂Ij(T)
= Aj, j = 2, 3, ..., n+ 1

λn+2,T =
∂9(T)

∂R(T)
= −B

iii) For the optimal controls:

For k = 1, 2, ...,T − 1, the optimal controls u(k), vj(k), j =

1, 2, ..., n, can be solved from the following optimality condition:

∂H(k)

∂u(k)
= 0

With calculation we obtained

u(k) =
λ1,k+1S(k)

C

therefore

u∗(k) = min

{

1,max

{

λ1,k+1S(k)

C
, 0

}

}

And

∂H(k)

∂vj(k)
= 0, j = 1, 2, ..., n

With calculation, we obtained

vj(k) =
λn+2,k+1Ij(k)− λj+1,k+1Ij(k)

Dj
, j = 1, 2, ..., n.

Therefore,

v∗j (k) = min

{

1,max

{

λn+2,k+1Ij(k)−λj+1,k+1Ij(k)

Dj
, 0

}

}

,

j = 1, 2, ..., n.

3 Numerical simulation

This section explores the role of numerical simulations

in analyzing the behavior and spread of two strains of an

infectious disease. These simulations are crucial for enhancing

our understanding of disease dynamics, assessing intervention

strategies, and shaping effective public health policies, highlighting

their critical importance in epidemiological research. In this

section, we present a comprehensive analysis of the results obtained

through numerical simulation of the optimality system in our

control problem. Our methodology is characterized by defined

initial conditions for the state variables and terminal conditions

for the co-state variables, forming a two-point boundary value

problem with specific boundary conditions at the start (time

step i = 0) and end (time step i = T) of the process.

To address this optimality, we used an iterative method. This

begins with a forward simulation of the state system followed

by a backward simulation of the co-state system. The procedure

begins with a preliminary estimation of the control variables,

which are then attractively refined based on their behavior in the

simulation. This iterative process was maintained until a pattern

of convergence in successive iterations was observed, signifying

the achievement of an optimal solution. To facilitate and validate

our findings, we developed and executed specialized MATLAB

code tailored to the nuances of our control problem. The Table 1

presents the values of the parameters that were used in the

numerical simulation.

TABLE 1 Parameter values used in numerical simulation.

Parameter Description Value

µ Natural death rate 0.001

3 Recruitment rate 100

β1 Infection rate with strain I1 0.0000011

β2 Infection rate with strain I2 0.000001

γ1 Normal Recovered rate from

Strain I1

0.002

γ2 Normal Recovered rate from

Strain I2

0.001

ω1 Death rate due to Strain I1 0.0015

ω2 Death rate due to Strain I2 0.001

S(0) Number of susceptible at

initial time t0

105

I1(0) Number of infected individual

with Strain I1 at initial time t0

300

I2(0) Number of infected individual

with Strain I2 at initial time t0

400

R(0) Number of recovered

individual from Strains I1 and

I2 at initial time t0

00

In this section, we employed three distinct control strategies,

denoted as u(t), v1(t), and v2(t), with the primary objective

of mitigating infections caused by both strains 1 and strain 2,

while concurrently increasing the number of individuals who have

recuperated. To identify the specific impact of each control strategy,

we examine the following three scenarios:

• The first scenario applies only control u(t) and compares the

results with those of the uncontrolled case.
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• In the second scenario, we exclusively applied control u(t)

with v1(t) and v2(t) separately, allowing for a comparative

analysis with the uncontrolled case.

• The third scenario integrates all three control strategies u(t),

v1(t), and v2(t), resulting in a comprehensive assessment of

their combined impact.

3.1 Scenario 1: application the control u(t)

This scenario depends on the vaccination strategy u(t) for

susceptible people, where u(t) represents the number of individuals

vaccinated at moment t, and the following figures show the

evolution of individuals in all compartments under the influence

of this scenario.

FIGURE 3

Strain I1 without and with control u.

Figure 3 shows two curves representing the progression of

strain I1. The blue curve illustrates the evolution of the strain in

a scenario with no medical intervention, peaking at approximately

50,000 cases on day 85, followed by a gradual decline in infection

rates. In contrast, the yellow curve shows the progression of the

same strain under the vaccination strategy. This curve initially

mirrors the trajectory of the blue curve for the first 40 days.

Subsequently, a noticeable slowdown in the spread of the strain

was observed, reflecting the protective impact of the vaccination.

Approximately 70 days after the implementation of vaccination,

the infection rate of the strain was halved compared with the

non-vaccination scenario, indicating the efficacy of vaccination in

mitigating the spread of this particular strain.

FIGURE 4

Strain I2 without controls and with controls u.

Figure 4 shows two curves representing the progression of the

Strain I2. The blue curve illustrates the evolution of the strain in the

absence of any intervention to limit its spread, peaking at ∼40,000

cases on day 90, followed by a gradual decline in infection rates.

In contrast, the green curve depicts the progression of the same

strain under vaccination strategy u. This curve initially mirrors

the trajectory of the blue curve for the first 30 days. Subsequently,

a noticeable slowdown in the spread of the strain is observed,

reflecting the protective impact of vaccination. Approximately 70

days after the implementation of the vaccination strategy, the

infection rate of the strain is halved compared with the non-

vaccination scenario, indicating the efficacy of vaccination in

mitigating the spread of this particular strain.

FIGURE 5

Recovered with and without control u.

Figure 5 contains two curves, where the Gold Curve shows

the number of people who recovered from Strains I1 and I2 over

time without using any treatment or infection control strategies.

This curve indicates that the number of recoveries increased

significantly over time; the explanation for this is that the lethality

of these strains is not very dangerous. The brown curve represents

the number of recoveries from these strains when a vaccination

strategy is employed. This curve shows that the number of

recoveries is significantly lower than that of the first curve. The

explanation for this is that the vaccination strategy is effective

and has prevented many people from contracting the disease,

which might have been caused by the absence of vaccination

and, after a number of them have recovered, would have been

counted among the recoveries. Therefore, the number of recoveries

was higher in the scenario without vaccination than in that with

vaccination.

3.2 Scenario 2: application the controls u(t)
and v1(t) for I1 and v2(t) for I2

In addition to the vaccination strategy, this scenario depends

on a strategy specific to the strain I1 depends on providing

the appropriate treatment and medications v1(t) for individuals

infected with strain I1, and a strategy specific to the strain I2
depends on providing the treatment and appropriate medications

v2(t) for individuals infected with strain I2; the following figures
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show the evolution of number of infected people with each strain

separately under the influence of scenario 2.

FIGURE 6

Strain I1 without controls and with controls u, v1.

Figure 6 shows the two curves for Strain I1. The blue curve

shows the natural development of Strain I1 in the absence of

any intervention to limit its spread, as mentioned in the previous

analysis. Conversely, the green curve displays the development

of the strain under the influence of two strategies: vaccination

and providing appropriate treatment and medication to those

infected with this strain. From Figure 3, we observe that the period

of overlap between the two curves becomes shorter than that

in Figure 2. Additionally, there was a noticeable decrease in the

number of infections, with a peak at ∼16,000 cases on the 70th

day, followed by a gradual decline. This pattern highlights the

effectiveness of an integrated intervention strategy in reducing the

spread of this strain.

FIGURE 7

Strain I2 without controls and with controls u, v2.

Figure 7 shows two curves for Strain I2. The curve colored in

blue shows the natural development of this strain in the absence of

any interventions to limit its spread, as mentioned in the previous

analysis. In contrast, the olive curve displays the development of

the strain under the influence of two strategies: vaccination u and

appropriate treatment and medication v2 for those infected with

this strain. Figure 5 shows a shorter period of overlap between

the two curves compared with Figure 4. The number of infections

peaked at ∼11,000 cases on the 60th day, followed by a significant

reduction in the number of infected individuals, indicating the

effectiveness of the integrated intervention strategy in reducing the

spread of this strain.

3.3 Scenario 3: application the controls
u(t), v1(t) and v2(t)

In this scenario, all strategies were simultaneously

implemented. The following figures illustrate the evolution

of the number of individuals in all compartments under this

scenario.

FIGURE 8

Recovered with and without control u, v1, and v2.

Figure 8 contains two curves: The Gold Curve shows the

number of people who have recovered from Strains I1 and I2 over

time without using any treatment or infection control strategies,

as previously mentioned above. The purple curve represents the

number of recoveries from these two strains, involving both

vaccination (u) and the provision of appropriate medication and

treatment (v1 and v2 ) for each strain. From this figure, we observe

that the purple curve is above the gold curve, in contrast to what we

observed in Figure 5. This is due to the use of the controls v1 and

v2, which increased the number of recoveries.

FIGURE 9

The states with controls u, v1, and v2.
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Figure 9 presents four distinct curves illustrating the

progression of all population compartments, encompassing

susceptible individuals (S), individuals infected with each strain

(I1 and I2), and the recovered individuals (R). These trajectories

are depicted under the influence of a comprehensive vaccination

strategy (u) and the administration of appropriate medications (v1
and v2) tailored to each I1 and I2 category. In comparison to the

baseline scenario depicted in Figures 1, 8 unveils a stark reduction

in the number of infections for both strains, along with a notable

and continuously increasing count of recovered individuals.

This unequivocally underscores the efficacy of the implemented

intervention strategies within this context.

4 Conclusion

In conclusion, this study introduced a mathematical model

describing the dynamics of transmission for mutant strains of

COVID-19 and proposed optimal strategies to combat their spread.

Our strategies aim to minimize the number of infected individuals

with each strain while maximizing the number of recovered

individuals and minimizing associated costs. We incorporated two

control strategies: a vaccination strategy for susceptible individuals

and providing appropriate treatment and medication tailored to

those infected with each strain separately. Through the application

of Pontryagin’s maximum principle in discrete time, we proved

the existence of optimal controls and solved the optimality system

using an iterative method. Furthermore, numerical simulations

were conducted to evaluate the effectiveness of these strategies in

managing the spread of mutant strains. Graphical representations

were provided to illustrate the impact of control strategies on

limiting the propagation of these strains. The simulations enabled

us to compare different scenarios and observe the effectiveness of

control strategies in a concrete manner. Despite the absence of

the quarantine strategy, our findings indicate that these strategies

effectively limit the spread of COVID-19 variants.
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