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Monitoring and understanding fish behavior is crucial for achieving precision in everyday

husbandry practices (i.e. for optimizing farm performance), and for improving fish welfare

in aquaculture. Various intelligent monitoring and control methods, using mathematical

models, acoustic methods and computer vision, have been recently developed for

this reason. Here, a tracking algorithm based on computer vision that extracts short

trajectories of individual European seabass in both recirculating aquaculture systems and

sea cages was developed using videos from network cameras. Using this methodology,

parameters such as instantaneous normalized speed, travel direction and preference for

the tank surface by European seabass could be quantified. When testing the sensitivity of

this algorithm for detecting fish swimming variations under different husbandry scenarios,

we found that the algorithm could detect variations in all of the abovementioned

parameters and could potentially be a useful tool for monitoring the behavioral state

of European seabass.

Keywords: precision farming, fish monitoring method, fish swimming variations, computer vision, fish behavior,

welfare

INTRODUCTION

Fish can display a wide spectrum of behavioral patterns that emerge from complex interactions with
their conspecifics and their environment (Brown, 2015;Macaulay et al., 2021a). Understanding how
and why these behaviors arise is important and could be useful in different fields. For example, the
use of inherent behaviors and the encouragement of new behaviors through learning regimes could
improve fisheries management and yield, improve conservation practices, facilitate husbandry,
improve precision in aquaculture, i.e., improve monitoring, control, and the documentation of
biological processes in fish farms (Føre et al., 2018; Antonucci and Costa, 2020), and positively
impact fish welfare (Macaulay et al., 2021a).

In aquaculture, changes in behavior can result from different environmental or physiological
conditions and these could be used as an indicator of fish welfare. For example, fish may respond to
unfavorable conditions by adopting different swimming speeds and using different regions of a tank
or cage (Stien et al., 2007; Trygonis et al., 2016; Alfonso et al., 2020; Schmidt and Schletterer, 2020).
Anti-predatory behaviors are spotted frequently in open cage aquaculture systems (Smith, 2000),
and antiparasitic behaviors occur over fine or broad spatiotemporal scales in many host-parasite
systems (Behringer et al., 2018). Feeding processes in aquaculture could also impact behavioral
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patterns (Carr et al., 1996; Volkoff and Peter, 2006; Li et al.,
2020a). For example, underfeeding could result in aggressive
behaviors, and excess feeding results in behaviors related to
unfavorable environments, particularly in closed systems, i.e.,
increased nitrogen or decreased oxygen levels (Magnuson, 1962;
Benhaïm et al., 2012; Bergqvist and Gunnarsson, 2013; Li et al.,
2020b). Other types of behavioral responses could be linked to
husbandry practices, such as the presence/absence of people on
the rearing sites (Sánchez-Suárez et al., 2020; Seibel et al., 2020).
A set of easily observed measurements known as operational
welfare indicators (OWIs) were recently adopted to monitor fish
behavior and welfare in a non-destructive form (Noble et al.,
2018), of which, swimming behavior is of particular importance
for all aquaculture systems.

Serious attempts have been made to monitor fish swimming
behavior in aquaculture using a wide range of technological
equipment (Føre et al., 2011, 2017, 2018; Pautsina et al.,
2015; Lindseth and Lobel, 2018; Li et al., 2020a; Schmidt and
Schletterer, 2020; Macaulay et al., 2021b). Traditional and time-
consuming ways include the use of personal experience and the
visual assessment of fish from the surface or subsurface cameras
to monitor how a sub-sample of the stock behave. Echosounders
can provide information on the daily variations of the vertical
fish distribution (Trygonis et al., 2016; Schmidt and Schletterer,
2020). Implanted or externally positioned individual tags (data
storage tags, transmitter tags, etc.) can collect behavioral data
such as the location of fish in three dimensions, swimming
trajectory, acceleration, pressure or muscular activity, swimming
depth, body temperature, and acceleration (Pittman et al.,
2014; Føre et al., 2017; Macaulay et al., 2021b). Moreover,
progress is being made in the development of automatic
methodologies that collect and analyze data from a wide range
of camera systems, e.g., single or stereo cameras that can
exploit different spectra of light such as the visible or infrared
(Joseph et al., 2017; Saberioon et al., 2017; An et al., 2021;
Zhao et al., 2021). Intelligent monitoring and control methods
using mathematical models and computer vision have been
developed as a result (Killen et al., 2017; Føre et al., 2018; Zhou
et al., 2018; Awalludin et al., 2020; An et al., 2021; Zhao et al.,
2021).

Camera-based methodologies for aquatic monitoring have
been drawing increasing attention as they enable a non-extractive
and non-lethal approach to studying fish behavior (Papadakis
et al., 2012; Liu et al., 2014; Wei et al., 2014; Pautsina et al.,
2015; Zhou et al., 2017; Måløy et al., 2019; Pawar and Attar,
2019; Li et al., 2020a; An et al., 2021; Barreiros et al., 2021;
Yang et al., 2021) and could be vital for the development of
intelligent control methods or systems with efficient monitoring
and decision-feedback tools. For example, infrared imaging has
been used to track fish and study feeding behavior (Pautsina
et al., 2015; Zhou et al., 2017). Stereo cameras have been
used for fish detection (Torisawa et al., 2011) and individual
tracking (Chuang et al., 2015). Single cameras on the visible
spectrum have also been used to detect fish, classify behavior,
and track fish in both recirculating aquaculture systems (RAS)
and sea cages (see review of Li et al., 2020a). For example,
Måløy et al. (2019) used submerged cameras in sea cage systems

and convolutional neural networks to detect feeding activity
in Atlantic salmon (Salmo salar). Qian et al. (2016) used a
single camera system and computer vision techniques to track
individual fish movement in tanks. A thorough presentation
of methodologies can be found in the reviews of Zhou et al.
(2018), An et al. (2021), and Yang et al. (2021). Although
these methodologies are useful, they usually require specific
technological equipment or are species-specific so they lack wide-
range applicability.

Single-camera monitoring and movement analysis can be
performed using global and local approaches (Zhou et al.,
2018; Li et al., 2020a). The first includes methodologies
that extract group-level behavioral features. For example,
the use of optical flow analysis can provide information
on swimming behavior by extracting group-level speeds and
directions (Ye et al., 2016; Måløy et al., 2019). In addition,
classification algorithms can use group level features, e.g.,
different spatial patterns that result from different swimming
behaviors, to categorize the shoal into distinctive states. The
second approach includes methodologies that are capable of
explicitly identifying individual features (such as individual
swimming speeds, heading directions, accelerations, etc.), and
from them group-level behaviors can be inferred (Papadakis
et al., 2012; Dell et al., 2014; Qian et al., 2014, 2016; Wang
et al., 2017; Georgopoulou et al., 2021; Lopez-Marcano et al.,
2021).

Individual-level movement analysis can be achieved following
a three-step process (Li et al., 2020a; An et al., 2021; Zhao
et al., 2021): the detection of the fish, the association of the
positions of the detected fish between consecutive frames (fish
tracking), and the extraction of swimming feature parameters
such as speed, direction, etc. Fish detection is challenging because
of the inconsistent illumination in the aquaculture systems,
the low contrast between the fish and the background, the
low signal-to-noise ratio, the image deformation that results
from the scattering and absorption of different wavelengths
of light due to particles in the water, the frequent occlusions,
and the dynamic background of the aquatic environments
(Spampinato et al., 2008). Challenges in the fish association
step include the partial or total occlusion of the fish by other
individuals, and the appearance and disappearance in the image
of individuals (Zhou et al., 2018; An et al., 2021; Yang et al.,
2021).

The aims of the current study were to: (a) develop automated
routines that can track European seabass (Dicentrarchus
labrax) (i.e., extract fish trajectories of a short time length)
with individual-level approaches in RAS and sea cages
using single cameras; (b) extract feature parameters that
could be used for the detection of variations in swimming
behavior; and (c) provide application examples of the developed
methodology using different husbandry scenarios. Specifically,
daily (morning and afternoon) variations in swimming speed
are calculated and presented for both rearing systems. In
addition, variations of the group direction in the sea cages,
daily differences in the vertical distribution of the fish in tanks
and, specifically, their presence close to the tank surface are
also presented.
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FIGURE 1 | The RAS (A–C) and sea cage (D–F) aquaculture facilities and network cameras (C,F) used at HCMR.

METHODOLOGY

Experimental Procedures
A. Recirculating Aquaculture System
The experimental fish were kept at the AquaLab facility of the
HCMR, a certified laboratory for fish rearing (EL91-BIOexp-04)
in accordance with legal regulations (EU Directive 2010/63) and
after approval by the Ethics Committee of the IMBBC and the
relevant veterinary authorities (Ref Number 255,344). A group of
50 E. seabass juveniles of ∼200 g and total length L = 25.1 ±

0.94 cm was kept in a cylindroconical tank of 2 m3 volume
and 1.5m diameter at a thermoregulated marine RAS (see
Figures 1A,B) under typical rearing conditions for the species
(T = 24 ◦C, pH = 8.0, salinity = 37 psu, and a 12 h L : 12 h D
photoperiod cycle). The group was monitored using network
cameras (HIKVISION DS-2CD1623G0-IZS) capturing at 6 fps
for a period of two months (May and June 2019), from
08:00 to 19:30. The cameras were positioned over the tanks,
pointing downwards (Figure 1C) and were calibrated using a
chessboard pattern and OPENCV library (see details below).
During normal weekdays, fish were fed twice a day (∼08:40
and ∼14:40). On Saturdays, fish were fed in the mornings
(∼08:40) while on Sundays they fasted. In addition, there was
human presence in the facility between 08:00 and 15:00 every
day except Sundays. Fish were left to acclimate for a month, and
the data for the month of June 2019 was analyzed for three-
time windows representing different husbandry practices: one
normal feeding day (Wednesday), one day when no feeding took
place (Sunday) and a day when feeding took place a day after
fasting (Monday).

B. Cages
A group of E. seabass fish of 220± 30 g body weight at a stocking
density of 5.2 kg m−3 was reared in a 6 × 6 × 8m rectangular
cage (Figures 1D,E; T = 19.5 oC, DO = 85%, salinity = 30 g/L)
located at the pilot scale netpen cage farm of HCMR (certified
as an aquaculture facility from the national veterinary authority;
code GR94FISH0001). A submerged network camera (Fyssalis
v3.1; Figure 1F) capturing at 10 fps was used for monitoring
and video recording during daylight hours. The camera was
positioned at 4 m depth using a gyroscopic gimbal stabilizer
to ensure it pointed upwards. Feeding was performed with an
automatic feeder, starting from 08:30 to 15:00 at a frequency
of 15 min. Husbandry practices taking place close to the cage
included boat movements and human presence (daily), while
other factors that could influence fish behavior were the predators
(such as tuna and seals) found in the area. Video recordings
of 30 days in total (selected from a 2-month period, i.e., from
November to December 2019) were used and analyzed to detect
daily changes in the swimming speed (morning before feeding
and afternoon after feeding).

Camera Calibration
Single camera calibration involves the estimation of intrinsic
parameters (focal length, optical center or principal point, pixel
size) to correct lens distortion and sea water refraction (Gruen
and Huang, 2001). Geometrical calibration was applied using
a pattern with known distances (chessboard). The calibration
was conducted above water for the tanks and underwater for
the cages after capturing a sufficient number of chessboard
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FIGURE 2 | Schematic representation of the steps followed for the extraction of individual trajectories.

images. The cameras were calibrated using OPENCV library in
Python and the resulting parameters were used to correct the
extracted videos.

Tracking Methodology—Tanks and Cages
An automated routine (based on OPENCV/Python; OPENCV
4.0, Python 3.8) that automatically tracks the fish in tanks and
sea cages for a short time is developed (see Figure 2). The
tracking routine consists of three steps: (1) the pre-processing
step, where the images are denoised and prepared for analysis;
(2) the fish detection step, where the background is subtracted
and the objects are filtered out to select the most appropriate
ones; and (3) the association step, where each detected object is
associated with an object or a predicted centroid position. All
steps are identical for both tanks and cages, except for the fish
detection step as described below.

Pre-processing
The image frame is converted to grayscale, and contrast limited
adaptive histogram equalization (CLAHE) is applied to smooth
the effect of lighting on the image and achieve local contrast
enhancement. Consequently, a Gaussian filter is applied to
eliminate noise and damp tonalities. In tanks, net edges are
further removed by applying a median filter.

Background Subtraction
For the tanks, the background removal is achieved using the
GMM/KNN background subtractor from OPENCV library (Van
Rossum and Drake, 1995; Itseez, 2015) which implements the K-
nearest neighbors’ background subtraction described in Zivkovic
and Van Der Heijden (2006). The method also detects as
foreground any significant backgroundmotion caused by sudden
light variation or the irrelevant motion of air bubbles or organic
particles. To filter out this falsely detected foreground and keep
only the true fish objects, morphological operations, and contour
analysis (shape and size filtering) are applied (see contour
analysis section). Finally, a morphological opening is applied to
the resulting foreground image to merge foreground objects that
have split (see Figure 3). For the cages, a simple threshold is
applied in an iterative way for the detection of the fish objects
(i.e., iterating over all consecutive intensity threshold values T),
and the foreground objects are filtered out according to the size
and shape at each iteration (i.e., only objects with a fish-like oval
shape are accepted). More specifically, at each iteration, each
pixel’s i value (I(i)) in the original image is replaced according
to Equation 1 and a binary foreground image is extracted.

I (i) =











0, I(i) < T

255, I(i) ≥ T ∀ T ∈ [0, 80] (1)
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FIGURE 3 | Images showing the original image frame (A), the extracted foreground image (B), the image after filtering out noise and running contour analysis (C), and

the final image with the detected objects (D). In image (C), the defect points are shown in red and the convex line in green. The yellow rectangle indicates a case of

two overlapping fish and their separation.

The detected foreground is further filtered out using contour
analysis, as described in the following section.

Contour Analysis
To remove noise such as air bubbles in RAS, the foreground
objects are processed using contour analysis. Fish contours tend
to have specific geometry and intensity attributes. They have an
elongated shape (see Figures 3A,B) and an area of > 400 pixels;
themean intensity values of each RGB channel is around 120–180
and the variance between channels is minimal. For this reason,
contours (C) within acceptable range values for contour size,
geometry, and intensity profile are counted as fish objects. More
specifically, the foreground objects are filtered out and accepted
if the following conditions are met (Equation 2):

area (C (i))>400 pxl ∧
area (C (i))

carea (C (i))
< 0.4 ∧ 120< I (i)R, G,B<180 (2)

where carea(C(i)) is the area of the bounding circle of contour
i. All the threshold values and value ranges are chosen and
fine-tuned after careful examination of the typical values of the
fish. For the cages, all contours (C) are detected using contour
analysis and their attributes (i.e., their area, their convex hull
and their bounding ellipse) are calculated. For the contours to
be accepted as foreground, the following conditions must be
met (Equation 3):

area (C (i)) > 100 pxl ∧
ma (C (i))

MA (C (i))
<

1

3
∧ 0.7< solidity(C(i)) < 2 (3)

where ma(C(i)) and MA(C(i)) are the minor and major
axis length, respectively, of the bounding ellipse of contour
i (measured in pixels) and solidity is defined as the ratio

area(C(i))
areaHull(C(i)) (where areaHull (C (i)) is the area of the convex
hull of contour i). In addition, a method to separate
touching/overlapping objects is developed for both RAS and
cages by considering the objects’ defects. First, all the defect
points P (red dots in Figure 3C) and their corresponding convex
hull edges AC (green lines in Figure 3C) are determined. Second,
the distance (d) between the defect point P and themidpoint of its
edge, B, is calculated for each defect pair. If d > 35 pxls, a black
line starting from point B with direction to point P is extended

until it reaches the end of the contour (see yellow rectangle in
Figure 3C).

After filtering out noise and merging fragmented objects and
separating overlapping ones, a unique ID is assigned to each of
the foreground objects. For each object, the following features
are extracted: the center of the object, the area, the perimeter, the
major and minor axis length, the mean and standard deviation
of the red, green, blue channel intensity values, and the direction
relative to the x-axis. The fish length is the length of the object’s
major axis.

Fish Association
To associate a new centroid to a previously detected centroid (of
the focal fish), a search area containing all possible locations of
the focal fish at the new time frame is estimated (see final search
area in Figure 4). At each frame, this area is defined as the minor
circular sector centered at the position of the previous frame
(Pt−1, Figure 4), with the radius equal to the body-length of the
fish and the central angle as the mean heading angle of the fish
(averaged over the last 4 directions)± 30◦.

Once the search area is estimated, the distance between each
pair of the previous centroid of the focal fish and the new
centroids is computed, and the number of newly detected fish
located within the search area is calculated. If there are more
than two fish within the search area, the fish with the minimum
distance are selected. In case of occlusions or disappearance, the
focal fish is not detected and there are no candidate centroids
within the search area. In this case, the new centroid position of
the focal fish is predicted considering the history of the object’s
motion. More specifically, in this case, the new centroid position
is at a step equal to the previous step of the focal fish and
at a direction that is the average of the four previous heading
directions of the focal fish. If a new centroid is a candidate
centroid for multiple fish, a selection process takes place to solve
the assignment problem. For each fish, the position is predicted
and compared to the new centroid. The predicted position that
is closest in distance and direction to the detected centroid is
accepted. The centroids of the remaining fish are then predicted.
If an object is predicted for 4 consecutive time frames, then the
object is considered as disappeared and is removed from the list
of the detected fish.
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FIGURE 4 | Schematic representation of the steps followed to estimate the search area (shown as a circular sector shaded in green), and to associate the fish (see

text for details). (I) the fish of the current frame are detected (new fish), (II) the maximum distance the focal fish has traveled is calculated based on the body-length of

the fish, (III) the direction the focal fish has moved is calculated based on the heading directions of the previous frames, (IV) The focal fish is associated with a newly

detected fish that is located within the search area.

To further deal with the appearance/disappearance of the fish
in the image and the potential tracking errors caused by this, the
methodology is designed to track fish only for a short time, i.e.,
the fish are tracked for a few time frames (the time length can be
defined by the user). This means that every few frames, fish IDs
are deleted, and the detection process is reinitialized. The chances
of detecting each individual fish multiple times (and therefore
add bias in the sampling method) is minuscule because of the
large number of fish in the RAS and cage systems. In the current
work, the fish were tracked for 15 consecutive timeframes in the
cages and for 7 consecutive timeframes in RAS.

Preference for the Tank Surface
The cylindroconical tank studied here was of a dark color,
resulting in very low contrasted images (see Figures 1, 2). For this
reason, only fish close to the surface could be detected. Thus, it
was reasonable to assume that the area covered by the fish in the
processed image was proportional to the number of fish that were
approaching the surface and indicative of the fish preference to
be at the surface. Therefore, the preference for the tank surface is

calculated as the percentage area covered by the fish on the image,
i.e., the sum of the white pixels of the foreground image divided
by the total number of pixels in the image. Low values indicate
that most fish remained at the bottom of the tank, while high
values indicated a preference of the group to be on the surface.

Data Extraction and Analysis
The extracted trajectories are smoothed using a Savitzky-
Golay filter (time window = 5 frames and power = 2), and
three behavioral features are accessed: the linear normalized
instantaneous speed (both systems), the direction, i.e., the angle
in degrees relative to the x-axis (sea cages), and the preference of
the fish to be on the tank surface (RAS). The first is calculated as
the Euclidean distance between two consecutive frames divided
by the estimated fish length to give the normalized speed values.
In sea cages, speed is averaged every 15 frames to filter out
any background oscillatory movement of the camera (caused by
the currents). The direction of the fish was calculated as the angle
between the velocity vector (starting from the centroid position
at the previous time frame and ending at the centroid position
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FIGURE 5 | Accuracy in RAS. Scatterplot showing the manual vs. automatic length estimation (A) and the percentage of detected objects for different time frames

(B). Violin plots showing the manual (C) vs. automatically (D) estimated speed distribution for different hours in a day in RAS, with a reference red line for easier

comparison. The speed is normalized, i.e., it is expressed in body-lengths per frame.

at the current time frame) and the horizontal positive x-axis of
the image. To estimate the preference for the tank surface, the
sum of the foreground (white) pixels in the image is divided by
its total number of pixels. This value shows the normalized area
in the image that is covered by the fish.

Four different measures were used to evaluate the presented
methodology: the precision in fish detection, the precision in
speed estimation, the error of the length estimation, and the
percent of correctly tracked objects in time. The precision of fish
detection was estimated as the total number of correctly detected
positions divided by the total number of estimated positions.
To calculate it, fish from five videos were manually tracked to
compare the result with the automatically extracted trajectories.
Fish length was also manually extracted and compared to the
automatically measured fish length. The error was defined as
the median difference between the manual and the automatically
estimated fish length and the deviation was the inter-quantile
range. The values were divided by the fish length in pixels
to be comparable between the RAS and the sea cages. The
speed precision was defined as the mean and standard deviation

of the difference between the manually and automatically
extracted speed.

To test the proposed methodology for its sensitivity in
detecting behavioral changes in European seabass, we estimated
the swimming speed, the direction, and the preference for the
tank surface at different times of the day and for different human
presence/absence and feeding scenarios. To detect significant
(significance level: α = 0.05) changes between morning and
afternoon speeds in both RAS and sea cage systems, repeated
measures ANOVA tests were applied (AnovaRM StatsModels
Python library). ANOVA tests were applied after verifying that
the assumptions of the test were met (normality was tested using
the Shapiro-Wilk test).

RESULTS

Evaluation of the Methodology
In RAS, the total number of detected and tracked objects at the
first frame varies between 2 and 20. The percent of the detected
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FIGURE 6 | Accuracy in cages. Scatterplot showing the manual vs. automatic length estimation (A) and the percentage of detected objects for different time frames

(B). Violin plots showing the manual (C) vs. automatically (D) estimated speed distribution for different hours in a day in cages, with a reference red line for easier

comparison. The speed is the normalized speed, i.e., it is expressed in body-lengths per frame.

objects in time decreases, as is shown in Figure 5B, with 30–
60% of the initially detected fish remaining detected and tracked
after seven frames. This shows that in each frame, there is at
least one or two tracked objects. The centroid detection precision,
i.e., the total number of correctly detected positions divided by
the total number of estimated positions, is 0.85 ± 0.11. The
length estimation error is 46.07 ± 17.29 pxls or 0.60 ± 0.46
if normalized, i.e. if the error is divided by the total length in
pixels. Figure 5A shows that the algorithm estimates a constant
fish length. In addition, the accuracy of the speed estimations is
shown in Figures 5C,D. The precision of the speed estimation is
0.045± 0.03 bd/s. The figures show the manual (Figure 5C) and
the estimated from the algorithm (Figure 5D) normalized speed
distributions for different times using violin plots. The current
methodology can successfully capture small daily variations in
speed as the speed decreases from 08:20 till 10:50, increases

suddenly at 12:10, and decreases again until 14:20. However, the
methodology tends to slightly overestimate speed values.

In cages, the total number of detected objects in the first
frame varied between 30 and 50 individuals. The percent of the
detected objects in time decreased, as is shown in Figure 6B, with
20% of the initially detected fish remaining after 15 frames. This
indicates that, on average, a minimum of three individuals were
tracked at all time frames. The centroid detection precision is
0.89 ± 0.07. The algorithm tends to underestimate the length
of the very large fish, i.e., the fish that are very close to the
camera (Figure 6A). The error of length estimation is 25.8± 27.1
pxls and 0.43 ± 0.46 if normalized. The precision of the speed
estimation is 0.015± 0.009 bd/s. The accuracy of the normalized
speed estimation in the cages is shown in Figures 6C,Dwhere the
daily variations in the normalized speed extracted from both the
manual (Figure 6C) and the automatic algorithm (Figure 6D)
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FIGURE 7 | Bar plots showing the variation of the normalized speed

(bd/frame) for different feeding and husbandry scenarios in RAS. Bars indicate

mean values and whiskers the standard deviation. Sunday= fasting, Monday

= feeding after fasting, Wednesday = normal feeding day. Asterisks show

statistically significant differences.

are presented. Again, the algorithm captures the slight temporal
changes but overestimates the speed magnitude.

Swimming Analysis
Fish speed showed a significant decrease between morning and
afternoon, from 0.48 ± 0.09 to 0.27 ± 0.09 Bd per frame in RAS
(Sunday: F − statistic 0.11, P − value = 0.77; Monday:
F − statistic = 10.91, P − value = 0.05; Wednesday:
F − statistic = 13.79 P − value = 0.03, Figure 7). On
Sundays, the speed remained at the same level in the morning
and in the afternoon (0.45 ± 0.15 and 0.38 ± 0.15 Bd per frame,
respectively). In contrast, during normal feeding days, the speed
in the morning (0,46 ± 0,05 Bd per frame) was at the same level
as on Sunday (Morning: F − statistic 0.32, P − value = 0.74;
Afternoon: F − statistic 0.29, P − value = 0.76) but decreased
significantly in the afternoon (0.31± 0.03 bd/frame).

Furthermore, Figure 8 shows how the preference of the
fish to be at the surface of the tank changes during Sundays,
Mondays andWednesdays. On Sundays, the fish show a constant
preference to be at the surface (Figure 8A). In contrast, during
normal days, the preference varies, with the fish avoiding the
surface until late in the afternoon (Figures 8B,C), a period
associated with a human presence.

In cages, fish show a similar pattern in the daily speed
variation. During the morning they have a significantly higher
speed (1.31± 0.60 Bd per second) that decreases in the afternoon
(0,83 ± 0.26 Bd per second), (F-statistic: 20.58; P < 0.001,
Figures 9A,B). In addition, when there is a human presence and
during human activities close to the cage, the average speed of
the fish increases (close to 1 Bd per frame), which is further
exacerbated when people are right on the cage (Figures 9C,D).

The distribution of individual swimming directions is shown
in Figure 10 for different movement patterns in sea cages.
Figure 10A shows fish moving freely in an asynchronized way,
where the swimming directions are widely spread between 0 and
360 degrees. In contrast, when fish show a polarized motion
either due to a perceived threat or when anticipating feeding, the

distribution of the swimming directions narrows, and all angles
are around the main directional component of the group motion
(Figure 10B). As themethodology could not trackmore than two
to three individuals per frame in RAS systems group, presenting
direction distribution in RAS was not possible.

DISCUSSION

In the current work, a novel methodology that can automatically
monitor and track E. seabass for short times in both RAS and sea
cages is presented. Feature parameters such as the instantaneous
normalized speed, the swimming direction and the preference
for the tank surface are extracted and their daily variations are
presented as test examples. All features show variability under
different scenarios, i.e., under variable feeding and husbandry
practices, suggesting a potential indicator of different behavioral
states for the species. To our knowledge, methodologies that
automatically monitor and track European seabass and extract
swimming features in any of the RAS or sea cages are scarce. The
current study, therefore, contributes to the field by providing a
new tool that facilitates themonitoring of the swimming behavior
of the species.

The methodology developed and presented here can be
adapted for real-time monitoring and easily modified to track
different fish species. The detection step is based on recognizing
the outline of the bottom or the top of the fish, i.e., their oval
shape and, thus, slight modifications of the parameters used for
the detection, e.g., the size and the shape parameters, can result
in the tracking of different fish species. Preliminary tests for
the tracking of the greater amberjack (Seriola dumerili) and the
gilthead seabream (Sparus aurata) showed positive results.

The methodology can work well for a reasonably dense
population, but it may not distinguish individuals under
extremely crowded conditions. For example, during feeding or
during a threatening situation, the population is agglomerated
and appears as a single solid object so the individuals are
indistinguishable. In these cases, the algorithm can only follow
individuals that are at the edge of the group or distant
from the shoal. At these moments, estimating individual speed
is inefficient, and other global-level methodologies, such as
classification methods that can classify swimming behaviors
based on the group’s spatial characteristics (Li et al., 2020a), are
needed to extract behavioral attributes.

The evaluation of the suggested methodology is based on four
criteria: the precision of fish detection, the precision of speed
estimation, the error of the length estimation, and the percent
of correctly tracked objects in time. The fish detection precision
is high (0.85 ± 0.11 in RAS and 0.89 ± 0.07 in cages) and the
swimming speed error is low in both rearing systems (0.06 bd/s
precision in RAS and 0.02 bd/s in cages). Regarding fish length,
the method overestimates the fish length in RAS. In sea cages, the
length estimation is more accurate, but the methodology tends to
underestimate the fish length of the very large fish, i.e., the fish
very close to the camera. More specifically, the error of length
estimation is 25.8 ± 27.1 pxls (0.43 ± 0.46, normalized) for
cages and 46.07 ± 17.29 pxls (0.60 ± 0.46, normalized) for
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FIGURE 8 | Variations in the tank surface preference for the three scenarios; (A) no feeding/no human presence, (B) feeding after fasting/human presence, and (C)

normal feeding/human presence. Shaded areas show the standard error of the mean and green solid lines the average area covered by the fish (in percent) over a

period of a month. The gray shaded rectangles indicate periods of human absence.

RAS indicating a better estimation in the former. Improving fish
length estimation, e.g., by applying machine learning techniques
in the fish detection step, is crucial for the improved performance
of the methodology. Finally, the methodology consecutively
tracks 20–30% of the initially detected fish for all the 7 and
15 frames in RAS and cages, respectively. This corresponds to
a minimum of two fish per minute for the RAS and 10 fish
per minute for the cages, suggesting that with this methodology
group-level studies are more appropriate for cages than
for RAS.

Methodologies that combine both, the detection and tracking
of fish, have been developed and presented in only a handful
of studies. Moreover, the environmental conditions and camera
systems reported in these studies differ greatly from the ones
used here (Qian et al., 2014; Chuang et al., 2015; Wang et al.,
2017; Lopez-Marcano et al., 2021). For example, Wang et al.
(2017) used small tanks with a few individuals and detected
the fish heads using CNNs. Qian et al. (2014) presented a
methodology that can track the positions of multiple fish using
head detection; however, they applied it in very controlled RAS
systems. Therefore, these methodologies are not easily applicable
for underwater systems. Other methodologies, such as that
of Chuang et al. (2015), have been developed for analyzing
videos of stereo cameras and thus cannot be applied to single-
camera videos. In addition, only a few methodologies that use
single cameras have used European seabass for monitoring
swimming behavior (Papadakis et al., 2012; Alfonso et al.,
2020) and they are focused on RAS systems. Pinkiewicz et al.
(2011) developed a similar methodology to monitor swimming
behavior but used a different fish species, the Atlantic salmon.
Their methodology could more accurately estimate the fish
length but had a lower accuracy on the speed estimation
(0.1 ± 0.39 bd/s) when compared with the precision of
our methodology (0.045 ± 0.03 and 0.015 ± 0.009 bd/s
for the RAS and the cages, respectively). Our methodology

can, therefore, facilitate the automatic real-time monitoring of
Mediterranean species.

With the current methodology, swimming features such as
instantaneous normalized speed, swimming direction, and the
preference for the tank surface are estimated. The normalized
speed shows a sensitivity to husbandry practices and, particularly,
feeding. Specifically, speed shows consistent daily variations, with
decreasing speeds on weekday afternoons and no changes in
speed at the weekend. The decreased speed in the afternoon
during normal feeding days is seen in both RAS and sea cage
systems. This decrease could be related to feeding and could serve
as an indicator of satiation levels. Alternatively, it could be linked
to the presence or absence of human activities close to the reared
fish groups. Swimming speed shows high variability on Sunday
afternoons after a fasting day in RAS. This variation could be
explained either by the small sample used for the analysis (i.e.,
only four measurements) and could decrease with the acquisition
of more data. Further studies, which are now feasible with the
presented method, are required in order to establish associations
between the speed and feeding or other husbandry practices.

To our knowledge there are only a few studies presenting how
speed varies in aquaculture species (Martins et al., 2012) and
these, like our findings, suggest that speed is a good indicator
of behavior. Studies on the variations of the swimming speed of
Atlantic salmon are presented in the recent papers of Andrew
et al. (2002) and Hvas et al. (2017, 2021). Arechavala-Lopez
et al. (2020) studied the optimal swimming speed of the gilthead
seabream. Other studies focus on the behavioral changes of fish
under different feeding scenarios or using different features, as,
for example, Andrew et al. (2002), who showed that fish increase
their swimming speeds during feeding under normal feeding
practices. In addition, Pinkiewicz et al. (2011) found that the
swimming speed of Atlantic salmon increased during the 08:00 h
feeding, decreased slowly throughout most of the morning and
early afternoon then began to rise again as the feeding finished
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FIGURE 9 | (A) Time-series showing the variation of the normalized speed in the morning and in the afternoon for one example day. The reference line is the average

speed in the morning and in the afternoon. (B) Bar plots showing the variation of the normalized speed (bd/frame) for the morning and the afternoon averaged over 30

days (the asterisk shows a statistical significance); (C) Instantaneous speed changes when there is a human presence in the cages. (D) Speed variations when there is

no human presence in the cages. Horizontal lines indicate the average instantaneous speed.

around 14:00 h, after which it continued to increase until the end
of the recording.

Human observation indicates that fish preference for the tank
surface varies according to the existing physicochemical and
husbandry conditions (Stien et al., 2007; Saberioon and Cisar,
2016; Alfonso et al., 2020), which points to the usefulness of
studying vertical tank distribution as an indicator of different
behavioral states. In our study, during normal working/feeding
days, the fish avoided the surface of the tank in the morning but
preferred it in the afternoon. On Sundays, however, their surface
preference did not vary at all. This indicates that fish could be
affected by the presence of people and the activities taking place

during working days. Thus, this feature could be used as an
indicator of the behavioral state of the European seabass. Further
feature-specific experiments are required in order to associate
swimming speed to specific husbandry practices and determine
optimal range values.

The distribution of swimming directions is also a feature
that shows daily variations, and specifically detects changes
from a random to polarized motion in sea cages. Pinkiewicz
et al. (2011) also showed how swimming direction can be
sensitive to feeding or time in their study of the Atlantic
salmon. Their analysis indicated that the swimming direction
of the individuals after feeding in the afternoon showed a
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FIGURE 10 | Variations of fish swimming direction according to different motion patterns, an example. (A) Fish swim in an asynchronized way and the rose diagram

shows how the angles are distributed. (B) Fish swim in a polarized way during a perceived threat and the spread of the angles is small. The reference system for the

image and the rose diagram differs (for images it is clockwise and for the rose diagram it is counter-clockwise).

deviation by 40◦. European seabass show strong polarization
under perceived threat, i.e., when predator fish surround the
cages, or when facility operations take place close to the fish
(such as boat engines starting up, etc.). Detecting the occurrence
and frequency of such stressful situations may help farmers to
better understand fish behavior and improve the welfare of the
reared stocks.

The focus of the current work was to develop and
provide a methodology for monitoring swimming behavior in
different aquaculture setups. The presented methodology can
successfully track European seabass individuals in aquaculture
systems and facilitate automatic video processing and behavioral
analysis. In accordance with previous studies, the current work
demonstrates the sensitivity of some individual swimming
features to variations in group behaviors. Future steps include
increasing the accuracy of the fish length estimation and a
separate analysis of the behavioral differences presented during
the experiment using the present (or an improved version)
tool. In addition, obtaining and exploring other behavioral
features, such as swimming depth, cohesion, and acceleration,
may further improve the presented method. These features are

essential for real-timemonitoring and the detection of changes in
fish behavior.
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