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Animal pose-estimation networks enable automated estimation of key body points in

images or videos. This enables animal breeders to collect pose information repeatedly

on a large number of animals. However, the success of pose-estimation networks

depends in part on the availability of data to learn the representation of key body

points. Especially with animals, data collection is not always easy, and data annotation is

laborious and time-consuming. The available data is therefore often limited, but data from

other species might be useful, either by itself or in combination with the target species.

In this study, the across-species performance of animal pose-estimation networks and

the performance of an animal pose-estimation network trained on multi-species data

(turkeys and broilers) were investigated. Broilers and turkeys were video recorded during

a walkway test representative of the situation in practice. Two single-species and one

multi-speciesmodel were trained by using DeepLabCut and tested on two single-species

test sets. Overall, the within-species models outperformed the multi-species model, and

the models applied across species, as shown by a lower raw pixel error, normalized

pixel error, and higher percentage of keypoints remaining (PKR). The multi-species model

had slightly higher errors with a lower PKR than the within-species models but had less

than half the number of annotated frames available from each species. Compared to the

single-species broiler model, the multi-species model achieved lower errors for the head,

left foot, and right knee keypoints, although with a lower PKR. Across species, keypoint

predictions resulted in high errors and low to moderate PKRs and are unlikely to be of

direct use for pose and gait assessments. A multi-species model may reduce annotation

needs without a large impact on performance for pose assessment, however, with the

recommendation to only be used if the species are comparable. If a single-species model

exists it could be used as a pre-trained model for training a new model, and possibly

require a limited amount of new data. Future studies should investigate the accuracy

needed for pose and gait assessments and estimate genetic parameters for the new

phenotypes before pose-estimation networks can be applied in practice.
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INTRODUCTION

In poultry production, locomotion is an important health and
welfare trait. Impaired locomotion is a major welfare concern
(Scientific Committee on Animal Health and Animal Welfare,
2000; van Staaveren et al., 2020), and a cause of economic losses
in both turkeys and broilers (Sullivan, 1994; van Staaveren et al.,
2020). Impaired locomotion has been linked to high growth
rate, high body weight, infection, and housing conditions (e.g.,
light and feeding regime) in broilers (Bradshaw et al., 2002).
Birds with impaired locomotion have trouble accessing feed and
water (Weeks et al., 2000), performing motivated behaviors like
dust bathing (Vestergaard and Sanotra, 1999), and likely with
peck avoidance (Erasmus, 2018). Studies have reported that in
broilers approximately 15–28% of the birds, and in turkeys,
approximately 8–13% of the birds, examined had impaired
locomotion (Kestin et al., 1992; Bassler et al., 2013; Sharafeldin
et al., 2015; Vermette et al., 2016; Kittelsen et al., 2017).

Gait-scoring systems have been developed for both turkeys
and broilers (e.g., Kestin et al., 1992; Garner et al., 2002;
Quinton et al., 2011; Kapell et al., 2017). Generally, a human
expert judges the gait of an animal from behind, or the side,
based on several locomotion factors, which often relate to the
fluidity of movement and leg conformation. Gait scores were
found to be heritable in turkeys [h2: 0.08–0.13 ± 0.01 (Kapell
et al., 2017) and 0.25–0.26 ± 0.01 (Quinton et al., 2011)].
The gait scores are valuable to breeding programs, yet the
gait-scoring process is laborious, and gait scores are prone
to subjectivity. Sensor technologies could provide relatively
effortless, non-invasive, and objective gait assessments, while also
allowing for the assessment of a larger number of animals with
higher frequency.

Several technologies for objective gait assessment have been
introduced over the years. These technologies include pressure-
sensitive walkways (PSW) (Nääs et al., 2010; Paxton et al., 2013;

Oviedo-Rondón et al., 2017; Kremer et al., 2018; Stevenson
et al., 2019), rotarods (Malchow et al., 2019), video analysis
(Abourachid, 1991, 2001; Caplen et al., 2012; Paxton et al.,
2013; Oviedo-Rondón et al., 2017), accelerometers (Stevenson

et al., 2019), and inertial measurement units (IMUs; provide

3D accelerometer, gyroscope, and, occasionally, magnetometer
data) (Bouwman et al., 2020). The on-farm application of the
sensor technologies is limited due to equipment costs (PSW),
habituation requirements (PSW, accelerometers, IMUs), or
increased animal handling (rotarod, accelerometers, and IMUs).
On-farm application of cameras can be more practical, however,
the investigated camera-based methods rely on physical markers
placed on key body points to assess the gait of an animal (Caplen
et al., 2012; Paxton et al., 2013; Oviedo-Rondón et al., 2017).

Pose-estimation networks that use deep learning can be
trained to predict the spatial location of key body points in an
image or video frame, and hence make physical markers placed
on key body points obsolete. Pose-estimation networks enable
repeated pose assessment on a large number of animals, which
is needed to achieve accurate breeding values. Pose-estimation
methods that use deep learning (Lecun et al., 2015) can learn
the representation of key body points from annotated training

data. In brief, these pose-estimation methods based on deep
learning consists of two parts, a feature extractor that extracts
visual features from a video image (frame), and a predictor that
uses the output of the feature extractor to predict the body
part and its location in the frame (Mathis et al., 2020). In part,
the success of a supervised deep learning model depends on
the availability of annotated data to learn these representations
(Sun et al., 2017).

In the human domain, markerless pose estimation has been
an active field of research for many years (e.g., Toshev and
Szegedy, 2014; Insafutdinov et al., 2016; Sun et al., 2019;
Cheng et al., 2020) and large datasets have been collected over
the years [e.g., MPII (Andriluka et al., 2014), COCO (Lin
et al., 2014)]. Animal pose estimation has been investigated
in more recent studies (e.g., Mathis et al., 2018; Graving
et al., 2019; Pereira et al., 2019), but large datasets remain
scarce. One dataset (Cao et al., 2019) is publicly available,
however, it is smaller than the human pose-estimation datasets
and does not include broilers or turkeys. The creation of
large datasets is difficult; large-scale animal data collection is
not always easy, and data annotation is laborious and time-
consuming. Therefore, efforts should be made to investigate
methods that could permit deep-learning-based pose-estimation
networks to work with limited data, and with that reduce
annotation needs.

One method to work with limited data could be the use
of data from different sources, like different species. Only a
few studies have investigated the use of pose data from one
or multiple species on another species (Sanakoyeu et al., 2020;
Mathis et al., 2021). In Sanakoyeu et al. (2020), a chimpanzee
pose-estimation network was trained on chimpanzee pseudo-
labels originating from a network trained on data of humans
and other species (bear, dog, elephant, cat, horse, cow, bird,
sheep, zebra, giraffe, andmouse). Pseudo-labels are labels that are
predicted by a model and not the result of manual annotation.
In Mathis et al. (2021), a part of the research focused on
the generalization of a pose-estimation network across species
(horse, dog, sheep, cat, and cow). The pose-estimation network
was trained on one or all other animal species whilst withholding
either sheep or cow as test data. In both Mathis et al. (2021)
and Sanakoyeu et al. (2020), despite differences in approach,
pre-training with multiple species or training with multiple
species resulted in better performance on the unseen species
than when pre-training or training with one species. However,
it is unclear whether the improved performance stems from a
larger data availability or the multi-species data since no notion
of dataset size was given. Furthermore, the investigated species
were visually distinct, this might have affected the performance
of the networks.

The objective of this study is to investigate the across-species
performance of an animal pose-estimation network trained on
broilers and tested on turkeys, and vice versa. Furthermore, since
the interest is in working with limited data, the performance of
an animal pose-estimation network trained on a multi-species
training dataset (turkeys and broilers) will also be investigated. A
multi-species dataset could potentially reduce annotation needs
in both species without a negative effect on performance.
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TABLE 1 | Data overview per species.

Species Resolution No. frames No. animals No. frames per animal

Min Mean Max

Turkey 600 × 720 1,747 83 20 21 50

Broiler 1,280 × 720 1,530 47 15 32 39

MATERIALS AND METHODS

Data Collection
The data used in this research were collected in two different
trials, one for turkeys and one for broilers. The data was not
specifically collected for this study, but representative of the
situation in practice. In both cases, the data collection will
be presented separately though with a similar structure for
easier comparison.

Turkeys
Data were collected on 83male breeder turkeys at 20 weeks of age.
This is approximately the slaughter age for commercial turkeys
(Wood, 2009). The animals were subjected to a standard walkway
test applied in the turkey breeding program of Hybrid Turkeys
(Hendrix Genetics, Boxmeer, The Netherlands). The birds were
stimulated to walk along a corridor (Width: ∼1.5m, Length:
∼6m) within the barn. Video recordings (RGB) were made from
behind with an Intel R© RealSenseTM Depth Camera D415 (Intel
Corporation, Santa Clara, United States; Resolution: 1,280× 720,
Frame Rate: 30). The camera was set up on a small tripod on a
bucket to get a clear view of the legs of the birds. The camera
was parallel to the ground and in the center of the walkway.
A person trailed behind the birds to stimulate walking, and if
needed waving their hand or tapping on the back of the bird.
During the trial, the birds were equipped with three IMUs, one
around the neck, the other two just above the hock. The IMU
data was not used in this study but the IMUs were visible in the
videos. Other birds were visible through wire-mesh fencing. The
videos were cropped to a size of 600× 720 to reduce the visibility
of other turkeys through the wire-mesh fencing. The birds were
housed under typical commercial circumstances.

Broilers
Data were collected on 47 conventional broilers at 37 days of
age. The broilers were in the finishing stage and nearing the
age of slaughter age at 41 days (Van Horne, 2020).The birds
were stimulated to walk along a corridor (width: ∼0.4m, length:
∼3m) within the pen. Video recordings (RGB) were made from
behind with the same Intel R© RealSenseTM Depth Camera D415
as used in the turkey experiment. The camera was set up in a
fixed position on a metal rig attached to the front panel of the
runway to get a clear view of the legs of the birds from behind.
The camera was parallel to the ground and in the center of the
walkway. The birds were stimulated to walk with a black screen
made of wire netting on a stick. Other birds were not visible
due to non-transparent side panels. The videos were not cropped
since other broilers were not visible. The birds were housed in an

experimental facility with a low stocking density (25 on 6 m2) but
with standard light and feeding regime.

Frame Extraction and Annotation
The toolbox of DeepLabCut 2.0 (version 2.1.8.2; Nath et al.,
2019) was used to extract and annotate the frames from the
collected RGB-videos (Table 1). For the turkeys, 20 frames per
video/turkey were manually extracted to ensure no other animals
were visible within the walkway and to exclude frames with
human–animal interaction. For two turkeys, 50 frames were
extracted. These two turkeys were part of our initial trial with
DeepLabCut and hence hadmore annotated frames available. For
the broilers, 40 frames per video/broiler were extracted, randomly
sampled from a uniform distribution across time. The number of
frames per broiler was roughly double the number of frames per
turkey because the number of available broiler videos was roughly
half that of the number of available turkey videos.

In principle, eight keypoints were annotated in each frame:
head, neck, left knee, left hock, left foot, right knee, right
hock, right foot (Figure 1). However, in some frames not all
keypoints were visible (e.g., rump obscuring the head because
the bird put its head down), these frames were retained, but
the occluded keypoint was not annotated. The annotations
are visually estimated locations founded on morphological
knowledge, but can deviate from ground truth, particularly for
keypoints obscured by plumage. The head was annotated at the
top, the neck at the base, the knees at the estimated location of the
knee, the hocks at the transition of the feathers into scales, and the
feet approximately at the height of the first toe in the middle. The
annotated data consisted of the x and y coordinates of the visible
keypoints within the frames.

Extracted frames with no animal in view or no visible
keypoints (i.e., animal too close to the camera) were not
annotated and subsequently removed. This only occurred in
broiler frames, due to random frame extraction for the broilers
vs. themanual frame extraction for the turkeys. Altogether, a total
of 350 broiler frames were removed. There was no threshold on
the minimal number of keypoints within a frame. In total, 3,277
frames were annotated by one annotator, consisting of 1,747
turkey frames and 1,530 broiler frames. The number of frames
differed per animal (Table 1).

Datasets for Training and Testing
Five datasets were created from the annotated frames to train and
test pose-estimation networks: two turkey datasets, two broiler
datasets, and one multi-species training (turkey and broiler)
dataset (Table 2). The single-species datasets were created by
splitting the total number of frames in a training and test set (80
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FIGURE 1 | Example of broiler (A) and turkey (B) annotations. The keypoints are head (red), neck (blue), left knee (green), left hock (purple), left foot (yellow), right knee

(brown), left hock (pink), and left foot (gray). Images are cropped.

TABLE 2 | Dataset configuration.

Species No. training

frames

(No. animals)

No. testing

frames

(No. animals)

No. total frames

Turkey 1,397 (67) 350 (16) 1,747

Broiler 1,224 (37) 306 (10) 1,530

Multi-species 600/601 (30/19) – 1,201

The multi-species dataset reports two numbers, the first relates to turkeys and the second

to broilers.

and 20%, respectively). Animals in the test set did not occur in the
training set. Most animals in the test set were randomly selected,
somewere selected to get a proper 80/20-split since the number of
frames differed per animal. The remainder of the frames made up

the training data. The multi-species dataset was a combination of
turkeys and broilers training frames. Most animals in the multi-
species dataset were randomly selected from the animals in the
turkey and broiler training set, some were selected to get the
correct total number of frames. The five datasets thus consisted
of three training datasets (turkey, broiler, multi-species) and two
test datasets (turkey and broiler). An overview of the datasets is
provided in Table 2.

Pose-Estimation
DeepLabCut is an open-source deep-learning-based pose-
estimation tool (Mathis et al., 2018; Nath et al., 2019). In
DeepLabCut, the feature detector from DeeperCut (Insafutdinov
et al., 2016) is followed by deconvolutional layers to produce a
score-map and a location refinement field for each keypoint. The
score-map encodes the location probabilities of the keypoints
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FIGURE 2 | Example of a broiler score-map. The score-map encodes the location probabilities of the keypoints.

(Figure 2). The location refinement field predicts an offset to
counteract the effect of the down sampled score-map. The feature
detector is a variant of deep residual neural networks (ResNet-
50; He et al., 2016) pre-trained on ImageNet—a large-scale
dataset for object recognition (Deng et al., 2009). The pre-
trained network was fine-tuned for our task. This fine-tuning
improves performance, reduces computational time, and reduces
data requirements (Yosinski et al., 2014). During fine-tuning, the
weights of the pre-trained network are iteratively adjusted on
the training data of our task to ensure that the network returns
high probabilities for the annotated keypoint locations (Mathis
et al., 2018). DeepLabCut returns the location (x̂i, ŷi) with the
highest likelihood (θi) for each predicted keypoint in each frame
(Figure 2).

Analyses
DeepLabCut (core, version 2.1.8.1; Mathis et al., 2018) was used
to train three networks, one for each training dataset [turkey
(T), broiler (B), and multi-species (M)]. All three networks were
tested on both test datasets (turkey and broiler), thus within-
species and across-species (Table 2). The model and test set will
be indicated with the following convention; the first letter denotes
the model, and the second letter the test set, i.e., MT stands for
multi-species model on turkey test set and BB stands for broiler
model on broiler test set.

All three networks were trained with default parameters
for 1.03 million iterations (default). The number of epochs—
the number times the entire dataset is presented through the

network—differed between networks due to different training
set sizes (turkey: 737 epochs; broiler: 841 epochs; multi-species:
858 epochs).

In Table 2, a testing scheme is presented. The testing scheme
shows within-species (TT and BB), across-species (TB and BT)
and multi-species model (MT and MB) testing. The within-
species test established the performance of the networks on the
species on which the model was trained. The across-species
test was used to assess a network’s performance across species,
i.e., on the species on which the model was not trained. The
multi-species model was tested on both test sets to assess the
performance of a network trained with a combination of species
and fewer annotations per species.

Evaluation Metrics
The performance of the models was evaluated with the raw pixel
error, the normalized pixel error, and the percentage of keypoints
remaining (PKR). The raw pixel error and normalized pixel error
were calculated for all keypoints or keypoints with a likelihood
higher or equal to 0.6 (default in DeepLabCut).

The raw pixel error was expressed as the Euclidean distance
between the x and y coordinates of the model predictions and the
human annotator.

dij =
√

(x̂ij − xij)2 + (ŷij − yij)2 (1)

Where dij is the Euclidean distance between the predicted
location of keypoint i, (x̂i, ŷi), and its annotated location, (xi, yi),
in frame j.
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The average Euclidean distance was calculated per keypoint
over all frames.

di =
1

N′

∑N′

j=1
dij (2)

Where di is the average Euclidean distance of keypoint i. N is the

total number of frames, and N
′
is the number of frames in which

keypoint i was annotated, thus visible.
The overall average Euclidean distance was calculated over all

keypoints over all frames.

d =
1

|M|

∑|M|

(i,j) ∈ M
dij (3)

Where d is the overall average Euclidean distance,M is the set of
all valid annotations of all keypoints i in all frames j.

Since the animal is moving away from the camera, the size
of the animal in relation to the frame changes, i.e., the animal
becomes smaller. The normalized pixel error corrects the raw
pixel error for the size of the animal in the frame, i.e., a pixel error
of five pixels when the animal is near the camera is better than
a pixel error of five pixels when the animal is further from the
camera. The raw pixel errors were normalized by the square root
of the bounding box area of the legs, as head and neck keypoints
were not always visible. The bounding box was constructed from
the annotated keypoints to ensure that the normalization of the
raw pixel error was independent of the predictions. The square
root of the bounding box area penalized the pixel errors less for
large bounding boxes than for small bounding boxes.

The normalized pixel error was calculated as follows:

Normdij

=
dij

√

(

maxxij ǫ L xij −minxij ǫ L xij

)

∗
(

maxyij ǫ L yij −minyij ǫ L yij

)

(4)

Where dij is the raw pixel error as in Equation (1), L is a
set of annotated leg keypoint coordinates, (xi, yi), in frame j.
Leg keypoints consist of the knees, the hocks, and the feet.
The normalized pixel error was reported either as the average
normalized error per keypoint as in Equation (2) or as the overall
average normalized error as in Equation (3) with dij substituted
with Normdij.

The PKR is the percentage of keypoints with a likelihood
higher or equal to 0.6 over the total keypoints with a Euclidean
distance. Only annotated keypoints have a Euclidean distance
(see also Equation 1). The PKR is a proxy for the confidence of
the model. The PKR should always be considered in unison with
the pixel error, a model with a high PKR and a low pixel error is
confidently right.

RESULTS

The models were used to investigate the across-species
performance of animal pose-estimation networks and the

performance of an animal pose-estimation network trained on
multi-species data. The models were tested according to the
testing scheme in Table 3. The performances of all models over
all keypoints are shown in Tables 4, 5.

Comparison Between Within-Species,
Across-Species, and Multi-Species
On all evaluationmetrics calculated overall keypoints, the within-
species models (TT, BB) outperformed the multi-species model
(MT, MB) and the models applied across species (TB, BT)
(Tables 4, 5). The within-species models had lower raw pixel
errors, lower normalized pixel errors, and higher PKRs than
the multi-species model and the models applied across-species.
Compared to the within-species models, the multi-species model
had slightly higher normalized errors (+0.01). However, the
errors across-species were considerably higher (+0.57; +0.49)
than they were for the within-species models.

Performance varied per keypoint, not only within models but
also between models (Table 6). In general, the head, neck and
knee keypoints were predicted with the highest errors. Across-
species, the models always performed worse than the within-
species counterpart and the multi-species model. On the broiler
test set, the multi-species model outperformed the broiler model
for the head and right knee keypoint, although this did coincide
with a lower PKR. The turkey model had either a similar or better
performance than the multi-species model on the turkey test set
but the multi-species model did generally have a lower PKR.

Within-Species
On the training dataset, both within-species models (TT, BB)
showed comparable raw pixel errors and normalized pixel
errors (Table 4). The turkey model (TT) had a lower raw and
normalized pixel error and higher PKR than the broiler model
(BB). The turkey model had the lowest keypoints error for the
left hock and left foot and the highest error for the right knee
keypoint (Table 6). The right knee keypoint error was 0.03 higher
than the left knee keypoint error. The leg keypoint errors of the
broiler model were rather consistent within each leg, except for
the right knee keypoint.

Multi-Species
Multi-species model performance was different between species
(MT, MB; Table 4). The multi-species model performed better
on the turkey test set (MT) than it did on the broiler test set
(MB). The multi-species model on the turkey test set had the
highest error for the neck keypoint and the lowest error for the
left hock keypoint (Table 6). On the broiler test set, the multi-
species model had the highest errors for the hocks and right knee
keypoints, and the lowest error for the head keypoint.

Across-Species
Across species, the turkey and broiler model had high errors (TB,
BT; Table 5). The turkey model on the broiler test set had the
highest error for the head keypoint, whereas the left foot keypoint
had the lowest error (Table 6). The broiler model on turkey test
set also had the highest error for the head keypoint and lowest
error for the left foot keypoint.
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TABLE 3 | Testing scheme.

Test set (species) Model

Turkey (T) Broiler (B) Multi-species (M)

Turkey (T) Within-species performance (TT) Across-species performance (BT) Multi-species performance (MT)

Broiler (B) Across-species performance (TB) Within-species performance (BB) Multi-species Performance (MB)

The following convention will be used to convey the model and test set; the first letter denotes the model, the second letter the test set, i.e., BT stands for the broiler model on the turkey

test set.

TABLE 4 | Train and test performance of turkey and broiler model within species.

Model Train error Test error PKRa (%)

Rawb Normalizedc Raw Normalized

All Filter All Filter All Filter All Filter

Turkey 2.34 2.34 0.03 0.03 6.76 6.27 0.06 0.05 99

Broiler 2.26 2.26 0.03 0.03 12.05 7.56 0.11 0.09 94

Model performance reported in raw pixel error, normalized pixel error, and the PKR over all keypoints. Filter implies that only keypoints with θ ≥ 0.6 were considered in the error

calculation. Errors closer to zero are better; PKR closer to 100% is better.
aThe percentage of keypoints with a likelihood higher or equal to 0.6 over the total number of keypoints with a Euclidean distance.
bThe Euclidean distance in pixels between the annotated and predicted keypoints.
cThe Euclidean distance normalized to the square root of the bounding box area of the legs.

TABLE 5 | Performance of all models on the test sets.

Model Test set Test error PKRa (%)

Trained on Species Rawb Normalizedc

All Filter All Filter

Turkey Broiler 132.50 32.13 2.35 0.66 42%

Broiler Turkey 82.37 51.03 0.88 0.54 58%

Multi-species Turkey 8.89 7.33 0.07 0.06 97%

Broiler 22.19 9.98 0.16 0.10 89%

Model performance reported in raw pixel error, normalized pixel error, and the PKR over all keypoints. Filter implies that only keypoints with θ ≥ 0.6 were considered in the error

calculation. Errors closer to zero are better; PKR closer to 100% is better.
aThe percentage of keypoints with a likelihood higher or equal to 0.6 over the total number of keypoints with a Euclidean distance.
bThe Euclidean distance in pixels between the annotated and predicted keypoints.
cThe Euclidean distance normalized to the square root of the bounding box area of the legs.

DISCUSSION

In this study, the across-species performance of animal
pose-estimation networks and the performance of an
animal pose-estimation network trained on multi-species
data (turkeys and broilers) were investigated. The results
showed that within-species the models had the best
performance, followed by the multi-species model, and
across-species the models had the worst performance,
as illustrated by the raw pixel errors, normalized pixel
errors, and PKRs. However, the multi-species model
outperformed the broiler model on the broiler test set for
the head, left foot, and right knee keypoints, though with a
lower PKR.

Data Availability and Model Performance
The turkey model outperformed the broiler model on the
within species test set (Table 4), even though both models had
approximately comparable raw pixel errors and normalized pixel
errors on the training dataset. For the turkeys, the training set
was slightly larger (n = 1,397) than the broiler training set (n
= 1,224), which might explain the difference in performance.
However, the turkey test set was likely less challenging, as the
difference between the unfiltered and filtered error was smaller
for the turkey model than it was for the broiler model. The
difference in difficulty can partly be explained by the difference
in frame extraction. The broiler dataset consisted of frames that
were randomly sampled from a uniform distribution across time,
whereas the turkey dataset consisted of consecutive frames. The
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TABLE 6 | Performance of all models on the test sets per keypoint.

Model Turkey Broiler Multi-species

Test species Turkey Broiler Turkey Broiler Turkey Broiler

Keypoint Normalizeda PKRb (%) Normalized PKR (%) Normalized PKR (%) Normalized PKR (%) Normalized PKR (%) Normalized PKR (%)

Head 0.06 99 11.14 1 1.17 64 0.09 95 0.06 97 0.08 84

Neck 0.08 99 0.82 1 0.85 67 0.08 93 0.10 97 0.09 78

Left knee 0.05 100 0.20 39 0.21 13 0.08 86 0.06 97 0.09 84

Left hock 0.03 100 0.30 46 0.39 52 0.08 97 0.03 99 0.12 93

Left foot 0.03 100 0.13 47 0.15 68 0.08 99 0.04 98 0.08 97

Right knee 0.08 96 0.35 63 0.13 45 0.14 88 0.09 92 0.12 81

Right hock 0.04 100 0.41 46 0.24 73 0.09 95 0.04 99 0.12 96

Right foot 0.06 99 1.72 73 0.17 72 0.09 99 0.08 100 0.10 93

Model performance reported in normalized pixel error and the PKR per keypoint. Only keypoints with θ ≥ 0.6 were considered in the error calculation. Errors closer to zero are better;

PKR closer to 100% is better.
aThe Euclidean distance normalized to the square root of the bounding box area of the legs.
bThe percentage of keypoints with a likelihood higher or equal to 0.6 over the total number of keypoints with a Euclidean distance.

temporal correlation between the frames may explain why the
turkey test set was less challenging.

Overall, the multi-species model had higher errors and a lower
PKR than the single-species models. Yet, compared to the within-
species models, the multi-species model had less than half the
number of annotated frames of the tested species. Interestingly,
the multi-species model performed better or similar for certain
keypoints compared to the single-species models, but with
less confidence, hence a lower PKR. The multi-species model
performance suggests that data from the other species was useful
to improve performance for certain keypoints but did lower the
PKR. The lower PKR is more apparent on the broiler test set
but also noticeable on the turkey test set. The lower PKR may
be caused by an interplay between the inclusion of other species
training data and a lower variability within the species-specific
training data.

The pose-estimation networks applied across species had no
data available on the target species and could still estimate
keypoints. Those keypoint estimates appear to be relatively
informed as indicated by the normalized errors. This suggests
that, in the case of comparable species, with an existing
model and limited availability of data on the new species,
the existing model could be fine-tuned on limited data of
the target species. The performance of the pose-estimation
models confirmed that the success of a supervised deep learning
model depends on the availability of data, as was noted by
Sun et al. (2017).

Across-species, the head and neck showed high normalized
pixel errors for both turkeys and broilers. Across-species pose-
estimation is influenced by differences in appearance of the
animals and the differences in environment. There are inherent
differences in appearance between turkeys and broilers, especially
concerning the head and neck. A turkey head is featherless and
has a light-blue tint and a broiler head is feathered and white. In
our case, it appears that DeepLabCut was dependent on the color
of the keypoints. The broiler model tended to predict the turkey
head in the white overhead lights, on workers’ white boots, and

turkeys at the end of the walkway. These locations were relatively
far away from the bird, as indicated by the pixel error. A model
that uses spatial information of other keypoints within a frame
could notice that these predicted keypoints are too far off and
search for the second-best location closer to the other keypoints.
This suggests that single animal DeepLabCut could benefit from
the use of spatial information of other keypoints within a frame,
as was also noted by Labuguen et al. (2021).

Data Collection
In this study, the data was collected in two different trials,
one for turkeys and one for broilers but neither specific for
this study. Recording both species in the same setting under
the same conditions may have been better for assessing model
performance between the two species, but can only be done in an
experimental setting, which often poorly translates to practical
implementation. The datasets used here were representative of
the situation in practice for poultry breeding programs. In the
end, the models will have to work in less regulated environments,
i.e., barns and pens, to be of use.

In the turkey trial, multiple sensors collected data to assess
the gait of the animals. The trial did not only involve a video
camera, but the animals were also equipped with IMUs, and there
was a force plate hidden underneath the bedding. The IMUs
were attached to both legs and the neck, and hence they were
visible in the turkey video frames. The presence of the IMUs was
likely picked up by the pose-estimation network, as the hocks
often had the lowest normalized pixel error, and highest PKR
of all keypoints within a turkey leg. Likewise, when the broiler
model was tested on the turkey test set it tended to predict
the hocks at the transition of the Velcro strap of the IMU to
the feathers, instead of the transition from scales into feathers.
The presence of external sensors seems to have influenced the
performance of the pose-estimation networks on the turkey
test set.

The turkey trial was conducted during a standard walkway
test applied in the turkey breeding program of Hybrid Turkeys
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(Hendrix Genetics, Boxmeer, The Netherlands), and therefore,
representative of a practical gait scoring situation. The turkeys
were stimulated to walk by a worker causing occlusions in the
frames. However, occlusions could also occur because of another
bird in queue, while the bird of interest was still walking. In the
turkey dataset, only frames without occlusion by a worker or
other bird were included. These occlusions limit the amount of
usable data available for gait and pose estimations. The occlusions
did not hinder the human expert who can move around freely,
while the camera is in a fixed position. In an ideal situation, each
animal is walked one-by-one for the full extent of the walkway,
as was done with the broilers. This will not only make the videos
more usable but also allow for a better sampling of the frames to
train a network.

Annotation
During the annotation process, not all keypoints could be
annotated as accurately. For both turkeys and broilers, the knees
were annotated at the estimated location as the knees of the birds
cannot be observed directly. The uncertainty in labeling, and
thereby the variability in labeling, declined when the animal was
further away from the camera since the likely knee area simply
declined, but annotator uncertainty was still present. The larger
likely knee area when the animal was near the camera, coupled
with the annotator uncertainty is likely to increase the raw
pixel errors. The annotator uncertainty probably increased the
variability of the knee keypoint annotations which would have
a negative effect on the PKR, as the network would have more
trouble learning the knee keypoint. The annotator uncertainty
becomes evident when we look at the normalized pixel error and
the PKR of the turkey and broiler model applied within species.
The knees had the highest normalized pixel error and/or lowest
PKR of the keypoints within each leg. Ideally, the normalized
pixel error of the knees reflected the decline of the likely knee
area by being equal to the normalized pixel error of the other
keypoints within the leg. However, the normalized pixel error of
the knee keypoints was only equal to the normalized pixel error
of the other keypoins within the left leg of the broilers, in all
other cases, it was higher, showing that labeling uncertainty was
still present.

Prospects
This study provides insight into the across-species performance
of animal pose-estimation networks and the performance of an
animal pose-estimation network trained on multi-species data.
Accurate pose-estimation networks enable automated estimation
of key body points in an images or video frames, which
are a prerequisite to use camera’s for objective assessment of
poses and gaits, hence within species trained models would
perform best, if sufficient annotated data is available on the
species. Within-species models will provide more accurate
keypoints from which more accurate spatiotemporal (e.g.,
step time and speed) and kinematic (e.g., joint angles) gait
and pose parameters can be estimated. In case of limited
data availability, a multi-species model could potentially be

considered for pose assessment without a large impact on
performance if the used species are comparable. The across-
species keypoint estimates may not be precise enough for
accurate gait and pose assessments, but still appear to be
relatively informed as indicated by the normalized errors.
A pose estimation network may not be directly applicable
across species, but the network could serve as a pre-trained
network that can be fine-tuned on the target species if there
is limited available data. An alternative could be the use of
Generative Adversarial Neural networks (GANs; Zhu et al.,
2017). However, recent GANs appear to work better to change
coat color than to change a dog into a cat (Cao et al., 2019).
Furthermore, if the species change is successful, the accuracy
of the converted keypoint labels could be negatively impacted
(Cao et al., 2019).

CONCLUSION

In this study, the across-species performance of animal pose-
estimation networks and the performance of an animal pose-
estimation network trained on multi-species data (turkeys and
broilers) were investigated. Across species, keypoint predictions
resulted in high errors in low to moderate PKRs and are unlikely
to be of direct use for pose and gait assessments. The multi-
species model had slightly higher errors with a lower PKR than
the within-species models but had less than half the number
of annotated frames available from each species. The within-
species model had the overall best performance. The within-
species models will provide more accurate keypoints from which
more accurate spatiotemporal and kinematic—geometric and
time-dependent aspects of motion—gait and pose parameters
can be estimated. A multi-species model could potentially
reduce annotation needs without a large impact on performance
on pose assessment, however, with the recommendation to
only be used if the species are comparable. Future studies
should investigate the actual accuracy needed for pose and
gait assessments and estimate genetic parameters for the new
phenotypes before pose-estimation networks can be applied
in practice.
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