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The development of natural, broadly acting antimicrobial solutions to combat

viral and bacterial pathogens is a high priority for the livestock industry. Herein,

we cover the latest progress in utilizing lipid-based monoglycerides as feed

additives to address some of the biggest challenges in animal agriculture. The

current industry needs for effective antimicrobial strategies are introduced

before discussing whymedium-chain monoglycerides are a promising solution

due to attractive molecular features and biological functions. We then critically

analyze recent application examples in which case monoglycerides

demonstrated superior activity to prevent feed transmission of viruses in

swine and to mitigate bacterial infections in poultry along with gut

microbiome modulation capabilities. Future innovation strategies are also

suggested to expand the range of application possibilities and to enable new

monoglyceride delivery options.
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Introduction

Infectious diseases caused by viral and bacterial pathogens are a major challenge in

the livestock industry, contributing to significant productivity and economic losses

(Swayne, 2013; Vanderwaal and Deen, 2018; Shurson et al., 2022). Hence, there is

widespread interest in developing strategies to prevent and treat pathogenic infections

related to various commercially significant viruses and bacteria.

One widely used industry approach is the prophylactic use of antimicrobial

compounds, often delivered in the form of feed or water supplements, to inhibit

pathogens (Page and Gautier, 2012; Dittoe et al., 2018; Stewart et al., 2020; Silveira

et al., 2021). Historically, the most widely used type of antimicrobial compounds has

been antibiotics, which can specifically inhibit bacteria and can also enhance animal

growth performance in some cases (Dibner and Richards, 2005). However, growing
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attention to the rise of antibiotic-resistant bacteria (Nhung

et al., 2017; Haulisah et al., 2021) has led to stricter regulations

such as the Veterinary Feed Directive issued by the US Food

and Drug Administration (FDA) and resulted in more

judicious antibiotic use (Dillon and Jackson-Smith, 2021).

Likewise, antiviral compounds such as the anti-influenza

drug amantadine have been used as prophylactics to prevent

viral outbreaks from spreading in livestock populations, but

such widespread usage has been suggested to cause a rise in

drug-resistant viral strains (Yuan et al., 2022). Additionally,

more broadly acting, disinfecting compounds such as

formaldehyde are used to inhibit both bacteria and viruses

(Bleichert et al., 2014), but health concerns related to

carcinogenicity (Swenberg et al., 2013; Andersen et al., 2019)

have led to its ban for use in feedstuffs in certain jurisdictions

(e.g., in the European Union, Japan, and Korea) and reduced

use in general (Śmiechowska et al., 2021).

As such, there is extensive interest in exploring the use of

naturally occurring antimicrobial compounds that can work

against a wide range of bacteria and viruses, are safe to use, and

do not elicit pathogen resistance. Considering these points, one

ideal pathogen target is the lipid membrane that surrounds

bacterial cells and most viruses that pose a threat to the

livestock industry (Yoon et al., 2020a). Recent findings from

the human antiviral medicine field demonstrate the

performance merits of targeting pathogen membranes in

physiological environments (Jackman et al., 2018; Jackman,

2022) and thus support the potential for translating such

strategies to animal agriculture, especially if economical

antimicrobial compounds with acceptable regulatory profiles

can be utilized.

Towards this goal, natural antimicrobial lipids such as

medium-chain monoglycerides (MCMG) have emerged as a

promising option to tackle the virus and bacteria challenges

facing the swine and poultry industries and are covered herein.

Particular focus is placed on critically analyzing how MCMG

are being utilized to support agricultural biosecurity and

animal health in the swine and poultry production sectors.

Notably, MCMG have had wide use and established regulatory

acceptance (e.g., as a food substance, they are determined to be

Generally Recognized as Safe by the US FDA, the European

Commission, and the Food Chemicals Codex) as antimicrobial

preservatives, lubricants, stabilizers, and emulsifiers in other

aspects of food production (Luo et al., 2022), which reinforces

their application potential in the present context. Ongoing

research has explored how MCMG can be utilized for specific

application needs such as virus mitigation in feed and

supporting animal health during bacterial infection. Recent

attention to the molecular-level properties of MCMG is also

helping to determine structure-function relationships and to

rationalize why certain MCMG are more potent than

other ones.
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Monoglyceride structure and
functions

MCMG are derivatives of medium-chain fatty acids

(MCFA), which are classified as saturated fatty acids with 6- to

12-carbon long, aliphatic chains. Structurally, MCMG are

esterified adducts of an MCFA and a glycerol molecule and

have nonionic headgroups, which enable pH-stable behavior

that supports robust performance in aqueous environments

(Figure 1A). By contrast, MCFA have a carboxylic acid

headgroup that is typically negatively charged above pH 5 and

its ionization state is sensitive to the pH environment (Valle-

Gonzaıĺez et al., 2018). Owing to their distinct melting points, C6

and C8 monoglycerides are typically found in liquid form while

C10 and C12 monoglycerides are typically in powder form. Of

note, MCMG mixtures are often supplied in liquid form due to

MCMG miscibility.

The main biologically active constructs of MCMG are micelles,

which are self-assembled structures of individual molecules that

form above a critical micelle concentration (CMC) and the CMC

value varies depending on the particular compound or mixture

thereof (Yoon et al., 2020b). In general, MCMG with longer

hydrocarbon chains have lower CMC values than MCMG with

shorter chains due to stronger hydrophobic interactions between

chains that promote self-assembly (Yoon et al., 2017). The nonionic

character of MCMG enables micelle formation at lower compound

concentrations than MCFA, which have anionic character and

hence intermolecular electrostatic repulsion between the

headgroups that can hinder micelle formation at low

concentrations. This biophysical feature helps to explain why

MCMG are typically more potent than MCFA since MCMG

form micelles at lower concentrations.

Mechanistically, MCMG can inhibit a wide range of

membrane-enveloped viruses and bacteria by displaying

membrane-disruptive properties, which often occur at and

above the CMC (Figure 1B). Fatty acids and monoglycerides

mainly exhibit membrane-disruptive properties in their micellar

form above their corresponding CMC values (Yoon et al., 2015),

which is therefore an important determinant of potency, while

they are appreciably less active or inactive in monomeric form.

In the case of bacteria, MCMG treatment can induce bacterial

cell membrane disruption, which leads to abrogating cell growth

or viability depending on the specific conditions (Bergsson et al.,

1998; Bergsson et al., 2001). The mechanisms involved in this

antibacterial activity can include increased membrane

permeability and/or lysis and concomitant effects on

membrane-related cellular functions such as hindered electron

transport chains, oxidative phosphorylation processes, and

enzyme activities (Yoon et al., 2018; Casillas-Vargas et al.,

2021). Most of the latter effects are consequences of increased

bacterial cell membrane permeability, i.e., membrane leakage

that disrupts ion and chemical gradients between the
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extracellular and intracellular spaces. MCMG can also inhibit

membrane-enveloped viruses by damaging virus particles, which

hinders infectivity and it is understood that membrane lysis is

the main contributing factor to antiviral activity (Thormar et al.,

1987; Thormar et al., 1994).

MCMG have been reported to inhibit a wide range of viral

and bacterial pathogens that are important to swine and poultry

production (Jackman et al., 2020a; Chen et al., 2021). Susceptible

bacterial pathogens include Escherichia coli, Streptococcus suis,

Salmonella poona, Listeria monocytogenes, and Clostridium

perfringens (Wang and Johnson, 1992; Skrǐvanová et al., 2006;

Wang et al., 2018), and susceptible viral pathogens include

membrane-enveloped viruses such as avian influenza virus

(AIV), infectious bronchitis virus, Newcastle disease virus,

African swine fever virus (ASFV), porcine reproductive

respiratory syndrome virus (PRRSV), and porcine epidemic

diarrhea virus (PEDV) (Nur Ika, 2011; Jackman et al., 2020b;

Lerner et al., 2020; Dee et al., 2021; Nefedova et al., 2021; Saleh

et al., 2021). A common theme of these pathogens is that they are

all coated with a lipid membrane envelope, which is the primary

target for pathogen inhibition. Mechanistic studies have revealed

that C10 and C12 monoglycerides have particularly high

antimicrobial potency due to low CMC values, which allow

them to be in the active micellar form at lower concentrations

than shorter-chain monoglycerides (Kabara et al., 1972).

Nevertheless, different bacteria and viruses have distinct lipid

compositions and membrane properties so empirical testing is

warranted to identify the best-performing MCMG or

combination thereof for the target pathogen(s).
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Compared to antibiotics, there are also two main advantages of

MCMG for dealing with infectious diseases in livestock production:

(1) MCMG exhibit broad-spectrum antimicrobial activity to inhibit

viruses and bacteria, whereas antibiotics only work against bacteria

(Churchward et al., 2018); and (2) there is anticipated to be a high

barrier for pathogens to develop resistance to MCMG (Schlievert

and Peterson, 2012), which supports the feasibility of using them

across various applications such as mitigation rather than only in

more specific therapeutic contexts. As described above, MCMG are

also more potent than MCFA and have a more acceptable safety

profile than other options like formaldehyde.
Bioavailability considerations

In terms of supply options, MCMG are widely found in

various natural sources such as coconut oil and insect-derived

oils (Dayrit, 2015; Borrelli et al., 2021; Dabbou et al., 2021).

However, they are mainly present in triglyceride form, which

typically do not exhibit antimicrobial activity and require

enzymatic breakdown to yield the active MCMG form (Zentek

et al., 2011). In addition to enzymatic breakdown of triglycerides,

MCMG themselves can be broken down into free fatty acids and

glycerol products by lipolytic enzymes. For example, certain

bacteria such as Staphylococcus aureus can produce enzymes to

hydrolyze MCMG (i.e., glycerol monolaurate) and the resulting

fatty acids can also exhibit similar biological activities by

themselves (Ruzin and Novick, 2000) and in combination with

MCMG (i.e., in mixed micelles).
FIGURE 1

Overview of medium-chain monoglyceride (MCMG) structure and function. (A) Chemical structures of MCMG with saturated chains.
(B) Schematic illustration depicting how MCMG in micellar form can disrupt phospholipid membranes such as those of bacteria and enveloped
viruses while MCMG in monomeric form are largely inactive.
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The gastrointestinal tract also contains lipolytic enzymes

that can degrade MCMG, while it has also been discussed how

MCMG can be absorbed in intact form and the hydrolytic

propensity of MCMG can also vary depending on the specific

stereochemistry of its molecular structure (Kabara, 2005).

Indeed, MCMG are also found intact in complex biological

matrices such as the milk of some mammals (Schlievert et al.,

2019), and can alternatively be provided in highly purified form.

The latter option is useful to incorporate a defined amount of

MCMG into an aqueous or feed matrix, especially when

antimicrobial activity is desired in the matrix itself. At present,

feed delivery is the most widely used method for MCMG and we

cover application examples of particular importance to dealing

with microbial pathogens in swine and poultry production.
Application studies

Prevention of virus transmission in
swine feed

Feed has been identified as a vector for pathogen

transmission in swine production and there is ongoing
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exploration of chemical mitigants to stop feed transmission of

viruses and bacteria (Niederwerder, 2021). One longstanding

option has been formaldehyde, which can induce protein cross-

linking to inhibit pathogens (Wilton et al., 2014; Dee et al.,

2015). However, its use is being reduced or stopped in certain

parts of the world due to recently enacted regulations as

described above (Gosling et al., 2021). As such, there has been

ongoing exploration of new classes of regulatory acceptable

mitigants and one of the most promising options is

membrane-disrupting MCFA (Baltić et al., 2017). In light of

the typically greater biological potency of MCMG compared to

MCFA and the demonstrated ability of MCFA to mitigate

pathogens in feed, there have been several recent

investigations exploring how MCMG might be useful to

inhibit swine-related pathogens (Table 1).

In one study, the in vitro antiviral activity of GML

monoglyceride against ASFV was compared to that of several

individual MCFA in aqueous solution (Jackman et al., 2020b). It

was observed that GML had the greatest antiviral potency and

exhibited virucidal activity along with additional antiviral

mechanisms. Practically, it was further demonstrated that

GML could inhibit ASFV in a feed matrix, as indicated by a

dose-dependent drop in viral infectivity, and the membrane-
TABLE 1 Recent examples of monoglycerides demonstrating in vitro and in vivo efficacy to inhibit swine- and poultry-related viral and
bacterial pathogens.

Mitigant Study type (pathogen) Key result Reference

Glycerol monolaurate (GML) or
MCFA blend (51:29:7 C8:C10:
C12)

In vitro solution and feed mitigation (ASFV) -GML was more potent than individual MCFAs to inhibit ASFV in
aqueous solution
-GML inhibited infectious ASFV in feed by up to 88%, whereas
MCFA blend was inactive
-GML treatment had no effect on viral DNA in feed but impaired
conformation of ASFV surface protein

Jackman
et al., 2020b

Various commercial sources,
including monoglycerides

In vivo feed mitigation with ice block challenge
in pigs (PRRSV, PEDV, SVA)

-Monoglyceride-containing additives improved ADG and reduced
mortality, as compared to positive control group
-Also reduced clinical symptoms and reduced viral presence in rectal
swabs, serum, and tonsils

Dee et al.,
2021

Proprietary monoglyceride
blend

In vitro and in vivo feed mitigation with ice
block challenge in pigs (PEDV)

-Monoglyceride blend reduced PEDV in feed by 99%
-Also prevented PEDV transmission to pigs and there were no clinical
symptoms at much lower inclusion rate than MCFAs

Phillips
et al., 2022

C3, C4, C5, C6, C8, C9, C10,
and C12 monoglycerides

In vitro solution (various bacteria) -GML was the most potent to inhibit Gram-positive Staphylococcus
aureus and Streptococcus suis out of 34 mitigant candidates
-C8/C10 monoglyceride blend additionally inhibited Gram-negative
Actinobacillus pleuropneumoniae, Salmonella Typhimurium, and
Escherichia coli

Neath et al.,
2022

Proprietary blend of C4, C8,
and C10 monoglycerides

In vivo challenge in broilers (Eimeria oocysts
followed by Clostridium perfringens)

-Monoglyceride blend improved overall FCR
-Monoglyceride blend reduced mortality associated with NE challenge

Gharib-
Naseri et al.,
2021

Proprietary blend of C4, C8,
and C10 monoglycerides

In vivo challenge in broilers (Eimeria oocysts
followed by Clostridium perfringens)

-Monoglyceride blend reduced mortality due to NE
-Monoglyceride blend improved intestinal integrity and barrier
function
-Monoglyceride blend increased ability to digest more of the total
energy of the feed

Kumar
et al., 2021

Mixture of 1-monoglycerides
(C1 to C7)

In vivo challenge in broilers (Eimeria spp., and
Clostridium perfringens or Salmonella
typhimurium)

-Mixture of organic acid 1-monoglycerides prevented acute necrotic
enteritis
-Mixture of organic acid 1-monoglycerides reduced colonization of
Salmonella typhimurium

Tosi et al.,
2017
fro
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disrupting mechanism also caused changes in the

conformational properties of membrane-associated viral

surface proteins. Specifically, the conformational stability of

viral surface proteins depends on membrane integrity and

membrane disruption therefore causes the loss of native

protein conformation, impairing structure and potentially

function as well (Salimi et al., 2020). Of note, the antiviral

activity of GML did not cause a drop in viral nucleic acids

found in the feed (i.e., located in the core of ASFV particles),

highlighting that GML can impair viral infectivity even when

viral nucleic acids are still present. Together, these findings

support that GML impaired viral infectivity by disrupting the

lipid membrane envelope surrounding ASFV particles within

the feed matrix, indicating that this MCMG can directly inhibit

enveloped virus particles.

There has also been interest in developing swine models to

evaluate the potential of MCMG-containing mitigant products

to inhibit pathogen transmission. One popular model is based on

an ‘ice-block’ challenge, whereby feed is inoculated with a frozen

ice sample containing PRRSV, Senecavirus A (SVA), and PEDV

that melts and disperses to contaminate the feed (Dee et al.,

2021). Pigs are then fed the contaminated feed and biomarkers

related to growth performance, clinical status, and virological

infection signs are tracked over subsequent days as pigs respond

to the pathogen exposure. The feed can be premixed with a

mitigant candidate so that the effects of a mitigant on preventing

disease transmission are evaluated, i.e., it is envisioned that the

mitigant inactivates the virus present within the feed matrix.

Using this approach, several MCMG-containing mitigant

products were shown to prevent disease transmission, as

indicated by preventing infection-related mortality and

reducing clinical symptoms. Sufficiently high inclusion rates of

the MCMG-containing products in the feed also reduced viral

presence in rectal swabs, serum, and tonsils, and also improved

average daily gain (ADG).

Additional efforts have focused on understanding the range

of effective inclusion rates of MCMG-containing products

compared to that of formaldehyde-containing products, which

is around 3.25 kg per ton in the latter case (Phillips et al., 2022).

In vitro studies showed that 1.5 to 3.5 kg per ton inclusion rates

of an MCMG-containing product inhibited PEDV infectivity in

feed while further testing in the ice-block challenge model

verified that these inclusion rates also effectively prevented

disease transmission to pigs. On the other hand, an MCFA-

containing product tested in parallel was only effective at an

inclusion rate of 10 kg per ton. The higher effectiveness of the

MCMG-containing product was rationalized by taking into

account how MCMG is typically more potent than MCFA at a

molecular level, and the data reinforced that MCMG is a

potentially useful mitigant option to replace formaldehyde in

light of similarly low effective inclusion rates.

While most recent MCMG mitigant studies have focused on

preventing viral disease transmission in pigs, there is also
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potential to explore whether such mitigants can prevent

bacterial disease transmission as well. For example, GML has

been reported to most potently inhibit Gram-positive bacteria

such as Staphylococcus aureus and Streptococcus suis out of over

30 mitigant candidates while a blend of 8- and 10-carbon long,

saturated monoglycerides additionally inhibited Gram-negative

bacteria such as Actinobacillus pleuropneumoniae, Salmonella

typhimurium, and Escherichia coli (Neath et al., 2022). This

knowledge can promote the development of improved MCMG-

containing mitigant products that might be tailored for broad-

spectrum antimicrobial activity or for more specific mitigation

needs depending on the application context.
Mitigation of necrotic enteritis infection
in poultry

Necrotic enteritis (NE) is a severe poultry disease that is

caused by Clostridium perfringens, which is a Gram-positive

bacteria (Timbermont et al., 2011). Necrotic enteritis is

characterized by gross lesions in the jejunum and ileum of the

small intestine as well as a sudden increase in mortality in two-

to five-week-old broilers. Traditionally, NE was controlled by the

use of antibiotics in feed. However, today, the decrease in use of

antibiotics along with the increased use of coccidiosis (a

predisposing factor to the disease) vaccines, has resulted in an

increased incidence of NE (Adhikari et al., 2020). Thus, to

combat the disease, the poultry industry is evaluating and

utilizing non-antibiotic alternatives such as MCMG and

related antimicrobial lipids that can inhibit the bacteria and

curb the disease (Gomez-Osorio et al., 2021), as summarized

in Table 1.

To evaluate the effectiveness of a short- and medium-chain

monoglyceride blend to control NE, Gharib-Naseri et al. orally

challenged broilers with Eimeria oocysts at nine days of age

followed by inoculation with Clostridium perfringens at around

14-15 days of age (Gharib-Naseri et al., 2021). Broilers fed the

monoglyceride blend had a numerically lower mortality rate

than broilers that were not fed the blend. Also, from 0 to 35 days

of age, challenged broilers fed the monoglyceride blend had a

better feed conversion ratio (FCR). Therefore, the

monoglyceride blend was able to alleviate some of the negative

effects of NE. Additionally, in the trial, the monoglyceride blend

was fed to broilers at two different inclusion rates (0.3% in starter

and 0.2% in grower and finisher phases, or 0.3% in starter, 0.15%

in grower, and 0.075% in finisher phases). Feed conversion was

similar for challenged broilers fed either inclusion rate of the

monoglyceride blend. However, the mortality rate tended to be

lower for challenged broilers fed the higher level of the

monoglyceride blend in the grower and finisher phases. Since

all of the mortality occurred within the first four days following

the challenge at 14 days of age, it is possible that the lower

inclusion rate was not adequate. Thus, there is interest in
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determining the optimal rate of inclusion and ensuring a

sufficiently high level to control NE. Further analysis indicated

that the monoglyceride blend improved cecal microbiome

diversity, eliciting positive effects on healthy bacteria such as

Bacillus species that are associated with growth performance and

improved feed efficiency (Gharib-Naseri et al., 2021). These

findings support that the monoglyceride blend may have

enhanced immune function through microbiome modulation

while interestingly the cecal level of C. perfringens was

not affected.

In another study with a similar Eimeria spp. and

C. perfringens challenge model, feeding broilers the

monoglyceride blend only in the starter phase (0 to 10 days of

age), at a rate of 0.5% of the diet, significantly reduced NE-

related mortality compared to broilers that were not fed the

monoglyceride blend (Kumar et al., 2021). In addition, feeding

the monoglyceride blend to broilers in the starter phase

increased the messenger RNA (mRNA) levels of jejunal genes

related to tight junction protein (TJP1) and immunoglobulin G

(IgG), which are important proteins that support gut integrity

and immune health, respectively. During NE, the intestinal

epithelium is damaged, resulting in a reduced immune

response and reduced rate of nutrient absorption across the

intestinal wall. Since challenged broilers fed the monoglyceride

blend had upregulated TJP1 and IgG levels, this indicates that

intestinal integrity and intestinal barrier function of broilers with

NE disease can be improved by including the monoglyceride

blend in the feed. Furthermore, this improved intestinal health

resulted in increased rates of digestion and nutrient absorption.

The latter was evidenced by the reported increase in digestion of

the total energy in the diet of challenged broilers that were fed

the monoglyceride blend. As described in the previous example,

the cecal levels of C. perfringens in the treated group were not

reduced compared to the control group, suggesting that the

monoglyceride blend mainly exerted positive health effects by

supporting immune functions, such as increased expression of

jejunal tight junction and immunoglobulin genes associated with

gut barrier functions, that may have counteracted the initial

Eimeria spp. challenge prior to C. perfringens challenge (Kumar

et al., 2021).

While alleviating the negative effects of NE is very important,

means of preventing NE are also necessary for the poultry

industry. Towards this goal, Tosi et al. reported that a specific

mixture of short- and medium-chain monoglycerides, provided

in feed at a rate of 0.5% from day 1 to 10 and at a rate of 0.025%

from day 11 to 21, prevented NE (Tosi et al., 2017). Also, the

specific mixture provided in the feed at a rate of 0.3% from day 1

to 34 reduced Salmonella colonization in broilers. Collectively,

these data support the efficacy of MCMG within complex

formulations to inhibit NE-related bacterial infections in

poultry. Thus far, the mixtures used have been dry

formulations and it would be desirable to further develop and

test MCMG mixtures that can be supplied in liquid form.
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Microbiome modulation

Another emerging application area for MCMG is

microbiome modulation, which can support animal health and

help to overcome viral and bacterial infections. Due to

antimicrobial functions, MCMG have been shown to modulate

the gut microbiome of swine and poultry by promoting the

growth of healthy bacteria and helping to decrease the relative

amounts of pathogenic bacteria. In the swine context, the

addition of 1000 mg/kg GML to the daily diet of weaned

piglets reduced the rate of diarrhea and led to marked

alterations in gut microbiota (Li et al., 2022). Microbiome

analysis of cecal contents indicated that GML promoted

increased levels of healthy bacteria such as Firmicutes,

Lactobacillus, and Blautia species while reducing the

proportion of Bacteroidota and Campilobacterota species that

are associated with various medical disorders.

There have also been numerous recent studies

demonstrating that MCMG can modulate the gut microbiome

in poultry as well. For example, a mixture of GML and C10

monoglyceride was added to the diet of laying hens at a dose of

300 mg/kg and caused a marked decrease in the cecal prevalence

of the phylum Proteobacteria, which is associated with poor gut

health, and increased levels of various healthy bacteria (Liu et al.,

2020). Different doses (300-600 mg/kg) of the same MCMG

mixture were incorporated into the diet of broiler chicks and

increased the cecal prevalence of bacteria such as

Bifidobacteriaceae and Bacteroides, the latter of which play

important roles in gut metabolism and helps to protect against

pathogenic microbes (Liu et al., 2022). Similarly, various doses

(300-1200 mg/kg) of GML alone have also been added to the

diets of broiler chicks and led to improved diversity of the cecal

microbiome as well as increased levels of Bacteroides (Kong

et al., 2021). GML supplementation at a dose of 1200 mg/kg has

also been shown to protect against immune stress and intestinal

injury in liposaccharide-challenged broilers (Kong et al., 2022).

Notably, these positive health effects were correlated with

increased abundance of healthy gut bacteria involved in anti-

inflammatory and antioxidant processes, and indicate that

MCMG supplementation can modulate the gut microbiome to

support animal health in addition to directly inhibiting

pathogenic viruses and bacteria.
Future opportunities

The documented use of MCMG in recent research studies

has demonstrated that they are effective in reducing viral

infectivity in swine feed and in controlling bacterial-related

infections in poultry. These application successes have been

enabled by understanding how MCMG operate at a molecular

level and rationalizing why they are typically more potent than
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MCFA, which has translated into lower molar concentrations

and inclusion rates. Moving forward, one of the areas of greatest

opportunity lies in expanding the scope of MCMG-related

studies to develop optimized mixtures in terms of not only

antimicrobial efficacy but also in terms of controlling

formulation properties, i.e., powder or liquid supply, stability,

and solubility. Current application uses have focused on

incorporating MCMG into feed and developing water-miscible

MCMG formulations for drinking water applications would also

be advantageous, especially to rapidly respond to potential

disease outbreaks. Such approaches might take advantage of

recent innovations in lipid nanostructures and could also pave

the way to developing aerosol formulations.

In terms of application scope, most studies have focused on

preventing and treating viral infections while a renewed focus on

mitigating disease transmission in livestock populations would

be advantageous, especially to address some of the most pressing

industry challenges. Since MCMG are broad-spectrum

antimicrobial agents that target the lipid membrane

surrounding bacteria and enveloped viruses, they also stand

excellent potential to be readily deployed against evolving

pathogen threats in the future and hence should be mainstays

of the livestock industry for years to come. These findings also

support that MCMG are active in vivo—an area that needs

further exploration in the context of disease challenges in order

to further understand how and where MCMG function. In the

context of pathogen feed mitigation, it is also important to

determine the extent to which MCMG inactivate pathogens in

the feed matrix itself vs. in saliva upon ingestion. Altogether,

there is excellent potential to continue exploring the use of

MCMG to stop pathogenic viruses and bacteria while also

building a more collective picture of how they modulate

microbiome populations and of the interplay between these

different functionalities to optimize practical utilization of

MCMG in animal agriculture.
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of Escherichia coli, Salmonella sp. and Clostridium perfringens to organic acids and
monolaurin. Vet. Med. 51, 81–88. doi: 10.17221/5524-VETMED
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