
Frontiers in Animal Science | www.frontiers

Edited by:
Joao R. R. Dorea,

University of Wisconsin-Madison,
United States

Reviewed by:
Dario Augusto Borges Oliveira,
Technical University of Munich,

Germany
Tiago Bresolin,

University of Illinois at Urbana-
Champaign, United States

*Correspondence:
Joao H. C. Costa

costa@uky.edu

Specialty section:
This article was submitted to
Precision Livestock Farming,

a section of the journal
Frontiers in Animal Science

Received: 11 January 2022
Accepted: 30 May 2022
Published: 06 July 2022

Citation:
Cantor MC, Casella E, Silvestri S,

Renaud DL and Costa JHC (2022)
Using Machine Learning and

Behavioral Patterns Observed by
Automated Feeders and

Accelerometers for the Early Indication
of Clinical Bovine Respiratory Disease

Status in Preweaned Dairy Calves.
Front. Anim. Sci. 3:852359.

doi: 10.3389/fanim.2022.852359

ORIGINAL RESEARCH
published: 06 July 2022

doi: 10.3389/fanim.2022.852359
Using Machine Learning and
Behavioral Patterns Observed by
Automated Feeders and
Accelerometers for the Early
Indication of Clinical Bovine
Respiratory Disease Status in
Preweaned Dairy Calves
Melissa C. Cantor1,2, Enrico Casella3, Simone Silvestri 3, David L. Renaud2

and Joao H. C. Costa1*

1 Dairy Science Program, Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States,
2 Department of Population Medicine, University of Guelph, Guelph, ON, Canada, 3 Department of Computer Science,
University of Kentucky, Lexington, KY, United States

The objective of this retrospective cohort study was to evaluate a K-nearest neighbor
(KNN) algorithm to classify and indicate bovine respiratory disease (clinical BRD) status
using behavioral patterns in preweaned dairy calves. Calves (N=106) were enrolled in this
study, which occurred at one facility for the preweaning period. Precision dairy
technologies were used to record feeding behavior with an automated feeder and
activity behavior with a pedometer (automated features). Daily, calves were manually
health-scored for bovine respiratory disease (clinical BRD; Wisconsin scoring system, WI,
USA), and weights were taken twice weekly (manual features). All calves were also scored
for ultrasonographic lung consolidation twice weekly. A clinical BRD bout (day 0) was
defined as 2 scores classified as abnormal on the Wisconsin scoring system and an area
of consolidated lung ≥3.0 cm2. There were 54 calves dignosed with a clinical BRD bout.
Two scenarios were considered for KNN inference. In the first scenario (diagnosis
scenario), the KNN algorithm classified calves as clinical BRD positive or as negative for
respiratory infection. For the second scenario (preclinical BRD bout scenario), the 14 days
before a clinical BRD bout was evaluated to determine if behavioral changes were
indicative of calves destined for disease. Both scenarios investigated the use of
automated features or manual features or both. For the diagnosis scenario, manual
features had negligible improvements compared to automated features, with an accuracy
of 0.95 ± 0.02 and 0.94 ± 0.02, respectively, for classifying calves as negative for
respiratory infection. There was an equal accuracy of 0.98 ± 0.01 for classifying calves as
sick using automated and manual features. For the preclinical BRD bout scenario,
automated features were highly accurate at -6 days prior to diagnosis (0.90 ± 0.02),
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while manual features had low accuracy at -6 days (0.52 ± 0.03). Automated features
were near perfectly accurate at -1 day before clinical BRD diagnosis compared to the high
accuracy of manual features (0.86 ± 0.03). This research indicates that machine-learning
algorithms accurately predict clinical BRD status at up to -6 days using a myriad of feeding
behaviors and activity levels in calves. Precision dairy technologies hold the potential to
indicate the BRD status in preweaned calves.
Keywords: activity, disease detection, precision livestock farming, technology, sickness behavior,
pneumonia, cattle
1 INTRODUCTION

Respiratory disease in cattle has a multifactorial etiology; an
external stressor can lead to a bacterial infection that
compromises the respiratory tract (McGuirk and Peek, 2014).
The outward signs of respiratory disease include labored
respiration (Love et al., 2016), coughing, cloudy or colored nasal
and eye discharge, fever, and head tilt (cumulative scoring of
abnormal categories, referred to as the Wisconsin scoring system
(McGuirk and Peek, 2014)). The Wisconsin scoring system has
moderate sensitivity (=0.62) and specificity (=0.74) for diagnosis
compared to lung ultrasonography scoring (>1cm2 = clinical BRD;
Buczinski et al. (2015)). Indeed, lung ultrasonography in
combination with the Wisconsin scoring system has improved
the sensitivity (=0.79) and specificity (=0.94) for diagnosis of
respiratory diseases in calves, and thus, it is the optimal system
to date (Buczinski et al., 2014). However, many producers are
adopting precision technology on farm, and the utility of
these automated technologies to find calves who show outward
signs of respiratory disease and have lung consolidation
needs investigation.

Precision dairy technology (PDT) devices could alert for
calves who change their behavioral patterns prior to outward
signs of respiratory disease, but producers will ignore alerts that
have poor sensitivity for detecting disease in cattle (Eckelkamp
and Bewley, 2020). Thus, it is imperative to develop an algorithm
to indicate the respiratory status in calves using behaviors
captured by precision technology. One of the largest barriers
for a producer to adapt a PDT on farm is the producer’s
familiarity with the technology and the producer’s perceived
value of the data (Drewry et al., 2019). For socially housed calves,
automated milk feeders were reported to be used by 16% of
Canadian dairy producers (Medrano-Galarza et al., 2017),
providing an opportunity for researching PDT, which is
familiar to some producers. Similarly, accelerometers were
reported to be a commonly researched PDT on dairy farms
(Slob et al., 2020). Additionally, less than half of producers in the
UK use individual housing, demonstrating a need for methods
that detect diseases in socially housed calves (Mahendran et al.,
2021). Thus, investigating the potential of familiar PDT such as
an automated feeder and an accelerometer to indicate a calf that
has outward signs of respiratory disease and is positive for lung
consolidation is valuable.

Sickness behaviors are well documented in research with
automated milk feeders in calves. It was observed in a scoping
in.org 2
review by Morrison et al. (2021) that calves decreased their milk
intake, drinking speed, and unrewarded visits prior to clinical
diagnosis of the disease. To a less researched extent, sickness
behaviors were also reported in research with accelerometers. As
reviewed by Costa et al. (2021), calves decreased their daily lying
bouts and step counts, and increased their lying time prior to
calves showing signs of respiratory disease. Thus, automated
milk feeders and accelerometers are technologies that may
capture sickness behaviors in calves, but more research is
needed to develop an accurate algorithm for indicating calves
who show outward signs of respiratory disease and have
lung consolidation.

Machine learning techniques combined with data collected in
real-time from automatic milk feeder might be useful to detect
respiratory bouts in dairy calves. This is possible because such an
automated milk feeder can frequently collect many behaviors
related to changes in the individual calf’s patterns (the per animal
approach; Cockburn, 2020). However, in order to develop
algorithms that detect changes in behavioral patterns in
individual calves, machine-learning research must first quantify
if automatically collected variables are indicative of the disease.
Specifically, it is important to find calves with lung consolidation
and outward signs of respiratory disease. This has been the case
with dairy cattle research. For example, Slob et al. (2020)
concluded in a systematic review that changes in behavioral
patterns (e.g., activity levels, rumination etc.), can accurately
predict ketosis or mastitis in dairy cattle; 21 studies used either
decision tree algorithms, support vector machines, or neural
networks to accurately detect these diseases. However, to our
knowledge, only one study has used machine-learning
techniques (e.g., decision tree algorithms or deviations from
rolling averages in lying time) to indicate a respiratory disease
in calves (Bowen et al., 2021). Furthermore, Bowen et al. (2021)
observed only a moderate sensitivity (=0.54) and accuracy
(=0.75) for these algorithms to indicate respiratory disease,
highlighting that more research is needed.

A promising machine-learning technique used for studying
inference problems is the K-nearest neighbor (KNN) algorithm.
KNN classifies input data by considering the nearest k neighbors
in a multidimensional space based on a distance metric (Wang,
2011). KNN has the advantage of labeling time series data. For
example, the days leading up to diagnosis of clinical disease of the
respiratory tract could be labeled as “preclinical BRD bout.”
Thus, the KNN algorithm can project data into a
multidimensional space to label samples closer to disease
July 2022 | Volume 3 | Article 852359
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diagnosis as well as after the diagnosis as “sick.” Similarly, this
algorithm might be able to distinguish behavioral patterns that
are in high similarity between the behavior of preclinical BRD-
labeled samples and the behavior of samples labeled as positive
for respiratory infection. Furthermore, KNN requires less
training data than neural network-based approaches. Thus, we
suggest that a KNN algorithm has the potential to accurately
indicate changes in respiratory status in preweaned dairy calves,
but it is unknown how accurate PDT data would be.

The objective of this study was to use a novel approach to the
industry challenge of automatically finding calves that were
positive for clinical bovine respiratory disease. We also aimed
to investigate if the algorithm could accurately label data as a
preclinical BRD bout in the 14 days leading up to the diagnosis of
respiratory infection using automated features such as feeding
behavior and activity levels collected by PDT and manual
features such as health scores, body weights, and passive
immunity status at 48 h of age. Specifically, we aimed to find
calves with lung consolidation and outward signs of respiratory
disease. We hypothesized that the KNN could label calves with
preclinical BRD bouts using only automatic features since others
observed associations of these behaviors with disease status
in calves.
2 MATERIALS

This study was conducted at the University of Kentucky
Coldstream Research Dairy Farm in Lexington, KY, USA from
28 May 2018 to 9 September 2019. All calves enrolled were part
of the Institutional Animal Care and Use Committee approval
number 2018: 2864. This study and manuscript were conducted
following the quality standards of Strengthening the Reporting of
Observational Studies in Epidemiology Veterinary Guidelines
(Sargeant et al., 2016).

2.1 Enrollment Criteria and Automated and
Manual Attributes
Calves (N=106) were enrolled in this study, which occurred at
one facility for the preweaning period of 50 days. Precision
technologies (referred to hereafter as automated attributes) were
used to record feeding behavior, activity levels, and the barn
ambient temperature and humidity level (seasonal data) for all
calves enrolled in this study. Feeding behavior was recorded with
an automated feeder that recorded daily milk intake (L/day),
average daily milk allotment consumed (percentage), drinking
speed (ml/min), a rolling 12-day average drinking speed (speed
percent), rewarded visits (visits/day; where milk was consumed),
and unrewarded visits to the feeder (non-nutritive visits per day
when calves were ineligible to retrieve milk). A separate
automated feeder recorded calf starter intake daily (g/day; e.g.,
solid feed intake). All calves in this study also wore a pedometer
(IceQube, IceRobotics, Scotland) attached to the left rear leg to
track activity levels including lying time (h/day), lying bouts
(bouts/day), total step count (steps/day), and activity index (a
Frontiers in Animal Science | www.frontiersin.org 3
metric generated by the commercial algorithm based on the
average rate of acceleration and total activeness).

Daily, calves were manually health-scored for bovine
respiratory disease (clinical BRD; Wisconsin scoring system,
WI, USA). Twice weekly, calves were scored with thoracic
ultrasonography to confirm clinical BRD diagnosis. A clinical
BRD bout (day 0) was classified as two categories of abnormal
scores as defined by the Wisconsin scoring system and an area of
consolidated lung ≥3.0cm2. There were 54 calves diagnosed with
a clinical BRD bout at 29.0 ± 9.0 days of age (mean ± SD). Health
features such as outward signs of clinical BRD (e.g., further
described in health section), body weight, rectal temperature, and
calf passive immunity status at 48 h of age are referred to
hereafter as manual attributes. Since some manual attributes
required calf restraint to collect such as body weight, passive
immunity status, and rectal temperature, it was also of interest to
quantify the additional accuracy gained when collecting these
attributes in the days approaching clinical BRD diagnosis. We
assessed for 48 h serum the BRIX value as an input feature since
Lombard et al. (2020) observed that increasing serum IgG status
at 48 h was associated with improved health outcomes in calves.
Thus, manual attributes were also categorized by effort (e.g.,
further described in the statistical analysis section). A complete
list of features evaluated is available in Table 1.

All calves enrolled in this study had, on average, 49.5/50
complete days of pedometer and automated feeder data, with a
maximum of 16% data loss (e.g., more details in the statistical
section). Calves were excluded from this study and sold if they
were a twin or had indication of low passive immunity status at
48 h of life (e.g., less than 80% BRIX).

2.2 Management and Feeding
A complete description of the care and management of calves in
this study can be found in Cantor et al. (2021). Each calf was
fitted with an RFID tag in the left ear for identification by the
automated feeders, and each calf wore a pedometer (IceQube,
IceRobotics, Edinburgh, Scotland) attached above the metatarsal
of the rear left leg using a Velcro band to track activity behaviors.
Calves were allotted up to 10L milk replacer every day from the
automated milk feeder (Cow’s Match Cold Front; Land O’ Lakes
Animal Milk Products Co., Shoreview, MN) for 50 days. Calves
enrolled in this study were trained to drink milk from the
automated feeder at 3.0 ± 2.0 days of age. Calves could
consume milk in a minimum meal size of 0.5 and a maximum
meal size of 3L. There was one automated milk feeder located
within a group pen (4.57 × 10.67m2) and the stocking density
was 6 ± 3 calves (mean ± SD).

A separate automated calf starter feeder (Compact Smart,
Förster-Technik, Engen, Germany) was present in each pen and
contained calf starter (Special Calf Starter and Grower, Baghdad
Feeds, Baghdad, KY); calves were also offered chopped alfalfa hay
in a trough. Both the automated milk feeder and the calf starter
feeder were calibrated weekly according to manufacturer
instructions. All calves had ad libitum access to an
automated waterer.
July 2022 | Volume 3 | Article 852359
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2.3 Health Exams
Calves were health-scored by one of three trained researchers
daily every morning (inter-observer agreement k > 0.90) for
clinical BRD (McGuirk and Peek (2014)), diarrhea (Renaud
et al., 2020), and umbilical infection. The main researcher
health-scoring the calves was not blind to the health status of
the calves due to performing health exams daily. The decision of
Frontiers in Animal Science | www.frontiersin.org 4
treatment was performed by the farm staff manager who
administered antimicrobial treatments to the calves and was
blinded to the daily examination. The other 2 observers were
blinded to the health status of the calves.

Bovine respiratory disease signs were recorded daily by
trained observers using the Wisconsin scoring system
(McGuirk and Peek, 2014). The observer assigned a nasal
TABLE 1 | Features used by algorithm to indicate Bovine Respiratory Disease status in 106 calves.

Variable Description1 Effort2 Feature Discarded (CC/LOO)3

Milk intake Automated feeder 0 mean No
SD CC

Milk consumed (%) Automated feeder 0 mean CC
SD LOO

Drinking speed Automated feeder 0 mean No
SD No

Drinking speed (%) Automated feeder 0 mean LOO
SD No

Rewarded visits Automated feeder 0 mean No
SD No

Unrewarded visits Automated feeder 0 mean No
SD CC

Starter intake Automated feeder 0 mean No
SD CC

Total step count Accelerometer 0 mean No
SD LOO

Lying time Accelerometer 0 mean No
SD No

Lying bouts Accelerometer 0 mean No
SD No

Activity index Accelerometer 0 mean CC
SD CC

Season Temperature logger 0 mean No
SD No

Nasal score Manual 1 mean CC
SD No

Eye score Manual 1 mean No
SD No

Ear score Manual 1 mean No
SD CC

Cough score Manual 1 mean No
SD CC

Umbilical score Manual 1 mean No
SD No

Respiration score Manual 1 mean LOO
SD CC

Rectal temperature Manual 2 mean No
SD No

Rectal temperature score Manual 2 mean CC
SD LOO

Wisconsin scoring system Manual 2 mean CC
SD LOO

Ultrasound score Manual 2 mean LOO
SD LOO

Body weight Manual 2 mean No
SD LOO

IgG status Manual 2 mean No
SD LOO
July 2022 | Vo
Results are shown using automated features collected by an automated feeder and accelerometer, manually collected features including outward signs of bovine respiratory disease, or
both features collectively.
1Automated feeder, accelerometer, and seasonal data. Manual features ear, cough, eye, rectal temperature scores, Wisconsin scoring system was the sum of these scores adapted from
McGuirk and Peek (2014). A sick calf had lung consolidation and was abnormal in Wisconsin scoring system.
2Effort category (0) automated features, effort (1) low labor manual features, and effort (2) high labor manual features.
3Removal during feature selection process due to high correlation coefficient (CC) or leave-one-out (LOO) approach. Bold features in final algorithm.
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discharge score, eye discharge score, ear tilt score, cough score,
and temperature score to each calf every day. Furthermore, a
dichotomous score for heavy respiration was also recorded. The
heavy respiration variable was not used for clinical BRD
diagnosis and was only collected for evaluation as a potential
manual feature in the machine-learning algorithm. A trained
observer performed the lung ultrasonography scoring system on
all calves twice weekly (e.g., every Tuesday and Friday) using a
portable linear rectal ultrasound (Ibex Pro, E.I. Medical,
Loveland, CO) and 70% isopropyl alcohol as a transducing
agent; lung lobes of each calf were evaluated by 1 of 2
observers (inter-observer agreement Cohens’ kappa; k = 0.90).
The ultrasound was set to a depth of 9 cm, frequency of 6.2 MHz,
and gain of 23 (near 13 dB; far 36 dB). The observers used the
lung ultrasonography methodology first described by Ollivett
et al. (2015). Briefly, both sides of the thorax were scanned
starting at the tenth intercostal space as positioned dorsally at the
level of the scapula of the calf with the probe held parallel to the
rib. The observer first scanned the dorsal aspect of the tenth
intercostal space, advancing cranially toward the ventral aspect
of the first to second intercostal space (Ollivett et al., 2015).
Lungs were scored for consolidation according to previous
methodology (Dunn et al., 2018). Briefly, normal lungs had a
hyperechoic line and reverberation artifact. Calves with lung
consolidation had a lung that was hypoechoic and both the
bright white band at the pleural interface and reverberation
artifact were absent. The extent of the lung consolidation was
measured using 1-cm grid marks on the ultrasound screen. We
scored calf lungs based on the maximum lung consolidation
found: normal, 1 cm2, 2 cm2, and 3 cm2. For calves with 3 cm2 in
at least two lung lobes, we assigned a score of 4, and for calves
with lung consolidation in 3 lobes, we assigned a score of 5 to
differentiate these clinical BRD calves from clinical BRD calves
with only one lobe of consolidation. However, only calves that
relapsed with clinical BRD and were re-treated at day 15 had
lung consolidation at score 4 or 5.

The diagnosis and treatment of a clinical BRD bout for
preweaned calves in this study required two criteria, and these
criteria were selected due to the improved sensitivity and
specificity of diagnosing clinical BRD in calves when using the
Wisconsin scoring system and lung ultrasonography collectively
(Buczinski et al., 2015). Lung consolidation at 3 cm2 was selected
to reduce misclassification error in the observers and since lung
consolidation at this level was associated with long-term effects
such as reduced milk in the first lactation (Dunn et al., 2018).
This was also the selected herd veterinary protocol for this
research station and was also chosen per consult of an expert
veterinary researcher. We also selected 3≥cm2 lung consolidation
to maximize the sensitivity of the algorithm to diagnose a case of
clinical BRD, as using a lower threshold of lung consolidation at
1 cm2 in this dataset resulted in a poor sensitivity 32% (13/41)
compared to our current definition for disease since many of our
calves never had this level of lung consolidation. Specifically, a
calf was clinical BRD positive on the Wisconsin scoring system,
which required two or more examination parameters to be
moderately (score of 2) or severely (score of 3) abnormal
Frontiers in Animal Science | www.frontiersin.org 5
[adapted from McGuirk and Peek (2014)]. A calf was also
positive for lung consolidation, as described in Dunn et al.
(2018); a consolidated lung at 3 cm2 appeared hypoechoic and
both the bright white band at the pleural interface and the
reverberation artifact were absent. Hence, a clinical BRD bout
diagnosis on day 0 was the first day that a calf had an abnormal
Wisconsin scoring system score and a consolidated lung at 3
cm2. For simplicity, the -14 days before a clinical BRD bout
diagnosis are referred to as preclinical BRD bout to classify calves
destined for a clinical BRD diagnosis. Calves were labeled as
clinical BRD for the day of clinical BRD bout diagnosis and the
days after clinical BRD diagnosis until lung consolidation and
signs of clinical BRD resolved.

There were 54 calves that had a clinical BRD bout at an
average age of diagnosis at 29.0 ± 9.0 days (mean ± SD). Calves
received antimicrobials on day 0 for a clinical BRD bout. On the
same day of clinical BRD bout diagnosis, calves received
enrofloxacin subcutaneously with dosage calculated by BW
(Baytril, Bayer, Leverkusen, Germany; 100 mg/15 kg body
weight) according to the herd veterinarian protocol. Calves
were treated with tulathromycin on day 15 if clinical BRD had
not resolved per our definition (Draxxin, Zoetis Animal Health,
USA; 2.5mg/kg, once at second diagnosis, subcutaneously). Body
weights were recorded at birth and twice weekly using an
electronic scale (Brecknell PS1000, Avery Weigh-Tronix LLC,
and Fairmont, MN) for all calves.

2.4 Automated Technology Data
2.4.1 Pedometer
The pedometer was a tri-axial accelerometer that recorded
behavioral activity (IceQube, IceRobotics, Edinburgh,
Scotland). The frequency was recorded at 4 Hz, and an
automated summary was generated for each behavior for every
calf every 15 min and transmitted to a data cloud wirelessly.
Daily summaries were automatically generated by the software
for each calf on the following behaviors: lying bouts, lying time,
and total step count as validated by Silper et al. (2015). Moreover,
an activity index score was generated daily by an algorithm from
this accelerometer’s software (IceQube, Ice Robotics, Scotland).
This algorithm evaluated each calf’s average daily rate of
acceleration and daily step count to generate an activity index
(Gladden et al., 2020).

2.4.2 Automated Calf Feeder
The automated feeder’s software (KalbManagerWIN, Förster-
Technik, Engen Germany) summed milk intake, drinking speed,
calf starter intake, and milk feeder visits (rewarded and
unrewarded visits) into daily summaries for each calf and
transmitted the data to a data cloud associated with the
automated feeder software.

2.4.3 Season
Seasonal temperature and humidity were recorded by a wireless
logger placed in the calf barn (Hoboware, Onset, MA, USA).
Seasonal data were summarized into winter, spring, summer, and
fall based on temperature and humidity thresholds. These
July 2022 | Volume 3 | Article 852359
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seasons were then assigned to each calf day as a categorical
variable. Details about seasonal summary data were further
described in Cantor et al. (2021). A summary of all attributes
is provided in Table 1.
3 METHODS

In this section, we present the technical details of our algorithms
to manipulate and process the dataset, as well as lower-level
information about the machine-learning algorithm we used.

All coding and algorithm development was performed using
open-source Python coding (from Python Software Foundation

1

)
along with several open-source sector leading libraries such as
pandas for data structures (Wes, 2010), NumPy for scientific
computing (Harris et al., 2020), scikit-learn for machine-learning
algorithm development (Buitinck et al., 2013) (e.g., further
described in this section), and matplotlib for the generation of
figures (Hunter, 2007). All libraries are NumFOCUS-
sponsored projects.

2

3.1 Labels and Experimental Scenarios
Data were collected from 106 calves. Each row was a data point of
daily information including automated features and manual
features as listed in Table 1. Each data point also had a class
column indicating the clinical BRD status of the calf on that day.

The value of clinical BRD status decreased by 1 for every day
prior to clinical BRD diagnosis until 14 days prior to clinical
BRD diagnosis. All other data points had a clinical BRD status
value of -∞. Given such distribution of the clinical BRD status
values, we adopted the following labeling of the clinical BRD
status. Data points with a clinical BRD status value of -∞ were
labeled as no-clinical BRD (H(-)). Data points with a clinical BRD
status value greater than or equal to 0 were labeled as sick (s(+)).
Data points within the range (-14,0) were labeled as preclinical
BRD (PS). In summary:

label =

S +ð Þ, if   clinical BRD   status ≥ 0

H −ð Þ if   clinical BRD   status ≤ −14

PS, if  −14 < clinical BRD   status < 0

8>><
>>:

(1)

The definition of such labels is strictly related to the
experiments we carried out. The first experimental scenario is
the diagnosis scenario, in which we evaluated the performance of
our algorithm to correctly label calves as sick with clinical BRD
or negative for the disease. We excluded preclinical BRD data
from this experiment. The second experimental scenario is called
the preclinical BRD scenario, in which we evaluated the
performance of our algorithm to label calves with preclinical
BRD bouts. More specifically, in the preclinical BRD scenario, we
evaluated the algorithm’s accuracy to correctly label calves as
preclinical BRD on a daily basis from day -14 to day -1 prior to
clinical BRD diagnosis.
1https://www.python.org/psf/
2https://numfocus.org
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3.2 Data Cleaning
Figure 1 summarizes the processing pipeline of this approach.
Data cleaning represents the first step in the pipeline that we
have implemented to process the dataset, and it consists of
removing data points that may potentially alter patterns that
the algorithm tries to capture in order to make predictions (Chai,
2020). Note that, hereafter, we use the words “data point” and
“day” interchangeably to refer to a row of our dataset,
representing the data of a calf on a single day.

First, we removed days where calves had missing pedometer
values. Only 1/5300 days for one clinical BRD negative calf was
removed. Second, we removed days where calves had missing
automated feeder values. A total of 8 consecutive days for 5
clinical BRD negative calves (40/5299) were deleted due to an
error with the automated feeder card storing the data.
Furthermore, one day on 5 different calves was removed since
they had at least one variable with incomplete feeder data.
Overall, the data cleaning process removed data for 46/5300
day observations, which represented less than 1% of the enrolled
days. A total of 106 calves were represented by the remaining
5254 day observations, with an average of 49.5/50 days per calf.

Another step of data cleaning consisted of handling missing
data for weight and ultrasound attributes, since both features
were collected once every three days. Missing values of weight
data were filled in by means of a linear interpolation. Specifically,
considering a window of 4 data points (i.e., 4 days) where second
and third were null, we replaced such null values with a linear
interpolation of the first and the fourth data points, hence
simulating a realistic linear growth of a calf’s body weight.
Finally, we filled in the ultrasound score by propagating the
last valid observation forward until the next valid observation.
3.3 Data Processing
In order to prepare the data for the machine-learning model, we
performed aggregation and feature extraction. Aggregation is the
process of summarizing the information from a window of
consecutive data points into one single sample of data by
means of feature extraction. Hereafter, the term “sample” refers
to the result of such aggregation on a window of consecutive data
points. Aggregation is necessary because while outward signs of
respiratory disease may provide meaningful instantaneous
information, other information such as the activity level of a
calf simply would not be meaningful if not observed within a
certain time window. Aggregation takes a window of data as
input. A window is a matrix of size N × M, where N is
the number of consecutive data points (or days), and M is the
number of features as listed in Table 1. Each column of the
window was processed through feature extraction techniques,
i.e., mean and standard deviation, hence leading to a sample of
size 1 × 2M, which summarizes the information of all N data
points into 1 single sample. This aggregation approach was
repeated for the whole dataset by shifting the window one data
point at a time, as illustrated in Figure 1.

A sample from the dataset (e.g., represented as a calf day) was
assigned to one of 3 labels, not-sick, sick, or preclinical BRD.
During the aggregation, given a window of N × M, the set of
July 2022 | Volume 3 | Article 852359
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clinical BRD status was an array of size N × 1. We assigned the
label of the last element of such an array to the corresponding
sample according to Eq. 1.

3.4 Data Preparation
Data preparation affects the values of each feature since the mean
and standard deviation for each feature were calculated before
they were fed to the machine-learning algorithm. This step was
necessary because machine-learning algorithms are often
sensitive to different data distributions that each input feature
has. By applying a transformation, we helped the algorithm to
make the best use of each input feature and avoided some
features to be improperly dominant over others. Specifically,
standardization transformed the input data by scaling its values
to have mean equal to 0 and standard deviation equal to 1, hence
normalizing the distribution of each column.

3.5 Feature Selection
Feature selection was the last step before we ran the machine-
learning algorithm, and this was performed to remove redundant
data and to remove variables that were closely related to improve
the prediction accuracy of the KNN algorithm.

For example, we selected one variable from a pair of features
that provided the same knowledge to the machine-learning
model. We investigated this by calculating multiple correlation
coefficients, such as Kendall Tau, Pearson, and Spearman rank
(Chok, 2010), which work well with continuous data and
categorical ordinal data. Information such as season was
removed and analyzed in the second step of feature selection
since this variable was a categorical nominal feature. For the first
step of feature removal, correlation coefficients were calculated
using a portion of the dataset that included clinical BRD positive
sick labels and clinical BRD negative labels. This decision was
guided by the fact that as calves start developing clinical BRD in
the preclinical BRD stage, the corresponding data may
demonstrate an overlap of the data, which may have
significantly altered the feature selection process.
Frontiers in Animal Science | www.frontiersin.org 7
The correlation score of each coefficient was within the range
[-1,1], where values closer to 1 and -1 represented high
correlation. We calculated the absolute value of each pair and
grouped those features with a value higher than 0.75 as similar.
We then picked one feature to be eliminated for each pair.
Specifically, if we found one feature to be present in multiple
pairs, then we eliminated its “partners” in each pair; otherwise we
eliminated one of the two randomly to avoid favorably selecting
one variable over the other. This step allowed us to remove a total
of 12 out of the 48 extracted features, most of which showed high
correlation with respect to the mean or standard deviation
counterpart. Features discarded during the correlation
coefficient process are described in the “Discarded” column of
Table 1 with the value “CC.”

In the next feature removal step, performance was tested with
preclinical BRD calves only, since we evaluated for high
performance of this algorithm to indicate calves who had
preclinical BRD bouts. We carried out a leave-one-out
approach where we tested the performance of our algorithm by
removing one feature at a time. Specifically a feature was
removed from the final dataset if algorithm performance
improved following its removal, or if the algorithm
performance remained unchanged. This was done separately
for the subgroups of automated features and manual features.
We removed 8 additional features. Features discarded during the
leave-one-out approach are described in the “Discarded” column
of Table 1 with the value “LOO.”We had a final set of 28 features
for the KNN algorithm.

The final list of features after performing feature selection is
reported in bold in Table 1. We grouped these features into
categories by labor effort and also by their data collection
method. The purpose of this labeling was to determine if
additional information that required additional labor to
retrieve improved the accuracy of the algorithm’s ability to
indicate a calf destined for clinical BRD diagnosis. We
performed this analysis since we wanted to quantify the value
of variables that are associated with calf health outcomes but are
labor-intensive for a dairy producer to collect. All automated
FIGURE 1 | Data processing pipeline.
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features were labeled as 0 effort. Manual features that were
passively observed by visual observation on calves were labeled
as 1 effort and included the outward visual signs of clinical BRD
in calves. Manual variables requiring calf restraint were labeled as
2 effort and included passive immunity status, body weight, and
rectal temperature. These groupings were used to evaluate what
is the effort and prediction accuracy trade-off of a system, which
indicates calves destined for clinical BRD status. A full summary
of what features were fed to the machine learning after the
selection process are listed in bold in Table 1, along with
information regarding their effort category and data
collection method.

3.6 Machine-Learning Predictions
3.6.1 Training and Testing Sets
It is common practice to split the data into a training set and a
testing set when developing a machine-learning algorithm. A
training set is a part of the dataset used to feed the data to the
Frontiers in Animal Science | www.frontiersin.org 8
machine-learning model, which allows it to create the knowledge
it needs in order to classify new samples accordingly. A testing
set is the remaining portion of the dataset, which can be used to
evaluate the algorithm performance. Figure 2 shows how our
dataset was split into training and testing sets. Our machine-
learning model was trained with only clinical BRD positive and
clinical BRD negative samples. Not-sick and sick samples were
balanced in the training set to avoid labeling bias from
unbalanced data. We left out preclinical BRD samples from the
training set since preclinical BRD samples had some similarity to
both clinical BRD positive and clinical BRD negative samples
that would have prevented proper training. Furthermore, not
enough preclinical BRD samples were available to be used for
training. A testing set was created for the diagnosis scenario, and
another was created for the preclinical BRD scenario introduced
in Section 3.1. For the preclinical BRD scenario, we trained the
algorithm with varying proportions: 80% training and 20%
testing of the data samples, 70% training and 30% testing, as
FIGURE 3 | Intuitive diagram of KNN.
FIGURE 2 | Overview of training and testing splitting scheme for a K-Nearest Neighbor algorithm to classify 106 calves as sick (S+) or without respiratory disease
(H-) (diagnosis scenario), and to predict calves as pre-clinical BRD (PS) (pre-clinical BRD scenario) for Bovine Respiratory Disease.
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well as 75% training and 35% testing. We chose the best
algorithm performance (training 80% testing 20% data
samples) to determine variables, which required labor to
collect improved algorithm accuracy.

Note that, as further discussed in Section 4, several iterations
of cross-validation were performed for both training and testing
sets to improve the robustness of our findings.

3.6.2 K-Nearest Neighbor Algorithm
We relied on a machine-learning algorithm that makes
predictions based on a distance metric. Intuitively, we expected
that, if any similarity existed between preclinical BRD calves and
sick calves, a distance-based approach would be the best fit to
predict preclinical BRD samples accordingly. Based on these
assumptions, we decided to use the K-nearest neighbor (KNN)
algorithm (Fix and Hodges, 1989). The idea behind this
algorithm is shown in Figure 3. On a high level, the training
process is equivalent to placing each sample in the training set in
a multidimensional space and was shown as a bi-dimensional
space in the figure for simplicity. The algorithm performed a
prediction by projecting the sample in a multidimensional space.
Then, it calculated the Euclidean distance of the k nearest
samples and labeled the new samples by means of majority
voting on the k nearest samples. Moreover, we used a kernel
function that assigned weights to each sample and allowed a
higher separation of data into a bigger multidimensional space,
which increased the accuracy of predictions. This function was a
major parameter of the algorithm along with the k number of
neighbors used to make a prediction. In order to calculate the
distance between a sample and its neighbors, we used a Euclidean

metric coupled with a Gaussian kernel function: e−
d2
i

s2 , where di is
the Euclidean distance of a sample with a neighbor, and s2 is a
parameter we set experimentally, as explained in Section 4.2. In
summary, the placement of a training sample in the
multidimensional space was affected by a Euclidean distance
Frontiers in Animal Science | www.frontiersin.org 9
and a weight given by our Gaussian kernel. Specific details on the
values we set for s2 and k, as well as any other important
parameter such as window size are provided in Section 4.
4 RESULTS

In this section, we provide details about the experimental setup
and show the performance of the proposed approach across
different scenarios.

4.1 Population Parameters
Calves (54/106) were diagnosed with a clinical BRD bout on
average at 29 ± 7 days. The proportion of calves with lung
consolidation for the -14 days before clinical BRD diagnosis is
shown in Figure 4. The majority of calves 64% (35/54) resolved
lung consolidation 0 cm after the first antimicrobial treatment
within 10 days after clinical BRD diagnosis. Calves that did not
resolve lung consolidation after 10 days of antimicrobial
treatment 35%(19/54) were monitored from day 11 to day 14,
and since lung consolidation was still present, they were
considered relapsed and re-treated at day 15 per veterinary
protocol. Of the relapsed calves 3/19 did not resolve lung
consolidation after the second antimicrobial intervention by
day 30 (in relation to the first clinical BRD diagnosis), and
these calves were euthanized per veterinary recommendation. A
necropsy was performed on all calves and pneumonia was
confirmed. The days on which a calf was still positive for lung
consolidation 3cm2 were labeled as sick days for the algorithm to
label data by day when a calf was not convalescent.

4.2 Experimental Setup
We validated our approach for machine-learning predictions
with the data described in Section 3 by creating training and
testing sets as described in Section 3.6.1. Training and testing sets
were split in 80% and 20%, respectively, and 10 runs of cross-
FIGURE 4 | Proportion of 54 calves with lung consolidation in the 14 days prior to clinical bovine respiratory disease diagnosis.
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validation were performed to provide robust results. We used the
following settings for the KNN algorithm. These settings were
identified by performing a grid search to provide the best results
in terms of accuracy in the considered scenarios. The considered
parameters were window size N, number of neighbors k, and s2

(parameter of the Gaussian kernel presented in Section 3.6.2).
Specifically, we tested N = {7,10,12,14}, k = {1,3,5,7} and s2 =
{2,4,6,8}. We found the best performing values to beN = 14, k =7,
and s2 = 2. Note that we tested the performance of other
machine-learning algorithms such as support vector machines
(Platt, 2004), random forest (Ho, 1995), and neural networks
(Hopfield, 1982). We found that KNN outperformed
such algorithms.

4.3 Diagnosis Scenario
We carried out the diagnosis scenario with the same model
trained on 3 different feature sets, manual features + automatic
features, only manual features, and only automatic features.

We found that the performance of KNN on the diagnosis
scenario was nearly perfect, achieving an accuracy score of 0.99
on average and a standard deviation of 0.01, both for the
prediction of sick and clinical BRD negative samples when
using all the available features, as shown in Table 2. Briefly,
the features of our dataset provided a clear separation between
Frontiers in Animal Science | www.frontiersin.org 10
labeling data as sick or not, and that the fine-tuning of our KNN
parameters accurately labeled sick and clinical BRD negative
data. The manual feature KNN performed slightly but negligibly
better than the automated feature KNN, while the KNN that used
automatic features + manual features made close-to-perfect
predictions. Thus, we suggest that the use of automated
features may be useful to develop an algorithm to use these
features to indicate clinical BRD status in calves.

4.4 Preclinical BRD Scenario
We carried out the preclinical BRD scenario with the same model
trained on 3 different feature sets, manual features + automated
features, only manual features, and only automated features, as
shown in Figures 5–8. Each data point represented the accuracy
of the KNN prediction for a set of days prior to clinical BRD
diagnosis, specifically from -1 to -14 days prior to clinical BRD
diagnosis as represented using 80% training and 20% testing of
the data samples. As shown in Figure 5, the PDT automatic
features outperformed the manually collected features, and this
KNN algorithm was highly accurate at up to -6 days prior to
clinical BRD diagnosis. Thus, we suggest that feeding behaviors
and activity levels may be useful indicators of changes in
behavioral patterns in preclinical BRD calves. However, as
calves approached clinical BRD diagnosis such as days -4 to -1,
the manual + automatic features performed as well as the
automatic feature KNN algorithm. We would expect that
calves would demonstrate sickness behavior such as reduced
feeding behavior and activity prior to clinical BRD diagnosis as
this is well documented in the literature as reviewed by Morrison
et al. (2021) and Costa et al. (2021). However, our KNN
algorithm labeled calves as preclinical BRD quite early, at -6
days prior to clinical BRD diagnosis with an accuracy above 90%.
Thus, we suggest that monitoring changes in mean + SD feeding
behavior and activity levels of calves might be indicative of
clinical BRD development. Our results suggest that a KNN
algorithm might be well suited for monitoring feeding
behaviors and activity levels daily to flag potential preclinical
BRD calves, but more research is needed to test this in practice.

Finally, for the preclinical BRD scenario, we also used 70%
training and 30% testing proportion as shown in Figure 6. The
proportion of 70% training and 30% testing proportion is also
shown in Figure 7. This was tested on the 3 different feature sets,
manual features + automated features, only manual features, and
only automated features. Each data point represented the
accuracy of the KNN prediction for a set of days prior to
clinical BRD diagnosis, specifically from -1 to -14 days prior to
clinical BRD diagnosis. We see that varying the proportions for
training and testing the data samples resulted in very similar
performance to 80% training and 20% testing scenario.
TABLE 2 | Diagnose scenario: K-nearest neighbor algorithm’s accuracy, precision, recall, and F1 score for classifying 106 calves as sick (s(+)) or negative (H(-)) for
bovine respiratory disease.

Accuracy Precision Recall F1-score

All features 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
Manual features 0.97 ± 0.02 0.97 ± 0.01 0.97 ± 0.01 0.97 ± 0.01
Automated features 0.96 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
July 2022 | Volume 3 | Ar
FIGURE 5 | K-nearest neighbor’s algorithm accuracy (mean ± SD) with 80%
of training and 20% of testing from 10 runs of cross-validation for predicting
calves destined for bovine respiratory disease diagnosis using automatically
collected features by an automated milk feeder and accelerometer and
manually collected features using outward clinical signs of bovine respiratory
disease in a 106 dairy calf cohort.
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Specifically, high accuracy above 90% was observed for the KNN
using only automated features for up to -6 days before clinical
BRD diagnosis. The automated KNN performance with manual
features was similar to the automated features-only algorithm
starting at -4 days prior to clinical BRD diagnosis.

In the experiment shown in Figure 8, we combined automatic
and manual features together. The goal of this experiment was to
Frontiers in Animal Science | www.frontiersin.org 11
quantify the value of features considered essential for calf health,
but which are difficult for dairy producers to collect. The
subgroups were effort 0, automatic features, effort 1 outward
signs of clinical BRD such as eye score, nasal score, ear score,
labored respiration, cough score + automatic features, and effort
2 features requiring calf restraint that are associated with calf
health outcomes body weight, passive immunity status, and
rectal temperature + effort 0 and effort 1.

Surprisingly, the prediction accuracy of the algorithm was
only slightly improved when effort categories were combined.
However, higher effort categories (effort 1 and effort 2) only
negligibly improved the prediction performance in the first -3
days prior to diagnosis, while the performance of automatic
features alone guaranteed great accuracy as early as -6 days prior
to diagnosis. To the best of our knowledge, no prior work was
able to achieve similar performance in the context for identifying
calves destined for clinical BRD status. Furthermore, precision
technology data can accurately classify calves preclinical BRD
with bovine respiratory disease.
5 DISCUSSION

The objective of this study was to use a novel approach to the
industry challenge of automatically finding calves that were
positive for clinical respiratory disease. A secondary objective
was to determine which variables were fundamental for high
FIGURE 6 | K-nearest neighbor’s algorithm accuracy (mean ± SD) with 75%
of training and 25% of testing from 10 runs of cross-validation for predicting
calves destined for bovine respiratory disease diagnosis using automatically
collected features by an automated milk feeder and accelerometer and
manually collected features using outward clinical signs of bovine respiratory
disease in a 106 dairy calf cohort.
FIGURE 7 | K-nearest neighbor’s algorithm accuracy (mean ± SD) with 70%
of training and 30% of testing from 10 runs of cross-validation for predicting
calves destined for bovine respiratory disease diagnosis using automatically
collected features by an automated milk feeder and accelerometer and
manually collected features using outward clinical signs of bovine respiratory
disease in a 106 dairy calf cohort.
FIGURE 8 | How much information is needed to accurately indicate calves
destined for bovine respiratory disease diagnosis? K-closest neighbor’s
algorithm accuracy (mean ± SD) from 10 runs of cross-validation for
predicting calves destined for bovine respiratory disease diagnosis using effort
0 features recorded by an automated milk feeder and accelerometer (blue
line), effort 1 features of outward clinical signs of bovine respiratory disease +
effort 0 (yellow line), or effort 2 features requiring calf restraint such as body
weight, passive immunity status at 48 h of age, and rectal temperature +
effort 0 + effort 1 (grey line) in a 106 dairy calf cohort followed for 50 days.
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algorithm accuracy. Specifically, we investigated the accuracy
trade-offs for predicting calves’ clinical BRD bouts including
investigating the value of features, which required high effort to
retrieve from calves. We found that a KNN algorithm was very
highly accurate and very precise at classifying calves as clinical
BRD positive and clinical BRD negative. Furthermore, this
algorithm performed well for the preclinical BRD scenario, in
the 14 days prior to clinical BRD bout diagnosis. Specifically, the
accuracy of this algorithm using only automatic features was over
0.96 up to six days before clinical BRD bout diagnosis compared
to the algorithm accuracy of 0.52 for manual attributes at this
timepoint, and algorithm performance was similar for varying
proportions of training and testing the data samples. This
was sooner than we predicted, demonstrating the applicability
of this algorithm for future development regarding respiratory
status in calves. Furthermore, we observed that high effort
variables such as body weight, rectal temperature, and passive
immunity status at 48 h of life only negligibly improved
the accuracy of indicating clinical BRD status in calves. We
suggest that feeding behaviors and activity levels generated by
precision technology in conjunction with seasonal data are
excellent features for indicating calves at risk for respiratory
disease using a KNN algorithm. Future research should
investigate the potential of this algorithm for use in real time
on a commercial facility.

In this study, we used machine learning due to its ability to
exploit the training data in order to label unseen data.
Furthermore, advanced statistical techniques such as controlled
variable charts were not successful at classifying disease status in
dairy calves when feeding behavior was used (Knauer et al.,
2018). Thus, we opted to use machine-learning techniques, and
specifically KNN, to investigate the potential of sickness behavior
in calves to indicate clinical BRD status. Specifically, because our
biggest goal was to classify preclinical BRD calves, we employed a
KNN algorithm due to its ability to label samples based on the
nearest neighbors. In fact, after training the model with not-sick
and sick calves, we were able to detect preclinical BRD calves that
exhibited behaviors similar to the sick calves accordingly.

It is well known that there is an association of decreased
feeding behavior (Morrison et al., 2021) and reduced activity
levels (Duthie et al., 2021) up to three days before diagnosis of
respiratory disease in calves. Sickness behavior precedes clinical
signs of disease in mammals (Hart and Hart, 2019), and thus
behavior can be an early indicator of a calf at risk for disease
diagnosis. However, to our knowledge, only one research study
has used machine-learning techniques to identify respiratory
disease in calves. Bowen et al. (2021) investigated the potential of
decision trees (e.g., random forest) and deviations from average
lying time to indicate respiratory disease in calves. Bowen et al.
(2021) observed a moderate sensitivity (=0.54) and accuracy
(=.75) to indicate respiratory diseases in calves when both a
random forest algorithm and deviations in rolling average lying
time were used. This disagreed with our findings, where we
observed a very high accuracy and precision for the algorithm to
classify clinical BRD positive and clinical BRD negative calves.
Our findings likely disagreed with Bowen et al. (2021) since we
Frontiers in Animal Science | www.frontiersin.org 12
used a different machine-learning algorithm, and we also
classified clinical BRD using both outward signs of clinical
BRD and lung ultrasonography, which was recently validated
as a diagnostic tool (Berman et al., 2021). While Bowen et al.
(2021) observed a very high specificity (=0.95) when combining
both feeding behavior and activity levels, only a moderate
sensitivity (=0.54) and accuracy (=0.75) were observed; it is
possible that these were the limitations of the Wisconsin
scoring system used to diagnose respiratory disease in that
study. Furthermore, decision-tree algorithms are excellent data
mining tools, but the categorical output is highly dependent on
how root nodes are classified as input data (Charbuty and
Abdulazeez, 2021). Thus, it is likely that our data differed from
Bowen et al. (2021) due to our daily health scoring and the
different machine-learning techniques used.

We observed 28 features that were valuable to the KNN for
labeling clinical BRD calves. Some of these manual features were
selected as they were used to label a calf as clinical BRD positive
on day 0. These manual features such as nasal score, eye score,
ear score, cough score, and rectal temperature were part of a
system validated for diagnosing calves with respiratory disease,
the Wisconsin Scoring System (McGuirk and Peek, 2014).
Respiration score was also found to be a useful manual feature,
and labored breathing is part of the UC Davis scoring system to
indicate respiratory disease in calves (Love et al., 2016).
Therefore, it is not surprising that these manual health features
were found to be useful for the algorithm. We also observed that
48-h serum BRIX was a useful feature in this study. Serum BRIX
at 48 h is an indirect measure of passive immunity status in dairy
calves, and recently a higher total IgG at this age was associated
with improved health outcomes in calves (Lombard et al., 2020).
Therefore, we suggest to researchers that even if enrollment
criteria for passive immunity status are required for a health
study, researchers should collect this information as it is valuable.
However, we were surprised that the ultrasound score was
removed during the leave-one-out approach during our feature
selection. Ultrasound score was used to label calves with clinical
BRD status on day 0, and ultrasound score is considered as good
as radiography for diagnosing calves as respiratory disease
positive when hospitalized (Berman et al., 2021). However,
Berman et al. (2021) used calves with severe nonresponsive
respiratory disease; it is possible that in early disease
development, ultrasonography is not valuable to predicting
disease when other variables such as behavior are provided
about the calf. We also observed that body weight was
removed during our feature selection process. Rhodes et al.
(2021) observed that decreased average daily gains in calves
occurred after diagnosis with lung consolidation. It is possible
that in the early phase of disease development, body weight is not
a useful indicator, or alternatively, perhaps the inclusion of many
other important variables such as feeding behavior, activity
levels, and seasonal information explains some of the variation
that ultrasound score may have added to the algorithm. Season is
a well-known indicator for calf health as calves are easily subject
to cold stress due to low brown fat reserves and a high body/
surface ratio when compared to cows (NRC, 2001).
July 2022 | Volume 3 | Article 852359
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All of the features collected by the automated feeder except
percent of milk intake consumed, which was highly correlated
with milk intake, were useful in this study for indicating clinical
BRD status in calves. For automated feeding behavior, we
observed that mean milk intake, starter intake, mean and SD
visits to the automated feeder, and mean and SD drinking speed
were valuable for labeling these calves as preclinical BRD when
destined for clinical BRD status. As discussed above, a wealth of
literature has observed that feeding behaviors are associated with
respiratory disease in calves. For example, prior to disease
diagnosis, sick calves had lower milk intakes up to - 5 days,
slower drinking speeds up to -4 days, and unrewarded visits up to
-3 days when compared to healthy calves (Morrison et al., 2022).
Similar results were also observed in Cantor and Costa (2022)
who offered calves with milk levels similar to this study, milk
intake, and unrewarded visits, and starter intakes were lower
within the -5 days prior to diagnosis of respiratory disease when
compared to healthy calves. Indeed, Cantor and Costa (2022)
also observed that individual calves had relative changes in their
own unrewarded visits and starter intake prior to disease
diagnosis when day -5 was set as a baseline. However, we also
found rewarded visits as a valuable feature in this study, which
disagreed with the findings of others who found no association
with disease status with linear mixed modeling approaches
(Duthie et al., 2021; Morrison et al., 2021; Cantor and Costa,
2022). Perhaps rewarded visits are a useful feature when used
collectively with other feeding behavior information, but that
rewarded visits alone as an outcome are not associated with
clinical BRD status in calves. This is an advantage of machine
learning: we can use a collective of features to make meaningful
predictions rather than one variable at a time (Coates et al.,
2011). This body of literature suggests that, in fact, calves do
exhibit sickness behavior prior to disease diagnosis and that
feeding behavior may be useful features to include in a machine-
learning algorithm, which identifies calves destined for diagnosis
of respiratory disease.

We also observed that several activity levels collected by a
pedometer were useful for indicating clinical BRD status in the
calves in this study. For activity levels, we observed that mean
and SD lying time and lying bouts, as well as mean total step
counts, were useful features for the algorithm to correctly
identify clinical BRD status in these calves. Our findings agree
with others who have used activity levels in association with
respiratory disease in calves using mixed linear modeling
approaches. For example, Duthie et al. (2021) observed that
calves increased their lying times and decreased their lying bouts
for the three days prior to diagnosis compared to healthy calves.
Cantor and Costa (2022) also observed that calves increased their
lying times, but that these calves also decreased their lying bouts
and step counts, and activity index within the -5 days prior to
diagnosis with respiratory disease. Once accounting for relative
changes in individual calf behavior, Cantor and Costa (2022)
observed that activity levels were no longer associated with
disease status in the calves when day -5 was used as a baseline.
However, Bowen et al. (2021) quantified that lying time yielded
the best sensitivity for indicating respiratory diseases in calves
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when using a decision-tree algorithm as a machine-learning
approach. Thus, it is not surprising that activity levels in this
study were useful features to include in our algorithm. This body
of literature suggests that calves do exhibit signs of lethargy such
as less activity in general prior to diagnosis with respiratory
disease, and that activity levels may be useful features to include
in a machine-learning algorithm, which identifies calves destined
for disease diagnosis. Future research should investigate the
value of individual features to indicate respiratory disease
in calves.

To our knowledge, this study was the first to develop a highly
accurate algorithm for indicating a preclinical BRD calf
approaching a clinical BRD diagnosis while also investigating
the value of different features. However, there are a myriad of
machine-learning applications that have predicted the onset of
disease status in lactating dairy cattle as reviewed by Slob et al.
(2020). For example, support vector machine algorithms using
automated milk quality features have accurately predicted
mastitis (Miekley et al., 2013), and gradient boosted tree
algorithms using automated milk quality features (Ebrahimi
et al., 2019) have also accurately labeled mastitis in dairy cattle.
Furthermore, random forest algorithms using deep learning and
manually collected milk features (Hyde et al., 2020) were
successful algorithms at labeling dairy herds with a high
prevalence of mastitis. Support vector machine and decision-
tree algorithms were also successful at indicating metabolic
status in fresh dairy cattle using manually collected blood
parameters (Xu et al., 2019). Thus, we can conclude that
machine-learning algorithms are a useful application to
identify cattle requiring further attention. While these studies
did not use behavior-associated parameters, the results from
these studies suggest that automated features are useful for
machine learning, and this is partially due to the frequency of
which these data can be collected. For example, Borchers et al.
(2017) was successful at predicting calving onset in lactating
dairy cattle using activity behavior and automated rumination
data due to the frequency at which these data were retrieved.
Thus, we suggest that machine learning has a value for indicating
behavioral changes in calves. We suggest future research should
investigate the potential of KNN algorithms for indicating
respiratory status in calves in a commercial setting.

There were some limitations for this study. One of the
limitations for this study is that we used retrospective data in a
research facility. While we can state that the algorithm used was
successful in indicating a calf destined for clinical BRD diagnosis,
this cannot replace diagnostics on farm at this time. Another
limitation to this study was the use of data samples to train and
test the algorithm. We suggest that a larger sample size is
required to determine if algorithm performance varies using
animals rather than data samples for testing and training. There
is large individual variability in feeding behavior and activity
levels in calves (Cantor and Costa, 2022), and thus, more animals
are required to represent clinical BRD if the algorithm is trained
in this way. However, we still believe that this novel exploration
of using features to classify clinical BRD status in calves is useful
for the reader since only one other study has used machine-
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learning techniques to classify respiratory disease in calves using
decision trees, and that study only used a definition for disease
that has limited sensitivity (Bowen et al., 2021). This study is
proof of concept that automated features may be useful for
indicating clinical BRD status in calves, but we cannot use this
algorithm on farm in this setting. Future research is needed to
validate this algorithm on farm and to test algorithm
performance when using individual calves to train and test the
algorithm. Finally, while we can indicate that the feeding
behaviors and activity levels used in this algorithm were
excellent at indicating a calf destined for clinical BRD, we did
not evaluate which features were most impactful. The next
direction for our research is to determine which features had
the highest contribution to explain variance associated with
clinical BRD status in this study.

In summary, we observed that a KNN algorithm can
accurately and precisely label calves as clinical BRD positive or
negative. Furthermore, a KNN algorithm can very accurately
label a calf destined to develop clinical BRD at up to six days
beforehand using feeding behavior, activity level, and season-
related features. Furthermore, the addition of intensive features
that require calf restraint to collect only negligibly improved the
performance of our algorithms. This study demonstrated the
value of precision dairy technology as a utility tool for flagging
calves as potentially sick for clinical BRD and future research is
needed to refine this algorithm for use on farm.
6 CONCLUSION

We observed that the KNN algorithm accurately and precisely
labeled calves as clinical BRD positive or clinical BRD negative.
We also found that a KNN algorithm can accurately indicate
approaching clinical BRD status in calves when just precision
dairy technology devices were used at up to 6 days prior to
clinical BRD diagnosis when compared to a KNN that used only
physical signs of disease about the calf, which was accurate at two
days prior to clinical BRD diagnosis. Similarly, varying the
training and testing proportions of the dataset resulted in
similar algorithm performance for diagnosing calves as
preclinical BRD prior to clinical BRD status. Thus, we suggest
that precision technology and machine learning holds
tremendous potential for indicating respiratory disease in
calves. Finally, manual features that require calf restraint such
as body weight, passive immunity status, and rectal temperature
only negligibly improved algorithm accuracy for labeling
preclinical BRD calves. Thus, we suggest that the use of
Frontiers in Animal Science | www.frontiersin.org 14
automated features from an automated feeder, a pedometer,
and a seasonal data logger may be useful for future algorithm
development. Future research needs to develop this algorithm on
farm to detect calves at risk for respiratory disease in real time.
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