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Swine heat production (HP) data are an essential element of numerous aspects

affecting swine production sustainability, such as, housing environmental

control design, energetics and thermoregulation modeling, as well as

understanding of feed energy partitioning. Accurate HP values that reflect the

continuous advances in growth, nutrition, health, and reproduction are needed

to update outdated models and data; hence, this review of swine HP values is a

critical contribution. This review updates the last previous review conducted in

2004, by reviewing literature from growing and breeding pigs from 2003 to

2020. In total, 33 references were identified that provided relevant HP data and

from these references, 192 records were identified for pigs ranging in weight

from 12.5 to 283 kg and exposed to temperatures between 12.0°C and 35.5°C.

For growing pigs at thermoneutral conditions, a 4.7% average increase in HP

was observed compared to HP data summarized from 1988 to 2004. Only five

records were identified for gestating sows and the 43 records for lactating sows

plus litter. This sow data shows high variability and inconsistent trends with

temperature, most likely attributed to variation in experimental protocols,

management, and limited reported information. There is still a lack of data

on growing pigs greater than 105 kg, gilts and gestating sows housed in

different systems (stall, pen, mixed, etc.), and latent HP values that reflect

different housing systems. Further, there is a need to standardize reporting of

HP values (with an example provided) across different disciplines to drive

documentation of increased swine production efficiency, environmental

control design, and energetics modeling.
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1 Introduction

The global swine industry is constantly evolving as genetic

potential, management, nutrition, health, consumer demand,

and numerous other factors change over time. For example,

animal growth in U.S. production systems continues to get faster

and more efficient as indicated by an average 6.2 days less on

feed, 0.045 kg (0.1 lb) greater average daily gain, and 0.07 lower

feed conversion efficiency for wean-finish systems from 2011 to

2019 (Stalder, 2018; MetaFarms, 2021). Selection of efficient

sows has led to an 80 g increase in birth weight per market piglet

from 2013 to 2018 (PIC, 2018) as well as larger litter sizes.

(MetaFarms, 2021). A consequence of these substantial

productivity improvements is increased metabolic heat

production (HP; Mayorga et al., 2019).

Pigs are homeothermic animals that use physiological and

behavioral mechanisms to keep a near-constant body

temperature (Mount, 1968). The thermal energy balance of the

pig is maintained such that the total metabolic heat produced

must be dissipated to the environment, or a change in body

temperature occurs. Metabolizable energy in feed is used for

maintenance, growth, and production, which generates

metabolic heat as a by-product. This internally generated heat

is conducted and circulated through the animal to its outer

surface where it is dissipated to the environment (Close and

Mount, 1978). Pigs uniquely thermoregulate (i.e., adjust the flow

of metabolic generated heat to the environment) compared to

other mammals with body weight (BW) and maturity having an

important impact on thermoregulation capabilities (Curtis,

1983). Young pigs have minimal metabolic heat production,

lack vasomotor control to regulate conductance of heat from

their core body to surface, are hairless, and lack subcutaneous

muscle and fat, as well as have a high surface area to volume ratio

(Heath, 1983; Herpin et al., 2002). This combination results in

high heat loss compared to body weight and metabolic HP

leading to increased susceptibility of chilling (Ramirez et al.,

2022). Pigs also have no functional sweat glands, limited lung

capacity (small tidal volumes for respiration), and a thick

subcutaneous adipose tissue layer (Curtis, 1983). This

combination results in limited ability to thermoregulate

(dissipate heat) for heavier, more mature animals which have

a greater metabolic activity due to high feeding level, relative to

maintenance requirements (Gourdine et al., 2021). This issue is

further exacerbated in sows which are heavy, a low surface area

to body weight ratio, higher energy intake relative to

maintenance requirement (in lactating sows), and higher

subcutaneous fat tissues (Renaudeau et al., 2013). Continual

changes in swine genetics and nutrition impact these numerous

thermoregulation abilities and subsequently heat production

and ability to dissipate heat.

Typically, environmental conditions are colder than the

body temperature of the animal; hence, heat is lost to the

environment and the rate of heat loss is affected by
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environmental heat demand (DeShazer et al., 2009). Energy

exchange from the outer surface of the animal to the

environment occurs via sensible (temperature gradient

dependent) and latent (water vapor pressure gradient

dependent) modes (Curtis, 1983). Sensible heat loss is

described by convection, conduction, and radiation and latent

heat loss is characterized by the evaporation of water, primarily

through respiratory exchange (DeShazer et al., 2009). From an

environmental control perspective, the sensible and latent heat

losses from the animals are considered production (i.e.,

generation) terms since they add energy (in the form of heat)

to the environment (e.g., air, floor, room, chamber, etc.) that

needs to be controlled (Albright, 1990). This may create

confusion when the animal is considered the control volume,

since metabolically generated heat is entirely in the sensible

form. The following sections use the terminology of total HP

(equivalent to metabolic heat production) as well as sensible and

latent HP to describe the partitions of heat lost to the

environment from the pigs.

Brown-Brandl et al. (2004) showed HP (total) to have

increased by 16% compared to studies from the 1950s to

1970s. This was mainly attributed to increased feed conversion

and average daily gain. In addition, changes in the chemical

composition of body weight gain (greater lean deposition and

lower fat deposition) and thermic effect of feed have led to an

elevation of fasting HP. For early and late gestation sows, Stinn

and Xin (2014) showed increases of 35% and 12% in HP, 72%

and 34% in latent heat production (LHP), and 19% and 3% in

sensible heat production (SHP), respectively, when also

compared to studies from the 1950s and 1970s. As HP

increases, and subsequently, the thermoneutral zone shifts

colder (subsequently increasing susceptibility to heat stress),

design and management of environment control systems for

intensive swine housing or transportation trailers must be

updated to adequately provide ventilation and an environment

to meet the needs of modern swine genetics.

Pigs raised in intensive housing systems or transported in

climatized trailers require controlled environments that balance

energy usage, productivity, animal well-being, and environmental

impact (Bracke et al., 2020). The basis for environmental control is

adequately supplying the proper fresh-air air exchange rate (or

ventilation) to remove heat, moisture, noxious gases, and other

airborne contaminants produced inside the housing (Albright,

1990). The SHP is a major contribution to calculating the

ventilation rate for temperature control; hence, increases in pig

SHP will increase the required maximum ventilation in hot

weather. Conversely, design ventilation rates from moisture

control based on outdated moisture production (derived from

LHP) data have been shown to be between 30% to 69% lower than

newly calculated ventilation rates (Lu et al., 2017).

Due to the constant evolution in swine industry and need for

improved environmental control for intensive swine housing

and transport, the goal of this review article is to discuss changes
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in growing and breeding pigs’ heat production from 2003 to

2020. This is an update of a similar review performed by Brown-

Brandl et al. (2004) which documented swine HP changes from

the 1950s to 2003. Further, this review expands the scope of

Brown-Brandl et al. (2004), which was limited to growing pigs,

to include lactating sow heat production, which has not been

previously summarized in literature. The consistent changes in

the swine industry (Davis et al., 2022) have uniquely warranted

this review to help provide a summary of recent HP data to guide

future design of environmental control systems for different

applications of swine housing.
2 Article search, screening, and selection

Peer-reviewed articles were identified by systematic search in

electronic literature databases including Web of Science (all

databases) and Google Scholar on February 1, 2021. Search terms

included the following within the title or abstract fields: (swine OR

porcine* OR sow* OR pig* OR hog* OR boar) AND (“heat

production”) NOT (waste*). These terms address themes related

to energetics, nutrition, climate physiology, and environmental

management. Articles identified by the searches were in Google

Scholar reference manager and duplicates were automatically

detected and removed followed by manual removal of any

additional duplicates (i.e., publications published in more than

one format, or indexed in more than one database).

Literature was screened according to the schematic

framework following the Preferred Reporting Items for

Systematic reviews and Meta-Analysis (PRISMA) guidelines

(Page et al., 2021). Peer-reviewed articles were excluded if

other animal species, except swine, were the focus, and

publication was in a language other than English. Each title

and abstract were evaluated using the following criteria:
Fron
a. Date of publication: articles published from 2003 and

2020 (inclusive)

b. Geographic focus: worldwide

c. Population: applied to individual pigs or groups

d. Results: included total heat production

e. Facility style:measurementsmade at house-level or calorimeter
For each selected article, a recordwasmade inaMicrosoftExcel

spreadsheet documenting: (1) days of exposure, (2) feeding

program, (3) calorimeter type, (4) number of pigs, (5) body

weight (divided into lower, upper, and average), (6) sex, (7), dry-

bulb temperature, (8)dew-point temperature, (9) relativehumidity,

(10) airspeed, (11) feed energy, (12) feed intake, (13) manure

handling, (14) fasting heat production, and (15) total heat

production. Reported unit of measure for heat production data

varied considerably throughout the literature. All heat production

data were converted to MJ d-1 kg-0.75, W kg-1, and W to

accommodate the convention of different disciplines.
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The Web of Science search yielded 24 results while the first 15

pages (150 results) of Google Scholar were parsed on pig-related

studies focusing on heat production. In total, 33 references were

identified that provided updated heat production data relevant to

this study. From these references, 192 records were identified for

pigs ranging in weight from 12.5 to 283 kg and exposed to

temperatures between 12.0°C and 35.5°C. Of these 192 records,

71 were barrow-only studies, 38 were gilt-only studies, 35 were

mixed (barrow and gilts) studies, 5 were sow-only studies, and 43

were sow plus litter-only studies. A limited amount of latent heat

production (LHP) data (66 of the 192 records included LHP) was

found that also included total heat production (THP).
3 Growing pigs

Growing pig data included 145 records from 19 references

(Fialho et al., 2004; Galassi et al., 2004; de Lange et al., 2006;

Huynh et al., 2007; Barea et al., 2010; Labussière et al., 2011;

Labussière et al., 2013; Brown-Brand et al., 2014; Campos et al.,

2014a; Campos et al., 2014b; Zhang et al., 2014; Kiarie et al.,

2015; Liu et al., 2015; Galassi et al., 2015; Batorek-Lukacˇ et al.,

2016; Shaffer et al., 2017; Li et al., 2018; Liu et al., 2019; Lyu et al.,

2018) with a BW range of 12.5 to 142.5 kg and a temperature

range of 12°C to 35.5°C. Data were initially separated by

thermoneutral (TN) conditions. Then, temperature effects on

HP were analyzed, followed by reporting on LHP data.
3.1 Heat production at
thermoneutral conditions

The thermoneutral (TN) zone can be classically described as

the range of environmental conditions (i.e., inclusive of variable

environmental factors of dry-bulb temperature, airspeed, vapor

pressure, and surrounding surface temperatures; Curtis, 1983) in

which an animal can maintain a constant body temperature

where metabolic heat production is reasonably minimal and

constant (Mount, 1974; Yousef, 1985). The TN zone of the

animal will vary depending on numerous metabolic and

environmental factors (Hillman, 2009). The lower limit of the

TN zone is the lower critical temperature, in which pigs use

metabolic energy and other physiological and behavioral

adaptations to offset heat lost to the environment to maintain

core body temperature (Black et al., 1986). The upper limit lacks

a clear definition, but is often regarded as high latent heat loss

and the onset of reduced metabolic HP (Curtis, 1983; CIGR,

2002; Hillman, 2009; Renaudeau et al., 2011). In response to a

warming environment, pigs show increased respiration rates and

a decreased voluntary feed intake as well as pigs increase body

exposure to increased airspeeds and/or cool and wet surfaces to

increase heat loss (Curtis, 1983). Due to this reliance on

evaporative heat loss at warm environmental temperatures,
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heat stress effects on pigs are more definitive at high relative

humidity levels (Huynh et al., 2005).

Data were separated by thermoneutral (TN) conditions as

defined by the lower critical temperature (LCT; equation 1) and

critical temperature (CT; equation 2; Renaudeau et al., 2011) to

describe the impact of environmental temperature on HP. These

threshold temperatures were previously developed from meta-

analyses to model the environmental temperature at which

average daily gain deteriorates and feed intake changes in

responses to a cooling or warming environment (Renaudeau

et al., 2011). The upper range of the TN zone was selected due to

the primarily application of this work in environmental control

design for housing of growing pigs where high feeding levels are

used and the primary goal of the environmental control system

design is to limit the negative effects of heat stress (Ames, 1980).

Data were further refined to include only ab libitum feeding,

resulting in 62 records from 11 references with a temperature

range of 14°C to 28°C and weight range of 12.5 to 106 kg.

LCT = −5:867 ln BWð Þ + 37:254 (1)

CT = 40:9 − 4:4   ln 1 + BWð Þ (2)

LCT = Lower Critical Temperature (°C)

CT = Critical Temperature (°C)

BW = Body Weight (kg)

Data were log transformed and a Standard Least Squares

regression (equation 3) was completed in (JMP Pro 16.1, SAS

Inc, Cary, NC) to predict coefficients (± SE) and predict

HP (P=<0.01).

Growingpigs (12.5 to 106 kg; R2 = 0.707, RMSE= 0.62Wkg-1):

HP = 15:97 ±1:05ð ÞBW−0:4037 ±0:03ð Þ (3)

HP = Heat Production (W kg-1)

This power law model was compared to Brown-Brandl

et al. (2004) and CIGR (1999) in Table 1 and graphically

depicted in Figure 1. The CIGR Handbook (CIGR, 1999)

documents HP prediction equations based on the biological

principles of heat loss rather than solely based on literature

data. The current regression (equation 3) showed an average

4.7% increase in HP compared to HP data summarized from

1988 to 2004 (Brown-Brandl et al., 2004) over the studied BW
Frontiers in Animal Science 04
range. Percent increase was greater for lower BW (average of

6.1% for 10 to 40 kg) and lower for higher BW (average of 3.9%

for 45 to 105 kg) as shown in Figure 1. The CIGR model using

the constants given in Pedersen (2002) seems to over-predict

HP in the lighter pigs, as noted by Brown-Brandl et al. (2004);

however, this equation for pigs heavier than 50 kg,

underpredicted HP by an average of 6.0%. The heaviest BW

found in the literature was 106 kg which is below the current

U.S.-finishing weight of 127 to 145 kg (MetaFarms, 2021).

Limited information on heavier BW finishing pigs may be

attributed to the challenges working with these pigs in a

research setting and potentially due to marketing agreements

that limit the finishing BW.
3.2 Temperature effects on
heat production

Homeothermic animals, such as swine, must balance heat loss

and metabolic HP to maintain a constant core body temperature

(Mount, 1968). The rate of heat loss is governed by the exchange

of heat from the pig to its surrounding environment via

conduction, convection, radiation, and evaporation (Curtis,

1983). Through a combination of behavioral and physiological

responses pigs can modify both heat loss and metabolic HP

(Mount, 1968). In responses to a warming environment, HP is

decreased through reduced feed intake (Quiniou and Noblet,

1999) and for lactating sows, reduced milk production (Black

et al., 1993; Hawe et al., 2020). The extent a warming environment

has on decreased HP is dependent on several factors, such as, age,

health status, diet, feed intake, prior thermal conditioning,

duration of exposure to elevated temperature, housing

conditions (individually or groups housed), and floor type

(DeShazer et al., 2009). Many of these factors are difficult to

ascertain from the literature as well as their impact on the

production/experimental settings.

The effect of temperature and BW on HP was analyzed using

a Mixed model (JMP Pro 16.1, SAS Inc, Cary, NC) with exposed

air temperature (T, °C), body weight (BW, kg), BW2, and BW ×

T as fixed effects and study as a random effect with a residual

covariance structure. Parameters such as, acclimatization or sex

were not considered due to the lack of balanced data. The
TABLE 1 Comparison of power regression coefficients for heat production.

Scaling Coefficient Exponent, n R2 Weight Range (kg)

Before 1988[a] 16.11 -0.44 0.886 10-100

CIGR, 1999[b] 27.58 -0.54 N/A 10-100

1988 to 2004[a] 14.11 -0.38 0.827 10-100

2004 to 2021 15.97 -0.40 0.707 13-106

[a] Brown-Brandl et al. (2004)
[b] CIGR (1999)
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random effect of study was found to be significant (P = 0.036).

The fixed effects were all significant except BW × T (P = 0.09)

was trending for significance.

For comparison purposes, a Standard Least Squares model

(fixed effects of temperature and BW) was used to compare with

Brown-Brandl et al. (2004). The resulting equation (R2 = 0.61;

RMSE = 0.08 W/kg; P<0.001) is depicted in equation 4 and

depicted in Figure 2. Regardless of temperature, the prediction

formula showed greater estimates of HP for pigs ≤30 kg BW and

lower estimates of HP for pigs ≥75 kg BW compared to Brown-

Brandl et al. (2004). The difference in HP was rather insensitive

to temperature, that is, if BW was constant and temperature

ranged from 16°C to 30°C, difference in HP between Brown-
Frontiers in Animal Science 05
Brandl et al. (2004) and this study was relatively similar;

however, a slight decreasing trend in the difference in HP was

noted for increasing temperatures.

log HPð Þ = 1:351 ± 0:07ð Þ − 0:004 ± 0:002ð ÞT − (0:454

± 0:03) log BW (4)

HP = Heat Production (W/kg)

T = Air Temperature (°C)

BW = Body Weight (kg)
3.3 Latent heat production

Only 2 (i.e., Renaudeau et al., 2013 and Brown-Brandl et al.,

2014) studies of 33 references reported LHP. The rate of LHP

depends on the thermal environment (i.e., temperature) the pigs

are exposed to and the experiment setting (i.e., housing), such

that, the LHP of the animal is different than the LHP of the facility

(i.e., due to manure handling, drinker type, and other moisture

sources; DeShazer et al., 2009). Moisture sources contributing to

the latent heat load are important for building design and are

poorly documented in livestock and poultry housing (Albright,

1990). Conversely, the LHP of the pigs is important to

understanding the onset and response to heat stress conditions

(Huynh et al., 2005). Classical thermoregulation shows the ratio

between SHP and LHP decreases as the environment warms

(Curtis, 1983). As the difference between air temperature (or

surrounding temperatures) and pig skin temperature decreases,

pigs must lose heat via evaporation resulting in increased LHP

(DeShazer et al., 2009). Understanding the thermal conditions

that cause the increased rate of change in the SHP to LHP ratio is

important for assessing thermoregulatory responses (Curtis,

1983). More data were present in this study, compared to
FIGURE 1

Swine heat production data for a BW range between 12.5 and
106 kg from 19 independent studies from 2004 through 2020.
Parameters estimates of the regression equation were
significantly different from 0 (P< 0.01).
FIGURE 2

All growing pig total heat production as a function of reported or mean body weight identified by reference (marker shape and outline color)
and reported study temperature (marker color).
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Brown-Brandl et al. (2004); however, creation of correction factors

for facility contributions to reported LHP could not be calculated

due to lack of information and variety of experimental settings.

Production facility contributions to latent heat load are

important for building design (Albright, 1990). Unfortunately,

it is difficult to determine a global LHP estimate that works for

the multitude of different animal facilities. A statistical analysis

of the LHP was not performed because of lack of sufficient data

and variable experimental design; however, Table 2 presents the

summary statistics.
4 Breeding pigs

Breeding pig data were separated into gestating sows and

lactating sows plus litter. For gestating sows, data included 5

records from 2 references (Brown-Brandl et al., 2014; Stinn and

Xin, 2014); therefore, gestating sows were excluded from statistical

analysis and summary statistics are presented in Table 3. The data
Frontiers in Animal Science 06
represented in Table 3 were collected from sows housed in

gestation stalls. However, Brown-Brandl et al. (2014) collected

data on pen gestation sows, but they were in small pens and floor

fed. As transitions to pen gestation occur (Schulz and Tonsor,

2015), updated heat and moisture production values will be

needed because increased activity in pen housing is expected to

increase HP (Lucy and Safranski, 2017).

For lactating sows plus litter, data included 43 records from

5 references (Jakobsen et al., 2005; Stinn and Xin, 2014; Brown-

Brandl et al., 2014; Pedersen et al., 2019; Cabezón et al., 2017)

representing a mass range of 184 to 283 kg and a temperature

range of 18°C to 29°C. A visual representation of the data

(Figure 3) shows high variability and no apparent trends

related to the influence of sow plus litter mass or temperature.

This may be attributed to feeding level and regime during HP

data collection. If sows were potentially fed ad-libitum, but

simply did not consume feed during the measurements, which

is expected, or if they were moved to conduct the measurements

– this may result in less or greater levels of HP during data
TABLE 2 Summary statistics for latent heat production from growing pigs.

BW
(kg)

Mean or
Middle

Temperature
(°C)

THP (W/
kg)

THP
(W)

THP(kcal/h/kg
BW-0.75)

LHP (W/
kg)

LHP
(W)

LHP(kcal/h/kg
BW-0.75)

Barrows n[a] 71 71 71 9 9 9

Maximum 135.0 32.0 5.20 311 9.46 1.78 158 4.71

Minimum 20.0 12.0 1.72 81 4.60 0.6 52 1.56

Mean 65.2 22.6 3.00 177 7.00 1.2 91 3.09

SD 31.68 3.65 0.76 54 1.15 0.37 31 0.86

Median 60.0 22.0 2.97 181 7.28 1.2 87 3.28

Gilts n[a] 38 38 38 5 5 5

Maximum 106.0 35.5 3.15 334 8.69 1.6 129 4.02

Minimum 62.0 15.5 2.18 160 5.65 0.5 40 1.25

Mean 72.4 24.3 2.78 201 6.97 1.0 80 2.48

SD 13.31 5.98 0.24 42 0.64 0.40 34 0.94

Median 67.0 24.0 2.86 187 7.04 0.9 74 2.30

Mixed n[a] 35 35 35 31 31 31

Maximum 142.5 35.0 7.34 433 12.76 5.6 264 9.53

Minimum 12.5 18.0 0.98 56 2.79 0.8 20 2.10

Mean 51.1 24.6 3.45 130 6.95 2.4 84 4.80

SD 39.01 3.96 1.72 79 2.50 1.53 45 2.29

Median 34.1 25.0 3.24 118 7.29 1.9 82 4.03

[a]number of records.
Latent heat production values are uncorrected for body weight and temperature. BW, body weight; THP, total heat production; LHP, latent heat production.
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collection. As a result, no statistical analysis was performed using

these data. Summary statistics for lactating sows plus litter are

presented in Table 3. More information is needed on breeding

stock pigs, especially as housing systems continue to change.
5 Future considerations

Measurement of metabolic HP provides information to

address a variety of different research goals, such as estimating

ventilation rate to remove heat and moisture from facilities

(Albright, 1990), understanding the effects of different feed

ingredients energy partitioning (DeShazer and Yen, 2009), and

impact of heat stress on lactation output (Cabezón et al., 2017).

However, there are numerous factors that impact heat
Frontiers in Animal Science 07
production (e.g., feed energy, environment, genetics, housing,

measurement; Curtis, 1983), scholarly sources, and disciplines

involved in the research (Brown-Brandl et al. 2004; Renaudeau

et al., 2011), thereby leading to inconsistent and incomplete

reporting to create robust datasets of HP. We encourage the

creation of a standardized reporting procedure that could

accompany studies that report metabolic heat production.

Such a procedure would involve the usage of standard units of

measure and completion of a table that could accompany the

research as a supplementary table in the appendix or

supplemental material section. This table would include key

information for reliable and accurate comparison across studies.

Examples are provided in Tables 4 and 5.

More information on the range of environmental conditions

affecting heat loss and the subsequent impact of the effective
FIGURE 3

Lactating sow plus litter total heat production (black marker outline) and latent heat production (red marker outline) as a function of sow plus
litter mass and identified by reference (marker shape) and reported study temperature (marker color).
TABLE 3 Summary statistics for heat production from gestating sows and lactating sow plus litter.

BW
(kg)

T
(°C)

THP (W/
kg)

THP
(W)

THP (kcal/h/kg
BW-0.75)

LHP (W/
kg)

LHP
(W)

LHP (kcal/h/kg
BW-0.75)

Gestating Sows[a]

Maximum 219.0 25.0 1.9 372 5.98 1.3 232 4.02

Minimum 183.0 18.3 1.3 270 4.08 0.4 84 1.26

Mean 205.8 21.7 1.7 337 5.36 0.9 178 2.85

SD 14.79 3.12 0.27 39 0.71 0.34 62 0.96

Median 204.0 20.0 1.8 346 5.71 1.0 213 3.24

Lactating Sows +
Litter[b]

Maximum 283.0 29.0 4.9 1,239 16.70 2.3 517 7.73

Minimum 184.4 18.0 1.6 416 5.40 1.4 366 5.25

Mean 250.3 21.5 2.7 676 9.27 1.9 447 6.31

SD 20.51 2.63 0.86 212 2.89 0.24 50 0.73

Median 255.0 20.0 2.3 594 7.89 1.9 448 6.27

[a] number of records = 5
[b] number of records = 43
Gestating sow data are from gestation stall housing and heat production values are uncorrected for temperature. BW, body weight; T, average or middle reported air temperature; THP,
total heat production; LHP, latent heat production.
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environment on HP are needed. Studies need to report the

effective environment, that is, air temperature, relative humidity,

air velocity, and mean radiant temperature to ensure sufficient

detail is present to drive the context of results for greater

comparison and to support the development of more robust

heat transfers models. An imbalance in metabolic HP and heat

lost to the environment via convection, conduction, radiation, or

evaporation, directly impacts core body temperature (Mount,

1968). Hence, the basis for mechanistic thermo-physiological

models is metabolic HP (DeShazer and Yen, 2009). For example,

Huang et al. (2021) used the CIGR (2002) model for growing

pigs and for sows, six days of CO2 production collected in 2016,

where they found HP to be 14% greater than using CIGR (2002).

While calorimetry methods for individual or small groups of

animals can be used to measure HP and LHP data (Brown-

Brandl et al., 2004); however, field data collected at the facility or

room level are necessary to supplement LHP data and

subsequently determine moisture production (Albright, 1990;

Brown-Brandl et al., 2004). Facilities that characterize different

manure management systems, ventilation system styles, and

production environments are needed to create more robust

information in SHP and moisture production for use in

ventilation design.
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Heat stress negatively affects the overall sustainability of

swine production by negatively impacting environmental

footprint, profitability, and animal welfare. Climate forecasts

and improved genetic performance suggest potentially

increasingly negative impacts of heat stress (Mayorga et al.,

2019). Significant increases in heat stress intensity and duration,

as well as warming temperatures will have an impact on current

and future heat stress abatement strategies for growing and

breeding pigs (Schauberger et al., 2020). Heat stress abatement

strategies include improved mechanical ventilation/cooling

systems, stocking density, slower growing pigs, more heat

tolerant lines/strains (genetic selection/genomic strategies), and

nutritional measures (Skuce et al., 2013; Schauberger et al.,

2019). Timely and accurate heat production data directly

informs the calculation of thermal loads for ventilation/cooling

systems and assesses the impacts of different stocking density,

growth rate, genetic lines, and nutrition. Therefore, heat

production data are required to properly design and evaluate

heat stress abatement strategies to lessen negative impacts.

Engineering of future controlled swine environments will need

improved energetics modeling at thermoneutral and heat stress

conditions, heat exchange modeling of building structures with

updated energetics data, advanced approaches to environmental
frontiersin.org
TABLE 5 Continuation of Table 4 of proposed standard reporting of heat production data.

Experiment
no.

Mean
air T
(°C)

Mean
RH
(%)

Mean
airspeed
(m/s)

Mean
BW
(kg)

THP
(W)

SH
(W)

LH
(W)

RQ
(CO2/
O2)

Gain
(kg/
d)

FI
(kg)

Feeding
level[a]

Feed
ME
(kcal/
kg)

Mean
BW
(kg)

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

[a]Limit fed or ab libitum.
ME, metabolizable energy; T, temperature; RH, relative humidity; BW, body weight; THP, total heat production; LH, latent heat; and SH, sensible heat; RQ, respiratory quotient; and FI,
feed intake.
TABLE 4 Proposed standard reporting of heat production data with respect to housing and environment data.

Experiment
no.

Conditioning
(days)[a]

Exposure
(days)[b]

Calorimeter
type[c]

No. of
animals

No. animals
per group

Nominal
dimensions[d] (m x

m x m)

Floor
type[e]

Cooling
type[f]

. . . . . . . .

. . . . . . . .

. . . . . . . .

[a]Number of days the animals were subjected to ambient conditions prior to the heat production measurement.
[b]Number of days the animals were subjected to test conditions during heat production measurement.
[c]For example, direct, indirect, facility/room-level.
[d]Length x Width x Height
[e]For example, slatted concrete, metal woven, plastic, etc.
[f]For example, sprinklers, air conditions, wallowing, etc.
Continued in Table 5.
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control, and development technology that improves sensing,

controlling, and modifying the environment (Ramirez, 2022).

Established standards and models that describe key analytical

methods for design and include foundational data to enable

design computations, and criteria/goals for different

environments are paramount to the engineering process.

Consistent and accurate updates to heat and moisture

production of growing and breeding pigs are essential to

ensure modern intensive housing is able to provide the proper

housing and ventilation for prolific pigs in a changing climate.
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