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Bi-objective optimization of
nutrient intake and performance
of broiler chickens using
Gaussian process regression and
genetic algorithm

Hamed Ahmadi1,2, Markus Rodehutscord2

and Wolfgang Siegert2*

1Department of Poultry Science, Tarbiat Modares University, Tehran, Iran, 2Institute of Animal Science,
University of Hohenheim, Stuttgart, Germany
This study investigated whether quantifying the trade-off between the maxima of

two response traits increases the accuracy of diet formulation. To achieve this,

average daily weight gain (ADG) and gain:feed ratio (G:F) responses of 7–21-day-old

broiler chickens to the dietary supply of three nutrients (intake of digestible glycine

equivalents, digestible threonine, and total choline) were modeled using a newly

developed hybrid machine learning-based method of Gaussian process regression

and genetic algorithm. The dataset comprised 90 data lines. Model-fit-criteria

indicated a high model adjustment and no prediction bias of the models. The bi-

objective optimization scenarios through Pareto front revealed the trade-off

between maximized ADG and maximized G:F and provided information on the

needed input of the three nutrients that interact with each other to achieve the

trade-off scenarios. The trade-off scenarios followed a nonlinear pattern. This

indicated that choosing target values intermediate to maximized ADG and G:F

after single-objective optimization is less accurate than feed formulation after

quantifying the trade-off. In conclusion, knowledge of the trade-off between

maximized ADG and maximized G:F and the needed nutrient inputs will help feed

formulators to optimize their feed with a more holistic approach.

KEYWORDS

multi-objective optimization, Gaussian process regression, genetic algorithm, machine
learning, broiler chickens, feed optimization
1 Introduction

Optimizing the dietary nutrient supply is a major field in farm animal nutrition

research because deviations from optimal nutrient supply often result in adverse

consequences. Undersupply with nutrients imposes the risk of performance loss and

health issues. Oversupply with nutrients is uneconomical and impairs an efficient use of
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feed, which represents a limited resource globally (Jansman and te

Pas, 2015; Alagawany et al., 2021). Suboptimal supply further leads

to increased excretion of environmentally relevant compounds by

the animals, including nitrogen and phosphorus (Rodehutscord,

2008; Simon, 2008).

Several response traits are usually measured in animal

experiments using variable dietary nutrient supply including

average daily weight gain (ADG) and gain:feed ratio (G:F). Most

commonly, effects of dietary nutrient supply have been evaluated

separately for each response trait, leading to predictions of the

optimal dietary nutrient concentration that are different depending

on the chosen response trait. For instance, this included responses to

tryptophan in piglets (2.09 and 1.64 g/kg of feed for ADG and G:F,

respectively (Eder et al., 2001)), threonine in broiler chickens (7.5 and

8.5 g/kg of feed for ADG and G:F, respectively (Ayasan et al., 2009)),

and arginine in rainbow trout (11.1 and 8.5 g/kg of dry feed for ADG

and G:F, respectively (Rodehutscord et al., 1995)). Hence, optimal

nutrient concentrations in feed are defined based on the impact of the

nutrient supply on the objective of maximizing one response trait.

The advantage of this approach is its simplicity; however, the

application of the results implies a decision on whether one

response trait is more important than another, which is not easy to

make. Alternatively, nutrient concentrations in the feed intermediate

to the nutrient concentration optima for different response traits can

be chosen. This approach considers the importance of several

objectives together, but the choice is made without exact

knowledge of the trade-off. According to our knowledge, there is

nomethod established to date that can consider the trade-off between

two objectives and the resulting consequences on the calculated

optimal nutrient concentrations in the feed. Effects of dietary

concentrations of a nutrient on response traits depend on the

dietary concentrations of other nutrients. For instance, such

interactions between dietary nutrient concentrations were found

between dietary glycine equivalents (Glyequi) and threonine (Thr)

(Corzo et al., 2009), Glyequi, Thr, and choline (Cho) (Siegert et al.,

2015), methionine and Cho (Simon, 1999), and Glyequi, cysteine, and

Cho (Hofmann et al., 2020) in broiler chickens and pigs. Hence,

combinations of dietary nutrient concentrations may differ between

optimized objectives. In consequence, trade-offs between two

objectives impact on the optimal combination of interacting

nutrients in the feed.

In recent years, artificial intelligence based machine learning

methods such as Gaussian process (GP) regression (GPR) models

have achieved much attention in the field of computational data

modeling science (Swain et al., 2016; Schulz et al., 2018). The GPR

processing describes nonlinear relationships between input and

response variables as well as uncertainties in the data using a

flexible non-parametric model. GPR models have been used in

different fields such as biology (Tonner et al., 2017), medicine (Sai

et al., 2019), time-series analysis (Roberts et al., 2013), and animal

nutrition (Baiz et al., 2020). In these fields, bi-objective optimization

using genetic algorithm (GA) was shown to enable quantification of

the trade-off between investigated objectives. However, it is not

known whether using a GPR and GA hybrid (GPR-GA) is suitable

for optimizing the nutrient supply in nutrition research and to

quantify the trade-off between two objectives.
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We hypothesized that diets can be formulated more accurately

when trade-offs between response traits are quantified. Feed

formulators would assume a trade-off on a linear line between the

maxima of response traits when the trade-off is not quantified

(Figure 1). An increased accuracy may be achieved when the

quantified trade-off between the maxima of response traits

deviates from linearity. We further hypothesized that GPR-GA is

useful for such quantification of a trade-off between objectives.

Therefore, the aims of this work were 1) to quantify the trade-off

between two objectives and to determine at which nutrient inputs

trade-offs between two objectives are achieved and 2) to investigate

whether GPR-GA is suitable to model responses to the supply of three

nutrients. This was performed using data of a previously published

experiment (Siegert et al., 2015), where responses in ADG and G:F to

intake of digestible Glyequi (dGlyequi), digestible Thr (dThr), and total

Cho (tCho) were evaluated. The data of that experiment were suitable

for the aims of the present study because responses to the supply of

dGlyequi, dThr, and tCho were found to interact and different dGlyequi,

dThr, and tCho combinations were needed tomaximizeADGandG:F.
2 Materials and methods

The modelling processes of the investigated GPR-GA hybrid is

outlined in Figure 2. In brief, the process included the three stages

‘data modelling’ using GPR, ‘model evaluation and selection’ using

cross-validation and goodness of the fitted model, and ‘optimization

on the developed models’ using single- or bi-objective GA.
2.1 Experimental setup and procedures

This study used data of a previously published experiment

(Siegert et al., 2015), where effects of the intake of dGlyequi, dThr,

and tCho on ADG and G:F of 7–21 day-old Ross 308 broiler
FIGURE 1

Scheme of the research hypothesis that quantifying the trade-off
between two response traits increases the accuracy of diet
formulation. Without quantifying the trade-off, diets would be
formulated in a way that enables responses on a linear line between
the maxima of the response traits. Quantifying the trade-off
increases diet formulation if the quantified trade-off deviates from
the linear line.
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chickens were investigated. In brief, 5 dietary concentrations each of

dGlyequi, dThr, and tCho were investigated in a fractional central

composite design, yielding 15 dietary treatments. Each treatment

was tested in 5 pens of 10 birds each, except for the treatment with

the medium concentration of the three nutrients, which was tested

in 20 pens of 10 birds each. The pen represented the experimental

unit. Except for the varying nutrients, the diets were calculated to

meet or to exceed the recommendations (Gesellschaft für

Ernährungsphysiologie, 1999). Birds were selected to achieve an

equal mean bird weight in each pen and similar variance within the

pens. Feed and birds were weighed on day 7 and 21 to determine

feed intake, ADG, and G:F. Experimental diets and water were

provided for ad libitum consumption throughout the experiment.

The range in nutrient intake was 431–1397 mg/d for dGlyequi, 129–

542 mg/d for dThr, and 27–100 mg/d for tCho.
2.2 Gaussian process regression modelling

2.2.1 Data
The dataset had 90 rows (data lines) and 5 columns. The rows

represented the nutrient intake-response pair and the columns were

the measured nutrient intake and response values. Each row of the

dataset may be denoted as

xi j (i=1, 2 , and 3; j=1, 2, 3…90) and

Yi j (i=1 and 2 ; j=1, 2, 3…90), where

x's were the intake levels of dGlyequi, dThr, and tCho, and
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Y's were the ADG and G:F. It may be presented as following

matrix:
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Descriptive statistics, relationships between measured nutrient

intake and response values, and the relationship between the

response values are presented in Figure 3. The response values

were positively correlated (r=0.925; P<0.001).

2.2.2 Implementation of Gaussian
process regression

The GPR algorithm was used to find the pattern which fits x's

and create a function f(x) that can predict Y's for new x's . The GPR

model was developed using the “fitgpr” function of MATLAB

version R2021b (Mathworks, 2021). Detailed explanations of GPR

method and development as well as application examples can be

found elsewhere (Rasmussen and Williams, 2006; Tonner et al.,

2017; Schulz et al., 2018; Baiz et al., 2020; Mathworks, 2021). In

brief, a GP is a non-parametric method given a stochastic process
FIGURE 2

Flowchart outlining the modelling and optimization process using Gaussian process regression and genetic algorithm (GPR-GA) for optimizing the
supply with digestible glycine equivalents (dGlyequi), digestible threonine (dThr), and total choline (tCho) and to quantify the trade-off between two
objectives (average daily gain (ADG) and the gain:feed ratio (G:F)) in broiler chickens.
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considering f(x)(x∈Rd) where f(x1 1), f(x2 1),… , f(xij);

(i=1, 2 , and 3; j=1, 2, 3…90) is a multivariate Gaussian random

variable for all combinations of input variables. The GPR model is

defined by introducing a mean function of the form μ(z)=E(f(x))

and a covariance function of the form k(x,x')=cov(f(x), f(x′)). In our

case, the inputs x were a vector of dGlyequi, dThr, and tCho intake

levels, and Y were the response traits (ADG and G:F). The response

traits were separately modeled as:

Y(x) = h(x)db + f (x) + Ɛ (1)

where, h(x) was a vector of basis functions, b was a vector of

basis function coefficients, f(x) was a GP with zero mean and

covariance function k(x, x') , and Ɛ was a Gaussian noise Kamath

et al., 2018. A pure quadratic function was chosen as basic function

(pureQuadratic as implemented under fitgpr function (Mathworks,

2021)). In equation 1, h(x)db denoted the mean compartment of the

GP model which was parametric and deterministic. The f(x)

represented the GP term and was non-parametric and

probabilistic. It computed a nonlinear connection between input

and response variables as well as uncertainties in the data. The

squared exponential function was used as the covariance (kernel)

function (k(x, x')) because we expect that for both objectives, the

closeness of the points translates into a high correlation. The same

strategy was realized previously in a similar situation where GPR
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was used to solve time series regression (Roberts et al., 2013). The

following covariance function was used (Roberts et al., 2013):

k(x,   x0) = s 2e−
(x−x0 )2  

l2 (2)

where, s2 was the variance and l was the length scale for input

variables and represented hyperparameters. The hyperparameters

of the selected covariance function were optimized with respect to

the experimental data (Rasmussen and Williams, 2006) using the

“fitrgp” function of MATLAB, which estimated hyperparameters of

Ɛ(b ,  s 2
Ɛ,  s 2,   l0s)   by minimizing the negative log-likelihood.

A k-fold cross-validation (k=5) method (Mathworks, 2021) was

used to monitor performance of the trained GPR model using

“CVPartition” function. The model was iteratively tested during the

training process with 18 randomly selected data lines in each fold

used for validation while the remaining 72 data lines were used for

training. Low RMSE of the validation set was the rationale for the

generalization ability of the model and for model selection.
2.3 Model evaluation

Model fits were examined using the R2 and the root mean square

error (RMSE). Model adequacy was additionally inspected using plots

of residuals against predicted values of Y to test for linear prediction
D

A

B

E

F

G

C

FIGURE 3

Descriptive statistics and relationships between the intake of digestible glycine equivalent (dGlyequi), digestible threonine (dThr), total choline (tCho), and
the response values average daily weight gain (ADG; A, C, E) and the gain:feed ratio (G:F; B, D, F) as well as the relationship between ADG and G:F (G).
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bias (St-Pierre, 2001). Sensitivity analysis was performed on developed

GPR models to rank the input variables by their importance for the

model outputs. For that, variable sensitivity ratio values for each input

variable were calculated, which represent the ratio between the RMSE

of aGPRmodel with the respective input variable not considered in the

evaluation and theRMSE considering all input variables. Hence, higher

variable sensitivity ratio values indicate a higher relevance of the input

variable to the model output. A value of 1 indicates no relevance of an

input variable for the model output (Ahmadi and Golian, 2011).
2.4 Optimization using genetic algorithm

2.4.1 Single-objective optimization
The constructed GPRmodels were used to find the combination

of input variables to maximize ADG and G:F. This concept was

previously applied in poultry studies to determine nutrient intake

combination for maximized responses (Ahmadi and Golian, 2011;

Hofmann et al., 2020). The solution of the single-objective

optimization problem was obtained as described previously

(Ahmadi and Golian, 2011) using “ga” function developed in

MATLAB optimization toolbox (Mathworks, 2021). A roulette

wheel selection method was used for selecting elite populations

for crossover. Initial population of 50, generation number of 500,

mutation rate of 0.1, and crossover rate of 0.85 has been set to

obtain the best fitness. During GA implementation, the search for

the optimal solutions was restricted between range of the input

variables specified in the experimental design. This generational

process was repeated until the number of generations was reached.

2.4.2 Bi-objective optimization
Solutions of the bi-objective optimization problem were obtained

using the “gamultiobj” function (Mathworks, 2021) as described

previously (Kamath et al., 2018). This function is an update and

applicable version of the non-dominated sorting genetic algorithm II

(NSGA-II) which was previously developed (Deb et al., 2002). The

process involved the generation of a Pareto front, which showed best

trade-off scenarios that can be obtained between the two objectives with

differentoptima,asdonepreviously (Sai etal., 2019). In thecurrent study,

a two-objective optimization on the developed models was done as:

F(x) = ½f1(x),   f2(x)� (3)

where, x∈Rd are the input variables and f1(x) and f2(x) are the

response traits modeled by the GPR method. There is no unique

solution of the optimization because F(x) includes a vector of two
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competing objectives. Therefore, the noninferiority (Pareto)

optimality was used to describe the objectives (Kamath et al., 2018;

Sai et al., 2019). The algorithm searched in the defined range of input

variables specified in the experimental design (x∈Rd ), to find optimal

solutions (feasible space W=x∈Rd ). The performance vector F(x)

mapped feasible input space into objective function space. It was

represented as a two-dimensional Pareto graph.

The parameter settings for “gamultiobj” were the following:

population size = 50; selection function = tournament selection;

mutation function = adaptive mutation; pareto fraction = 0.25;

crossover fraction = 0.90; maximum generation = 1000, and

function tolerance ≤ 0.0001. This generational process was

repeated until the maximum number of generations was reached

or the average relative change in the best fitness functions was less

than the function tolerance value.
2.5 Sigmoidal regressions, areas under the
curve, and preparation of figures

A four-parameter sigmoidal function was used to fit the Pareto

front results obtained from bi-objective optimization process to

describe scenarios as a function:

y =   a +
b − a

1 + e((c−x)�d)
(4)

where, ywasG:F, xwas ADG, awas theminimumplateau of G:F,

b was the maximum plateau of G:F, c was the inflection point, and d

was the slope of the regression. GraphPad Prism 8 (GraphPad

Software Inc., San Diego, CA, USA) was used to create figures and

to calculate the sigmoidal function and areas under the curve.
3 Results

3.1 GPR model results

Model-fit-criteria indicated a high model adjustment to the actual

data with R² of the model training and validation ≥0.950 and ≥0.882,

respectively (Table 1). The RMSE accounted for 1.0% inmodel training

and 3.1% in model validation relative to the median of actual ADG.

Relative to the median of actual G:F, the RMSE was 1.3% in model

training and 2.0% in model validation. With few exceptions, the actual

ADG and G:F was within the standard deviations of the predicted

values (Figure 4). The intercepts and slopes of linear regressions when

residuals were plotted against predicted values in model training and
TABLE 1 Model fit of the GPR-GA models for ADG and G:F.1.

R² RMSE

ADG (g/d) Training
Validation

0.995
0.956

0.481
1.488

G:F (g/g) Training
Validation

0.950
0.882

0.011
0.017
fronti
1GPR-GA , Gaussian process regression and genetic algorithm; ADG , average daily weight gain; G:F , gain:feed ratio; R² , coefficient of determination; RMSE , root mean square error.
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validation (Figure 5) were not significantly different from zero

(P≥0.34), hence giving no evidence of a prediction bias of the models.

The relative importance of the input variables on the prediction of

the model outputs was determined using global sensitivity values. The

sensitivity analysis indicated an importance of dThr > dGlyequi > tCho

for both the ADG and the G:F model (Figure 6).
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3.2 Single-objective optimization

Single-objective optimization showed that maximum ADG of

53.5 g/d was achieved with intakes of 1397 mg dGlyequi/d, 482 mg

dThr/d, and 83 mg tCho/d, while maximum G:F of 0.850 g/g was

achieved with 1053 mg dGlyequi/d, 443 mg dThr/d, and 60 mg tCho/
FIGURE 5

Plots of residuals against of predicted average daily weight gain (ADG) and the gain:feed ratio (G:F) in model training and validation. None of the
intercepts and slopes of the linear regressions were significantly different from 0 (P≥0.34).
FIGURE 4

Comparison of actual and predicted values of average daily weight gain (ADG) and the gain:feed ratio (G:F) from training and validation of the
Gaussian process regression and genetic algorithm (GPR-GA) hybrid model. Error bars indicate the standard deviation of the predictions.
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d (Table 2). Converting the values to dietary concentrations, as

often preferred in feed formulation, revealed that the maximum

ADG needed 23.4 g dGlyequi/kg, 8.08 g dThr/kg, and 1.39 g tCho/kg

in the feed while concentrations needed for maximum G:F were at

17.6 g dGlyequi/kg, 7.42 g dThr/kg, and 1.01 g tCho/kg (all nutrient
Frontiers in Animal Science 07
concentrations derived from the dataset evaluated herein are on an

88% dry matter basis).
3.3 Bi-objective optimization

The modelling process of bi-objective optimization resulted in a

preset number of determined scenarios in a Pareto front. The

determined scenarios quantified the conflict-of-aims between

maximizing ADG and G:F (Table 3; Figure 7). The scenarios followed

afour-parametersigmoidal regressionwithamaximumADGat53.1g/d

in combinationwithaG:Fof 0.844g/gandmaximumG:Fof 0.850g/g in

combination with an ADG of 51.4 g/d. The inflection point of the

regressionwas at anADGof52.6 g/d andaG:Fof 0.847g/g.The range in

intakeof thenutrients foroptimal scenarioswas1048–1106mgdGlyequi/

d, 437–445 mg dThr/d, and 63–71 mg tCho/d. The intake ranges

converted to dietary concentrations accounted for 17.6–18.5 g

dGlyequi/kg, 7.31–7.46 g dThr/kg, and 1.06–1.19 g tCho/kg.

The increase in accuracy by quantifying the trade-off between

the response traits compared with choosing a trade-off on a linear

line between the maxima of response traits was measured by

calculating areas under the curve. This evaluation included a

right-angled triangle with the line between scenarios no. 1 and

no. 12 as the hypotenuse and the four-parameter sigmoidal

regression. A value of 0.8444 was chosen as the baseline of the

areas because this value represented the lowest G:F among the

determined scenarios (Table 3; Figure 7). The area under the

sigmoidal regression accounted for 137% of the area of the triangle.

Higher intake of dGlyequi, dThr, and tCho was needed in scenarios

optimized towards higher ADG while lower intake of those nutrients

was needed in scenarios optimized towards higher G:F (Figure 8).

Commencing from maximized G:F, small increases in dGlyequi and

dThr intake shifted the optimization from maximized G:F slightly

towards higher ADG. Larger increases in dGlyequi and dThr intakewere

needed to shift the optimization further towards maximized ADG. For

tCho, the increase in needed intake was proximately linear when the

optimization shifted from maximized ADG to maximized G:F.
TABLE 2 Single-objective optimization results of the GPR-GA models for the combination of three nutrient input variables to reach maximum
predicted response for ADG and G:F of broiler chickens.1.

Nutrient input

dGlyequi dThr tCho Response at determined maximum

ADG Intake (mg/d) 1397 482 83 53.5 g/d

Dietary concentration2 (g/kg) 23.4 8.08 1.39

G:F Intake (mg/d) 1053 443 60 0.850 g/g

Dietary concentration2 (g/kg) 17.6 7.42 1.01
1GPR-GA , Gaussian process regression and genetic algorithm; ADG , average daily weight gain; G:F , gain:feed ratio; dGlyequi , digestible glycine equivalents; dThr , digestible threonine; tCho ,
total choline.
2Determined as nutrient intake (mg/d)/feed intake (g/d on an 88% dry matter basis). A feed intake of 59.7 g/d was used, representing the median of all observations.
FIGURE 6

Sensitivity analysis of the Gaussian process regression and genetic
algorithm hybrid models for the intake of digestible glycine
equivalents (dGlyequi), digestible threonine (dThr), and total choline
(tCho). High variable sensitivity ratio values indicate a high relevance
of the input variable to the model output. A value of 1 indicates no
relevance of the input variable for the model output.
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4 Discussion

4.1 Evaluation of the GPR model

One aim of this work was to investigate whether GPR is a

suitable tool to model responses to the supply of three nutrients. All

evaluated model accuracy indicators, including goodness-of-fit and

prediction bias, suggested that the GPR models appropriately

predicted ADG and G:F based on dGlyequi, dThr, and tCho intake.
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GPR represents a modelling method that is more suitable in

different situations than neural networks (Kamath et al., 2018),

which were used to evaluate the data of the same experiment in the

previous communication (Siegert et al., 2015). GPR does not require

a pre-defined specification of fitting functions and, hence, has a

general ability to predict nearly all types of nonlinearity in data

(Roberts et al., 2013; Tonner et al., 2017). The GPR model structure

is formed according to the number of data lines so that the number

of data lines equals the number of equations in a GPR model.

Hence, complexity in GPR modelling increases with the number of

data lines. This is in contrast to neural networks, which need a pre-

defined architecture (number of layers, layer neurons, and

activation functions) before model training. In terms of model

structure, GPR can make predictions as weighted linear

combinations of existing mean values in the data set using kernel

function. This characteristic makes GPR capable of estimating

interpretable uncertainty (Kamath et al., 2018), which is beneficial

in our application in which standard deviation of the predictions are

needed to make inference (Figure 4). The neural network

architecture has an impact on the outcome and needs to be

chosen by the operator if the model structure is not optimized

using GA (Benardos and Vosniakos, 2007; Hofmann et al., 2020)

and GA is helpful to avoid that local optima are determined as the

best solution (Benardos and Vosniakos, 2007). With a combination

of both parametric and nonparametric compartments (as described

in equation 1), GPR models are capable of modeling datasets in a

both deterministic and probabilistic framework. The probabilistic

framework adds the consideration of the randomness in data sets

into the model. Therefore, an improved prediction of the dependent

variable can be obtained (Sai et al., 2019). The soft computing

methods of data handling, including GPR and neural networks,

usually require a high amount of data to build an effective model.
FIGURE 7

Results of bi-objective optimization using a Gaussian process
regression and genetic algorithm hybrid (GPR-GA) for the
combination three nutrient input variables with average daily weight
gain (ADG) and the gain:feed ratio (G:F) as objectives to be
maximized. The results obtained by the Pareto front are considered
as the set of solutions that are not dominated by any other solution.
Combinations of input variables and response traits are presented in
Table 3. Parameter estimates and goodness-of-fit criteria of the
four-parameter sigmoidal function (Eq. 4) were: minimum plateau
0.8436 g/g, maximum plateau 0.8505 g/g, inflection point 52.6 g/d,
slope -2.02, R² 0.997.
TABLE 3 Results of bi-objective optimization using GPR-GA for the combination of three nutrient input variables with ADG and G:F as objectives to
be maximized.1.

Scenario no. Model output Nutrient intake (mg/d) Dietary concentration2 (g/kg)

ADG (g/d) G:F (g/g) dGlyequi dThr tCho dGlyequi dThr tCho

1 51.4 0.8505 1048 437 63 17.56 7.32 1.06

2 51.6 0.8504 1048 436 64 17.56 7.31 1.07

3 51.8 0.8504 1049 436 65 17.58 7.31 1.09

4 52.0 0.8503 1049 436 65 17.58 7.31 1.09

5 52.1 0.8500 1049 437 66 17.58 7.32 1.11

6 52.3 0.8491 1063 438 67 17.81 7.34 1.12

7 52.4 0.8483 1060 438 68 17.76 7.34 1.14

8 52.5 0.8477 1060 438 68 17.76 7.34 1.14

9 52.6 0.8465 1072 443 69 17.96 7.42 1.16

10 52.8 0.8461 1089 441 68 18.25 7.39 1.14

11 52.9 0.8454 1084 442 69 18.17 7.41 1.16

12 53.1 0.8444 1106 445 71 18.53 7.46 1.19
fron
1GPR-GA , Gaussian process regression and genetic algorithm; ADG , average daily weight gain; G:F , gain:feed ratio; dGlyequi , digestible glycine equivalents; dThr , digestible threonine; tCho ,
total choline.
2See footnote to Table 1 for the description of determination.
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However, GPR models may be less sensitive to the amount of data if

the data set is statistically well-distributed in the input domain and

follows Gaussian distributions (Tonner et al., 2017; Schulz et al.,

2018; Sai et al., 2019). Otherwise and particularly in small data sets,

generalization of GPR models can be limited when the model does

not learn with adequate informative data. Animal nutrition datasets

are often relatively small owing to the high effort of data generation

in animal trials.

The expenditure of running the developed GPRmodel cannot be

generalized because of specific frameworks such as size of the data set

and computer capacity. The number of data lines determines the time

needed to find optimum (hyper)parameters and to calculate the

covariance matrix. The runtime complexity may be presented as a

relative value of n³, where n is the number of data lines. In our case,

the dataset was small (n<100) and it was analyzed using a typical

workstation computer with Intel® Core™ i6 CPU, 32GB RAM. The

time needed to perform the process of modeling were less than 2

minutes for both the ADG and G:F models.

The general outcome of the data evaluation using GPR was

similar compared to the evaluation of the same data with neural

networks (Siegert et al., 2015) with some differences, which is

common when different evaluation methods are used. Both

evaluation methods led to very high goodness-of-fit of R² ≥0.95

of model training. Model validation using k-fold cross validation

was performed for GPR while model testing using holdback data

was done for neural networks (Siegert et al., 2015). Hence,

comparisons of corresponding model-fit values are inexpedient.

The GPR evaluation led to slightly higher and close-to-equal R²

values compared to the evaluations of ADG and G:F using neural

networks, respectively. However, the observed differences are of

little relevance considering the magnitude of R². The ranking of

variable sensitivity ratio values of the sensitivity analysis was

identical, confirming the considerable importance of dThr and
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dGlyequi intake on ADG and G:F and the low impact of tCho

intake in this experiment.
4.2 Bi-objective optimization

The second aim of this work was to quantify the trade-off between

the objectives of maximizing ADG andG:F. GPR-GAwas shown to be

suitable for this purpose, thereby conforming one hypothesis of this

study. Single-objective optimization confirmed that ADG and G:F

cannot bemaximized simultaneously because the nutrient intake at the

maxima was different. The bi-objective optimization revealed that the

trade-off between maximized ADG and G:F was not linear (Figure 6).

This supported the main hypothesis of this study. Originating from

maximizedG:F, increasing theADG initially hardly compromisedG:F.

The more ADG was prioritized in the optimization, the more

pronounced was the trade-off between maximized ADG and G:F up

to the inflection point of the four-parameter sigmoidal regression. The

trade-off became less pronounced when ADG was further prioritized.

Without quantifying the trade-off between maximized ADG and G:F,

feed formulators would choose target values intermediate to

maximized ADG and G:F after single-objective optimization, thereby

assuming that the trade-off was linear. However, the trade-off between

maximized ADG and G:F was nonlinear in this study. The increase in

accuracy by quantifying the trade-off between the response traits was

considerable in our dataset, as indicated by the relative difference of

areas under the curve of a linear line between the maxima of response

traits and the sigmoidal regression. Hence, quantifying the trade-off

between maximized ADG and G:F using GPR-GA can enable feed

formulators to more accurately define their specific targets of

feed formulation.

Higher intake levels of dGlyequi, dThr, and tCho were needed in

scenarios optimized towards higher ADG instead higher G:F
D

A

B

E

F

C

FIGURE 8

Relationship between the intake of digestible glycine equivalents (dGlyequi), digestible threonine (dThr), and total choline (tCho) and the average daily
weight gain (ADG; A, C, E) and the gain:feed ratio (G:F; B, D, F) in determined scenarios of bi-objective optimization using the Gaussian process
regression and genetic algorithm (GPR-GA) hybrid model.
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(Figure 8). This relationship was subject to a scattering which may

be explained by interacting effects of dietary Glyequi and Thr on

ADG and G:F (Corzo et al., 2009; Siegert et al., 2015; Star et al.,

2021). Hence, scenarios with similar response values in Figures 8A–

D may have been determined with different combinations of

dGlyequi and dThr intake. Responses in ADG and G:F to dGlyequi
and dThr intake were additionally affected by tCho intake, but the

extent of this effect was rather low (Siegert et al., 2015). The absence

of a pronounced interaction of tCho intake on responses to dGlyequi
and dThr intake may have caused the minor scattering of the

determined tCho intake in the optima scenarios (Figure 8E, F).
5 Conclusions

This research showed that quantifying the trade-off between the

objectives of maximizing ADG and maximizing G:F by bi-objective

optimization using the developed GPR-GA algorithm enables to

formulate diets more precisely because the trade-off was not linear.

GPR was determined as a suitable tool to model growth

performance of broiler chickens based on the intake of three

nutrients simultaneously via a Pareto front that is to be

considered as a set of solutions that are not dominated by any

other solution. Knowledge of the trade-off between maximized

ADG and maximized G:F as well as the needed nutrient

concentrations will help feed formulators to better optimize

their feed.
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