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Zinc supplementation and
ractopamine hydrochloride
impact gene expression of
zinc transporters in finishing
beef steers

Emma L. Rients, Remy N. Wyatt †, Erin L. Deters †,
Olivia N. Genther-Schroeder † and Stephanie L. Hansen*

Department of Animal Science, Iowa State University, Ames, IA, United States
Zinc is a trace mineral of interest for optimizing growth in feedlot cattle due to its

roles in many physiological functions, including growth. Twenty-four Angus-

cross steers (467 ± 13 kg) were used to assess the effects of supplemental Zn and

ractopamine hydrochloride (RAC) on trace mineral concentrations and muscle

gene expression. Four GrowSafe-equipped pens were randomly assigned to

treatments (1 pen of six steers/treatment): 0 (CON), 60 (LOW), 120 (MED) or 180

(HI) mg supplemental Zn/kg DM (Availa-Zn, Zinpro). Dietary Zn treatments were

initiated on d 0 and RAC supplementation (300 mg·steer·-1·d-1; Actogain45,

Zoetis) began on d 53. Blood, liver and muscle (longissimus thoracis) samples

were collected from all steers on d -4, 48, and 67. The LOW treatment was

removed from gene expression analyses due to < 3 steers being represented for

14 of 22 genes. Data were analyzed using ProcMixed of SAS with the fixed effect

of treatment and steer as the experimental unit; orthogonal linear and quadratic

contrast statements were used to compare treatments. On d 48 and 67, there

were linear and quadratic trends for plasma Zn to be greater in Zn-supplemented

steers than CON (P ≤ 0.10). On d 48, there was a tendency for a quadratic

decrease on the expression of SLC30A4 (P ≤ 0.07) but no other differences due

to treatment. On d 67, several genes involved in Zn transport and storage (MTA1,

SLC39A7, SLC39A8, SLC39A9, SLC39A10, SLC39A13) were decreased (P ≤ 0.08),

suggesting increased growth influences intracellular Zn trafficking and demands.
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Introduction

Zinc plays a key role in many physiological functions including growth. Increasing Zn

supplementation to feedlot cattle may support growth of cattle receiving growth promoting

technologies such as anabolic implants or beta agonists (Genther-Schroeder et al., 2016a;

Genther-Schroeder et al., 2016b). In the beta-agonist pathway, cyclic adenosine
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monophosphate is a secondary cellular signal and is broken down

by phosphodiesterase, resulting in decreased effectiveness of the

beta-agonist pathway, but this negative feedback can be decreased

by Zn through the inhibition of PDE (von Bülow et al., 2005).

Zinc movement is highly dynamic within the cell, with

transport facilitated by ZIP (into the cytosol) and ZnT (out of

cytosol) transporters. The effects of Zn supplementation to cattle

fed the beta agonist, ractopamine hydrochloride, on the expression

of Zn transporters and storage mechanisms in muscle has not been

studied. The objective of this study was to characterize how Zn

machinery expression in muscle changes with increasing Zn

supplementation before and during the ractopamine feeding

period. It was hypothesized that genes involved in Zn trafficking

in the muscle will be upregulated during the ractopamine period

and Zn supplementation will affect this response.
Materials and methods

All methods were approved by the Iowa State University

Institutional Animal Care and Use Committee (IACUC # 8-15-

8073-B). Twenty-four Angus crossbred steers from a single ranch

were identified by Genemax Gain (Zoetis, Parsippany, NJ) scores of

3, 4, and 5 (i.e., having more genetic potential for gain) and selected

for this 84-day study. Steers were acclimated to GrowSafe bunks

(GrowSafe Systems Ltd., Airdrie, AB, Canada) for 24 days and were

transitioned to a common finishing diet 21 days prior to trial

initiation. On d 0, steers were stratified by BW into pens of 6, and

pens randomly assigned to treatment (1 pen/treatment), and

implanted with a component TE-IS with Tylan (80 mg

trenbolone acetate, 16 mg estradiol USP, 29 mg tylosin tartrate;

Elanco Animal Health, Greenfield, IN). All steers received

ractopamine hydrochloride (RAC) at 300 mg· steer·-1·d-1

(Actogain, Zoetis) starting on d 53. Dietary treatments included a

control (CON) with no supplemental Zn and increasing Zn

supplementation at 60 mg/kg DM (LOW), 120 mg/kg DM

(MED), or 180 mg/kg DM (HI). The supplemental Zn source was

a Zn amino acid complex (AvailaZn, donated by Zinpro

Corporation, Eden Prairie, MN). Dietary treatments were

delivered as part of the total mixed ration (TMR), delivered once

daily via wagon mixer. On a dry matter basis TMR included 62%

cracked corn, 25% modified distiller grains, 8% hay, 3% dried

distiller grains used as a carrier for treatments, RAC and other

micronutrients. Trace minerals and vitamins were added at

NASEM (2016) recommended concentrations, except Zn. Weekly

TMR samples were collected for DM determination, and dried

samples were composited and subsequently analyzed for nutrient

analysis at a commercial lab (Dairyland INC, Arcadia, WI; methods

990.03 and 920.39; AOAC, 1996). The control diet analyzed at

14.8% crude protein, 15.7% neutral detergent fiber, 5% ether extract

and 35 mg Zn/kg DM.

Steers were weighed on d -1, 0, 28, 52, 53, 69, 80 and 81. Blood,

muscle, and liver biopsies were collected on d -4, 48, and 67. Blood

was collected in K2EDTA coated blood tubes (Becton, Dickinson

and Company), stored on ice until centrifugation at 1,200 × g for 20

minutes at 4°C, aliquoted, and stored at -20°C until analysis. Muscle
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biopsies (<0.5g) were collected from the longissimus thoracis using

methods described by Pampusch et al. (2008). Liver biopsies

(approximately 1g) were completed using methods described by

Engle and Spears (2000). Liver and muscle biopsies were flash

frozen and stored at -80°C until analysis. Liver, TMR and plasma

trace mineral concentrations were determined using inductively

coupled plasma optical emission spectroscopy (ICP OES; Optima

7000; PerkinElmer, Waltham, MA) using methods described in

Pogge and Hansen (2013). RNA was isolated from longissimus

thoracis and cDNA synthesized as described in Rients et al. (2023).

Quantitative real-time PCR was performed using Fluidigm Biomark

HD system as described in Reichhardt et al. (2023). Primers utilized

for qPCR are found in Supplementary Table 1. The LOW treatment

was removed from analysis of gene expression data due to < 3 steers

being represented for 14 of the 22 analyzed genes due to poor reads.

Western blot analysis was not completed in this study so data

presented are gene expression and further studies may be needed to

compare with protein expression.
Statistical analysis

Data were analyzed using the Mixed procedure of SAS 9.4

(Cary, NC) with the fixed effect of treatment and steer was the

experimental unit. Orthogonal linear and quadratic contrast

statements were utilized, with coefficients based on supplemental

Zn concentrations created using ProcIML. Initial plasma and liver

TM concentrations were used as a covariate in subsequent analysis.

Outliers were evaluated on an individual animal basis and removed

if more than three standard deviations away from the treatment

mean. For variables most treatments had no outliers, with a

maximum of 2 outliers removed from a single treatment. The

least-squared means and SEM are reported. Statistical significance

was determined at a P ≤ 0.05, and a statistical tendency was

determined at 0.05 < P ≤ 0.1.
Results

Trace mineral concentrations

Plasma Fe concentrations quadratically increased from CON to

LOW treatments, then plateaued on d 48 (P = 0.02; Table 1) but was

unaffected by treatment on d 67 (P = 0.46). Plasma Cu

concentrations quadratically decreased from CON to LOW

treatments, then leveled off on d 48 (P = 0.04). On d 67, plasma

Cu concentrations tended to be quadratically increased, with the

MED treatment having the highest concentration (P = 0.07). On d

48, plasma Zn concentrations linearly increased with Zn

supplementation (P = 0.01), best explained by the quadratic trend

(P = 0.10) where plasma Zn increased from CON to LOW and

plateaued. On d 67, there was a linear and quadratic trend for

plasma Zn concentrations to be increased from CON to LOW and

are similar in MED and HI (P = 0.10).

Liver Mn concentrations tended to linearly increase on d 48

driven by MED and HI (P = 0.07; Table 2) but were not affected by
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TABLE 1 Effects of supplemental Zn on plasma trace mineral concentrations of finishing beef steers.

Treatments1 Contrast P-Value2

CON LOW MED HI SEM Linear Quadratic

Fe, mg/L

d -4 1.87 1.72 1.93 1.51 – – –

d 483 1.61 2.04 1.94 1.86 0.124 0.19 0.02

d 673 1.88 1.73 1.57 1.71 0.224 0.40 0.46

Cu, mg/L

d -4 1.02 0.88 0.98 0.94 – – –

d 483 1.08 0.91 0.95 1.00 0.050 0.50 0.04

d 673 1.10 1.10 1.32 1.11 0.056 0.16 0.07

Zn, mg/L

d -4 1.09 1.15 1.13 0.98 – – –

d 483 1.05 1.21 1.29 1.24 0.059 0.01 0.10

d 673 1.06 1.33 1.29 1.29 0.079 0.10 0.10
F
rontiers in Animal S
cience 03
 f
1CON = 0 mg supplemental Zn/kg DM, LOW = 60 mg supplemental Zn/kg DM, MED = 120 mg supplemental Zn/kg DM, HI = 180 mg supplemental Zn/kg DM; Supplemental Zn as AvailaZn
(Zinpro Corporation).
2Contrast coefficients were determined based on supplemental Zn treatments using ProcIML of SAS.
3Day -4 used as a covariate.
TABLE 2 Effects of Zn supplementation on the liver trace mineral concentrations of finishing beef steers.

Treatment1 Contrast P- value2

CON LOW MED HI SEM Linear Quadratic

Mn, mg/kg DM

d -4 9.5 8.5 7.2 9.7 – – –

d 483 8.2 8.2 9.2 9.1 0.50 0.07 0.97

d 673 8.9 9.2 8.4 9.2 0.65 0.95 0.61

Cu, mg/kg DM

d -4 237 269 164 262 – – –

d 483 446 373 331 286 33.2 <0.01 0.66

d 673 430 439 356 285 42.2 <0.01 0.25

Zn, mg/kg DM

d -4 141 123 108 125 – – –

d 483 131 135 134 157 14.0 0.25 0.50

d 673 144 159 180 139 14.2 0.81 0.08

Fe, mg/kg DM

d -4 159 152 132 170 – – –

d 483 164 154 176 182 12.7 0.12 0.52

d 673 158 165 207 279 31.7 <0.01 0.24
1CON = 0 mg supplemental Zn/kg DM, LO = 60 mg supplemental Zn/kg DM, MED = 120 mg supplemental Zn/kg DM, HI = 180 mg supplemental Zn/kg DM; Supplemental Zn as AvailaZn
(Zinpro Corporation).
2Contrast coefficients were determined based on supplemental Zn treatments using ProcIML of SAS.
3d -4 used as a covariate.
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treatment on d 67 (P ≥ 0.61). As Zn supplementation increased,

liver Cu linearly decreased on d 48 and d 67 (P < 0.01). Liver Zn was

not affected by treatment on d 48 (P ≥ 0.25) but tended to

quadratically increase on d 67 where concentrations decreased

from CON to MED, and then increased in HI (P = 0.08). Liver Fe

was linearly increased on d 67 (P < 0.01) but was not affected by

treatment on d 48 (P ≥ 0.12).
Zn transport and storage gene expression

On d 48, there was a tendency for a quadratic decrease in

SLC30A4 expression (P = 0.07; Table 3). There was a linear decrease

in the expression of SLC39A8, SLC39A9, SLC39A10 and SLC39A13

on d 67 (P ≤ 0.05; Table 4). Additionally, the expression of MT1A,

SLC30A4, SLC39A1 and SLC39A7 tended to linearly decrease on d
Frontiers in Animal Science 04
67 (P ≤ 0.10). There were no other differences in muscle gene

expression (P > 0.10).
Discussion

Ractopamine hydrochloride increases protein synthesis

(Anderson et al., 1990), resulting in greater muscle accretion

(Mersmann, 1998). We have previously observed feeding high

concentrations of Zn (120 mg supplemental Zn/kg DM) supports

growth of RAC-fed steers but not non-RAC steers (Genther-

Schroeder et al., 2016b). Additionally, N and Zn retention were

found to be positively correlated in late-stage finishing steers

(Carmichael et al., 2018). Because Zn is critical for protein

synthesis (Oberleas et al., 1969; Williams and Chesters, 1970),

additional Zn supplementation may support these demands in
TABLE 3 Effect of supplementing Zn for 48 d (prior to start of ractopamine feeding on d 53) on delta Ct values1 of genes involved in Zn storage and
transport in the muscle of finishing beef steers.

Treatment2 Contrast P-value3

Gene4 CON MED HI SEM Linear Quadratic

MT1A 7.81 8.35 7.07 0.860 0.67 0.35

MT2A 6.47 5.61 4.84 0.689 0.11 0.78

SLC30A1 7.26 7.33 6.27 0.807 0.45 0.44

SLC30A25 – – – – – –

SLC30A4 7.02 8.74 7.91 0.491 0.11 0.07

SLC30A5 6.79 7.27 7.09 0.366 0.47 0.52

SLC30A6 7.12 6.73 6.44 0.467 0.29 0.89

SLC30A7 8.45 7.55 6.86 0.723 0.13 0.84

SLC30A85 – – – – – –

SLC30A9 5.83 6.49 6.20 0.368 0.37 0.34

SLC30A10 15.06 12.10 11.86 1.962 0.23 0.74

SLC39A1 6.22 6.98 6.58 0.377 0.39 0.26

SLC39A3 7.61 7.46 7.27 0.289 0.44 0.85

SLC39A5 10.63 10.11 10.86 1.267 0.96 0.67

SLC39A6 7.65 7.95 7.09 0.622 0.63 0.36

SLC39A7 5.60 5.66 5.38 0.478 0.79 0.70

SLC39A8 7.98 8.10 8.43 0.368 0.41 0.67

SLC39A9 7.83 7.43 7.57 0.499 0.66 0.69

SLC39A10 7.36 6.36 6.75 1.009 0.59 0.59

SLC39A11 9.16 9.57 9.95 0.367 0.15 0.75

SLC39A13 7.09 6.49 6.70 0.409 0.43 0.51

SLC39A14 7.26 7.54 7.22 0.665 0.98 0.65
f

1Calculated by subtracting housekeeper Ct from gene of interest Ct. Lower values indicate greater expression.
2CON = 0 mg supplemental Zn/kg DM, MED = 120 mg supplemental Zn/kg DM, HI = 180 mg supplemental Zn/kg DM; the LO treatment (60 mg supplemental Zn/kg DM) was removed from
analysis due to < 3 steers being represented for 14 of the 22 analyzed genes; Supplemental Zn as AvailaZn (Zinpro Corporation).
3Contrast coefficients were determined based on supplemental Zn treatments using ProcIML of SAS.
4Highest SEM of any treatment reported.
5Not reported because of low and variable expression.
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RAC-fed cattle. In the present study, we observed decreases in the

patterns of gene expression of Zn transporters in muscle of RAC-fed

cattle, which may help explain the improvements in performance

previously observed in Zn and RAC fed cattle.

ZIP transporters are members of the solute carrier 39 (SLC39)

superfamily and once translated, the membrane-bound proteins

move Zn into the cytoplasm (Jeong and Eide, 2013). ZnT

transporters are encoded by the gene solute carrier 30 (SLC30)

family and are responsible for the movement of Zn across

membranes out of the cytoplasm (Huang and Tepaamorndech,

2013). In the current study, limited differences in Zn transporter

gene expression in the muscle were noted between dietary Zn

treatments prior to RAC feeding (d 48). However, genes encoding

for ZIP1, ZIP7, ZIP8, ZIP9, and ZIP13 linearly decreased as dietary

Zn increased after 14 d of RAC feeding (d 67). Although growth

performance of these cattle is not shown in this paper, across all
Frontiers in Animal Science 05
cattle average daily gain prior to RAC was 1.97 ± 0.27 kg/day and

during the RAC period increased to 2.24 ± 0.29 kg/day (mean ±

SD). Some of these transporters, ZIP1 and ZIP8, have previously

been found on the plasma membrane of cells (Gaither and Eide,

2001; Besecker et al., 2008) while others, ZIP7, ZIP9, ZIP13, and

ZnT7, have previously been found on the golgi apparatus

membrane (Kirschke and Huang, 2003; Huang et al., 2005; Bin

et al., 2011), where Zn incorporation into metalloenzymes is

thought to occur (Eide, 2006). Overall, the linear decreases in ZIP

transporters on d 67 are driven by greater expression in non-Zn

supplemented steers, suggesting increased Zn trafficking into the

muscle cytoplasm during the RAC period. With the increased

protein synthesis demands associated with RAC, observing

changes in gene expression of transporters previously found to be

associated with organelles where proteins are synthesized further

supports the need for Zn in RAC induced growth. The lower
TABLE 4 Effect of supplementing Zn for 67 d (14 d after the start of ractopamine feeding on d 53) on delta Ct values1 of genes involved in Zn storage
and transport in the muscle of finishing beef steers.

Treatment2 Contrast P-value3

Gene4 CON MED HI SEM Linear Quadratic

MT1A 7.22 7.64 8.43 0.450 0.07 0.40

MT2A 4.86 5.15 5.56 0.397 0.20 0.66

SLC30A1 7.04 7.46 8.25 0.634 0.18 0.54

SLC30A2 21.93 18.21 20.35 4.831 0.75 0.66

SLC30A4 7.49 7.98 8.88 0.589 0.10 0.46

SLC30A5 7.22 7.06 7.59 0.256 0.41 0.16

SLC30A6 6.31 6.44 6.77 0.243 0.19 0.48

SLC30A7 7.08 7.29 7.84 0.310 0.11 0.40

SLC30A8 21.63 17.68 19.60 4.532 0.68 0.65

SLC30A9 5.88 6.52 6.44 0.312 0.15 0.41

SLC30A10 20.16 16.36 20.16 3.541 0.87 0.41

SLC39A1 6.09 6.98 7.26 0.501 0.09 0.84

SLC39A3 7.29 7.37 7.68 0.393 0.48 0.64

SLC39A5 11.78 13.46 12.35 0.686 0.36 0.14

SLC39A6 7.31 7.91 8.46 0.525 0.12 0.75

SLC39A7 4.87 5.77 6.88 0.763 0.08 0.61

SLC39A8 6.99 8.11 9.33 0.795 0.05 0.62

SLC39A9 6.63 7.40 7.69 0.373 0.05 0.89

SLC39A10 6.50 6.91 7.27 0.202 0.02 0.63

SLC39A11 9.23 8.94 10.64 0.670 0.20 0.08

SLC39A13 5.32 5.96 6.18 0.254 0.01 0.83

SLC39A14 6.85 7.60 7.50 0.377 0.17 0.41
f

1Calculated by subtracting housekeeper Ct from gene of interest Ct. Lower values indicate greater expression.
2CON = 0 mg supplemental Zn/kg DM, MED = 120 mg supplemental Zn/kg DM, HI = 180 mg supplemental Zn/kg DM; the LO treatment (60 mg supplemental Zn/kg DM) was removed from
analysis due to < 3 steers being represented for 14 of the 22 analyzed genes; Supplemental Zn as AvailaZn (Zinpro Corporation).
3Contrast coefficients were determined based on supplemental Zn treatments using ProcIML of SAS.
4Highest SEM of any treatment reported.
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expression of Zn trafficking genes in cattle supplemented with 60 to

180 mg Zn/kg DM may suggest they had adequate Zn stores

available to respond to RAC-induced protein synthesis demands.

While plasma Zn concentrations were increased in Zn-

supplemented cattle compared to the control on d 48 and 67,

there was minimal difference in plasma Zn concentrations within

steers receiving Zn supplementation. Zinc supplementation above

100 mg Zn/kg DM has been found to increase plasma zinc

concentrations compared to non-supplemented controls, with no

further rises noted as Zn supplementation increased up to 200 mg

Zn/kg DM (Huerta et al., 2002; Messersmith et al., 2019). Plasma Zn

remains constant unless there is significant demand on the Zn pool

or below adequate concentrations in the diet (Wieringa et al., 2015).

The lower plasma Zn concentrations in control steers around 1.05

mg/L may be insufficient during periods of high growth. However,

Zn supplemented steers had plasma Zn concentrations greater than

1.2 mg/L which may be sufficient to meet the increased growth

demands induced by RAC feeding. With a greater concentration of

Zn in the plasma of supplemented steers, more Zn is available for

movement into the muscle via ZIP transporters. However, in

control steers with lower plasma Zn concentrations, gene

expression of ZIP transporters may be increased to allow for

greater opportunity for Zn trafficking to meet demands in the

muscle cell. Messersmith et al. (2022) found plasma Zn to increase

in Zn-supplemented steers over non-supplemented controls, and

that Zn-fed steers had greater ADG in response to anabolic implant.

More work is needed to understand the plasma Zn concentration

needed to support optimal growth in cattle.

Data from this study shed light on the effects of RAC feeding

and Zn supplementation on the Zn trafficking within muscle cells.

The increased expression of Zn trafficking genes in control steers

during the RAC period but not the pre-RAC period suggests 35 mg

Zn/kg DMmay be insufficient to optimally support growth induced

by RAC. This may be why cattle growth is sometimes improved in

response to Zn supplementation concurrent with growth promoting

technologies such as beta agonists or anabolic implants

(Messersmith et al., 2019; Messersmith et al., 2022). Without Zn

supplementation, Zn trafficking genes are upregulated during

periods of increased growth further indicating the need for Zn in

muscle. Further research is needed to better understand Zn

movement throughout the muscle during periods of

increased growth.
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