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Although cryo-electron microscopy (cryo-EM) has been successfully used to derive atomic
structures for many proteins, it is still challenging to derive atomic structures when the
resolution of cryo-EM density maps is in the medium resolution range, such as 5–10 Å.
Detection of protein secondary structures, such as helices and β-sheets, from cryo-EM
density maps provides constraints for deriving atomic structures from suchmaps. Asmore
deep learning methodologies are being developed for solving various molecular problems,
effective tools are needed for users to access them. We have developed an effective
software bundle, DeepSSETracer, for the detection of protein secondary structure from
cryo-EM component maps in medium resolution. The bundle contains the network
architecture and a U-Net model trained with a curriculum and gradient of episodic
memory (GEM). The bundle integrates the deep neural network with the visualization
capacity provided in ChimeraX. Using a Linux server that is remotely accessed by
Windows users, it takes about 6 s on one CPU and one GPU for the trained deep
neural network to detect secondary structures in a cryo-EM component map containing
446 amino acids. A test using 28 chain components of cryo-EM maps shows overall
residue-level F1 scores of 0.72 and 0.65 to detect helices and β-sheets, respectively.
Although deep learning applications are built on software frameworks, such as PyTorch
and Tensorflow, our pioneer work here shows that integration of deep learning applications
with ChimeraX is a promising and effective approach. Our experiments show that the F1
score measured at the residue level is an effective evaluation of secondary structure
detection for individual classes. The test using 28 cryo-EM component maps shows that
DeepSSETracer detects β-sheets more accurately than Emap2sec+, with a weighted
average residue-level F1 score of 0.65 and 0.42, respectively. It also shows that
Emap2sec+ detects helices more accurately than DeepSSETracer with a weighted
average residue-level F1 score of 0.77 and 0.72 respectively.
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INTRODUCTION

Although many atomic structures have been resolved from cryo-
EM density maps with a resolution of 4 Å or higher, deriving
atomic structures from cryo-electron microcopy (cryo-EM) with
medium resolution (5–10 Å) is challenging due to quality of
density maps in this resolution range. With the rapid
improvement of resolution in cryo-electron tomography maps
and in subtomogram averaging, more density maps are expected
to reach the medium resolution for interpretation. In some cases,
certain components of an entire density map may show lower
resolution than most other components, due to potential
experimental and computational artifacts and flexibility of
molecules in certain regions of a molecular complex. For cryo-
EM density maps with the medium resolution, density features of
a protein backbone are often not distinguishable. It is generally
hard to distinguish the location of α-carbons of a protein
backbone from such images. Our understanding about
medium-resolution density maps is currently limited by the
availability of atomic structures. Almost all atomic structures
derived from medium-resolution cryo-EM maps are based on
fitting template atomic structures of the Protein Data Bank
(PDB). Flexible fitting (Chapman, 1995; Wriggers et al., 2000;
Chen et al., 2001; Wriggers and Birmanns, 2001; Trabuco et al.,
2009) and rigid-body fitting (Cowtan, 2010) are two types of
modeling methods to derive atomic structure from medium-
resolution maps. When no suitable templates are available,
various attempts have been made to utilize protein secondary
structure information. To establish an initial trace of a backbone,
a critical step is to map secondary structures of a protein sequence
to their locations in the cryo-EM density map; this is a step also
referred to as finding the topology of secondary structures
(Abeysinghe et al., 2008; Al Nasr et al., 2014; Biswas et al.,
2016). Many methods, such as JPred and SSpro, are available
to predict sequence segments of protein secondary structures
(Cole et al., 2008; Magnan and Baldi, 2014). Since secondary
structures, such as α-helices and β-sheets, have density
characteristics, they are distinguishable in density maps at the
medium resolution. Location of α-helices and β-sheets in a
density map provides constraints about the atomic structure of
the protein.

There are three broad categories of methods for detection of
secondary structures, and we use the detection of helices from
medium-resolution maps to discuss the trend of development.
The first generation of methods use image processing techniques
to detect the cylindrical character of helix density (Jiang et al.,
2001; Dal Palù et al., 2006; Baker et al., 2007; Rusu and Wriggers,
2012; Si and He, 2013). The second generation of methods use
machine learning ideas to measure multiple features of helices
(Ma et al., 2011; Si et al., 2012). The third generation of methods
utilize deep learning and availability of large set of density maps
in Electron Microscopy Data Bank (EMDB) (Li et al., 2016;
Maddhuri Venkata Subramaniya et al., 2019; Wang et al.,
2021). However, precise detection of secondary structures
from medium-resolution density maps is still challenging.
Short helices are, in general, harder to be detected than longer
helices. Detection of β-sheets is generally more challenging than

detection of α-helices. In addition to challenges in detection of
subtle differences in various shapes, the variety of data quality in
deposited density maps presents a major challenge for accurate
detection of secondary structures (Wriggers and He, 2015; Sazzed
et al., 2020).

Although various methodologies have been proposed, there
are limited tools for detection of secondary structures from cryo-
EM density maps with medium resolution. Existing tools for
detection of helices and β-sheets, such as SSEhunter (Baker et al.,
2007), SSETracer (Si and He, 2013), are image-processing based
methods that are often dependent on user-selected parameters.
Emap2sec+ (Wang et al., 2021) is a deep learning method, but
users are required to go through multiple steps to install software
libraries with certain dependencies. Although recent deep-
learning approaches show improved detection of secondary
structures from medium-resolution maps, there has not been a
tool available for users.

Chimera and ChimeraX are popular visualization platforms
for molecular images and structures (Pettersen et al., 2004;
Pettersen et al., 2021). Various software plugins have been
developed for Chimera and ChimeraX. ChimeraX uses a
Toolshed mechanism for user-developed applications to be
integrated. However, most such applications are less
dependent on other large software platforms. None of them
involves a deep-learning framework. Deep-learning-based
programs require frameworks such as Tensorflow (Abadi
et al., 2016) and PyTorch (Paszke et al., 2019), which support
the use of GPUs. It is not clear how effective they can be
integrated with molecular visualization platforms, such as
ChimeraX. In this paper, we propose a tool, DeepSSETracer,
for secondary structure detection from cryo-EM density
component maps using a convolutional neural network. The
design of DeepSSETracer software bundle applies to
components of a cryo-EM density map with the maximum
size of 100 voxels in any of the three dimensions. Using a data
set containing the density maps of 28 protein chains,
DeepSSETracer bundle shows an overall residue-level F1-
scores of 0.72 and 0.65 for detection of helices and β-sheets,
respectively. Our experiments show that it takes about 6 s to load
the pre-trained model and to complete the predicted labels of
secondary structures on one CPU and one GPU of a Linux server.
However, initialization of image data into the convolutional
neural network takes about 26 s, for which optimization is
needed in future.

RESULTS AND DISCUSSION

DeepSSETracer Bundle for ChimeraX
The DeepSSETracer method was packaged into a bundle that can
be installed in ChimeraX as a Python wheel (Pettersen et al.,
2021). The deep neural network and a pre-trained model were
packaged in a wheel file. Once a wheel file is created, a user can
install it using ChimeraX command “toolshed install” to add it
under Tools (Figure 1 bottom). The DeepSSETracer GUI accepts
as input a density map in MRC format with a 1 Å per voxel
sampling (in the right panel of Figure 1). The output contains
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two image files in MRC format, one for detected helix and one for
β-sheets. The current design is for a component of a density map
with a maximum size of 100 voxels in any of the three
dimensions. Figure 1 provides an example of detected
secondary structure regions shown in ChimeraX. The input
cryo-EM component map corresponds to the chain AA of
5j8k (PDB ID), with 446 amino acids in length.
DeepSSETracer was trained using the GEM-Unet method
(details in Materials and Methods) (Deng et al., 2020). No
user-given parameters are needed.

In order to evaluate the effectiveness of DeepSSETracer as a
tool that can be completed in reasonable time for a user, run-time
performance was recorded for five cases with different sizes of

maps (Table 1 column 3 and 4). Time wasmeasured from a Linux
system with ChimeraX installed. The Linux system has a typical
setup of X11 forwarding for graphics display. It contains an X11
client where ChimeraX is installed and an X11 server as a login
node. The server/login node runs a modified X11 server to
communicate between the server and the client. The server
accepts requests from a user desktop or laptop that runs a
Windows Remote Desktop to connect to the server. The
server/login node passes graphics display from the X11 client
to the user through Windows Remote Desktop protocol. The
Linux system contains Intel Xeon(R) Gold 6,130 @ 2.1 GHz (32
slots) CPU and AVX512, four x Nvidia Tesla V100 GPU. The
time measurement in Table 2 corresponds to the use of one CPU

FIGURE 1 | A snapshot of the bundle plugin DeepSSETracer 0.1 installed on ChimeraX. The helix voxels (yellow) and β-sheet voxels (cyan) were detected using
DeepSSETracer bundle in ChimeraX.

TABLE 1 | Run time of DeepSSETracer 0.1 on a Linux System. From left to right: EMDB ID, PDB ID, chain ID, the number of Cα atoms in the chain for H: helix, S: β-sheet, T:
entire chain, the number of voxels in each of the X, Y, Z dimensions, the time to load and initialize data, and the time for CNN network to produce the results using one
CPU and one GPU on a Linux server.

EMDB_PDB_Chain Cα (H/S/T) Size (X, Y, Z) Data initialization (second) CNN (second)

3850_5oqm_4 128/49/297 93, 62, 66 26.10 6.12
8129_5j8k_AA 187/60/446 74, 59, 83 27.08 5.81
8129_5j8k_D 170/41/384 74, 78, 64 26.24 5.84
1657_4v5h_AE 42/38/150 52, 77, 57 16.60 3.64
5943_3j6y_80 12/8/52 57, 47, 42 9.00 1.92
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and one GPU in each case. A small test set of five cases was used to
monitor the time used in several steps of the performance. The
five cases contain protein chains with 52 amino acids to 446
amino acids, ranging from sizes of 57 × 47 × 42 � 112,518 voxels
to 93 × 62 × 66 � 380,556 voxels in the input component maps
(Table 1). The major time consumed is at the initialization of the
input 3D image. As an example, it took 26.10 s for the component
image of 3850 (EMDB ID) that corresponds to Chain four of
5oqm (PDB ID) in the step of data initialization that includes
loading the 3D image of MRC format, density normalization, and
padding the image. Once the initialization is done, the 3D image
is passed to the CNN network for prediction of secondary
structures. The step for the CNN architecture to perform
prediction and output results only takes 6.12 s for the largest
of the five cases (Table 1). Our experiments show that our five-
layer U-Net only took about 6 s to perform the computation once
data were initialized. The current design of data initialization took
about four times longer than the actual computation in the
network. Our current design uses standard data input
mechanisms provided by PyTorch. It is possible to speed up
the initialization step with custom-built code to handle the need
of specific types of 3D images used in the cryo-EM community.
Although the training of DeepSSETracer took many hours, using
the trained model for prediction completed in reasonable amount

of time. The tool is potentially applicable for typical desktops and
laptops, particularly those with GPU support.

Evaluation of Secondary Structure
Detection Using F1-Scores
The performance of DeepSSETracer was evaluated by computing
the F1-scores. The F1-score is known as a metric providing less
biased measurement comparing to accuracy when there is
considerable imbalance in the class distribution of the data.
Two levels of F1-scores were calculated respectively for the
prediction of individual voxel labels and of residual labels in
the protein chains. The prediction for each residue was made by
majority voting among the predicted labels of voxels within 3 Å
radius of the Cα atom of the residue. In case of ties in voting, the
priority is given to helix followed by sheet and then other. The
true label of residues was determined by the secondary structure
annotated using STRIDE (Frishman and Argos, 1995). For
detailed evaluation, the F1-scores associated with predicting
helix and β-sheet were computed separately.

Figure 2 shows the secondary structure detected using
DeepSSETracer for two examples of component density maps
with distinct distribution of helix and β-sheet voxels. In the first
example (top row), the detection was made for the component of

TABLE 2 | Evaluation of detected helices and β-sheets from DeepSSETracer 0.1 and Emap2sec+ using 28 cryo-EM component maps. From the left to right: the EMDB ID,
PDB ID, chain ID with the resolution of the cryo-EMmap in parentheses, the number of Cα atoms in the STRIDE-annotated PDB file for H: helix, S: β-sheet, T: total of the
chain, voxel-level of F1-scores for helix detection (H-V) and β-sheet detection (S-V), residue-level F1-scores for helix detection (H-R) and β-sheet detection (S-R) for
DeepSSETracer 0.1 and Emap2sec+ respectively. NA: zero number of residues of the corresponding class in the atomic structure and undefined precision or recall.

EMDB_PDB_Chain (resolution Å) Cα(H/S/T) DeepSSETracer 0.1 Emap2sec+

H-V S-V H-R S-R H-R S-R

1798_4v5m_AE (7.80) 42/58/150 0.64 0.54 0.85 0.66 0.86 0.59
2994_5a21_G (7.20) 37/21/133 0.38 0.37 0.37 0.41 0.43 0.31
3206_5fl2_K (6.20) 12/47/106 0.62 0.62 0.8 0.78 0.25 0
3491_5mdx_H (5.30) 33/0/42 0.69 NA 0.84 NA 0.79 NA
3850_5oqm_4 (5.80) 128/49/297 0.58 0.59 0.71 0.73 0.73 0.67
3850_5oqm_g (5.80) 81/0/85 0.74 NA 0.98 NA 0.98 NA
3948_6esg_B (5.40) 51/0/78 0.70 NA 0.81 NA 0.97 NA
4041_5ldx_I (5.60) 48/19/176 0.51 0.39 0.69 0.56 0.61 0.43
4078_5lms_D (5.10) 86/18/208 0.52 0.32 0.63 0.38 0.65 0.53
4141_5m1s_B (6.70) 81/158/366 0.56 0.55 0.72 0.73 0.68 0.69
4182_6f42_G (5.50) 16/66/180 0.55 0.46 0.70 0.71 0.75 0.57
5942_3j6x_25 (6.10) 25/5/70 0.18 0.15 0.14 0.27 0.71 0
5943_3j6y_80 (6.10) 12/8/52 0.44 0 0.61 0 0.51 0
6149_3j8g_W (5.00) 19/48/94 0 0.59 0 0.77 0.59 0
6446_3jbi_V (8.50) 116/0/131 0.72 NA 0.87 NA 0.92 NA
6456_3jbn_AL (6.70) 89/8/211 0.57 0.18 0.75 0.29 0.83 0
6810_5y5x_H (5.00) 38/10/100 0.11 0.47 0.14 0.60 0.58 0
7454_6d84_S (6.72) 65/34/142 0.49 0.51 0.55 0.64 0.66 0.27
8016_5gar_O (6.40) 65/0/80 0.26 NA 0.24 NA 0.7 NA
8128_5j7y_K (6.70) 71/0/93 0.72 NA 0.89 NA 0.92 NA
8129_5j8k_AA (7.80) 187/60/446 0.62 0.48 0.75 0.63 0.73 0.23
8129_5j8k_D (7.80) 170/41/384 0.58 0.29 0.69 0.38 0.73 0
8130_5j4z_B (5.80) 63/9/154 0.73 0.28 0.88 0.33 0.79 0.44
8135_5iya_E (5.40) 88/44/210 0.64 0.52 0.79 0.67 0.79 0.68
8357_5t4o_L (6.90) 106/0/160 0.67 NA 0.82 NA 0.82 NA
8518_5u8s_A (6.10) 114/13/208 0.69 0.54 0.86 0.68 0.88 0.33
8693_5viy_A (6.20) 68/0/133 0.66 NA 0.83 NA 0.75 NA
9534_5gpn_Ae (5.40) 59/0/88 0.60 NA 0.75 NA 0.83 NA
Weighted Average 1970/716/4,577 0.59 0.49 0.72 0.65 0.77 0.42

Weighted average: averaged F1 scores of all 28 test cases, weighted by the ratio of the number of residues of the class in each case and the total number of residues in the test set.
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the cryo-EM density map (EMD-8129) that contains chain AA of
5j8k (PDB ID). The entire cryo-EM density map has 7.8 Å
resolution, and a measure of cylindrical fit for helices classifies
the component map in Bin 2, the second quality bin of the
training data (Sazzed et al., 2020). This chain consists of 187 helix
and 60 β-sheet Cα atoms (i.e., more helix voxels than β-sheet) that
was annotated using STRIDE method (Frishman and Argos,
1995). The voxel-level F1-scores in this case are 0.62 for helix
and 0.48 for β-sheet; while the residue based F1-scores are much
higher for both, 0.75 and 0.63, respectively. The second example
(bottom row) is the component of EMD-4141 corresponding to
the chain B of PDB-5m1s that contains 81 helix and 158 β-sheet
Cα atoms (i.e., more β-sheet voxels than helix). The voxel level
F1-score for helix is 0.56, which is lower comparing to that in the
first example, for β-sheet is 0.55 that is higher than that in the first
example. The residue-level F1-score presents the similarly
pattern, 0.72 for helix (reduced) and 0.73 for β-sheet
(improved), with the reduction for helix prediction relatively
small and much more significant improvement for β-sheet. In
both cases, most portion of the helices and β-sheets in the chain
was detected using DeepSSETracer (Figure 2). Results also
suggest that it is, in general, easier to detect larger β-sheets
and longer helices than those small secondary structures.

A set of 28 cases for testing was selected to avoid significant
sequence similarity or structural similarity with any of the
training data (see Materials and Methods). The resolution of
the cryo-EM density maps ranges from 5 Å to 7.8 Å, and the

length of the chains of the component maps is between 42 and
466 amino acids. Since different test cases contain different
number of α-helices and β-sheets, a weighted average of the
28 cases was calculated, in which each case is weighted
proportional to the number of helix/β-sheet residues of each
case. For example, the result of a case contributes less if it contains
only a small helix compared to a case with 10 helices when the
weighted average for helix detection is calculated. The weighted
average F1-score for helix detection is 0.59 at the voxel-level and
0.72 at the residue level. Residue-level F1-score is higher than
voxel-level for both helix and β-sheet predictions on all the testing
cases. Since a residue label is determined from majority voting of
voxels in the neighborhood of the residue, it is intuitively less
affected by mistakes from the minority of voxels. Therefore, F1-
scores at the residue-level provides a more stable evaluation of the
detection. Note that the F1-score characterizes different aspects of
the results than accuracy. Unlike the accuracy, the F1-socre is
more directly affected by false positives and false negatives. The
residue-level F1-score may be used as a convenient evaluation for
the detection of an individual class, such as helix or β-sheet. The
DeepSSETracer predicts helices better than β-sheets, for which
the weighted average of voxel and residue based F1-scores are
0.49 and 0.65, respectively.

FIGURE 2 | Segmentation of secondary structures using
DeepSSETracer 0.1 for two chains. (A) The cryo-EM density map (EMD-8129,
grey) component corresponding to the atomic structure of chain AA of 5j8k
(PDB ID, blue ribbon). (B) Helix regions (yellow) and β-sheet regions
(cyan) that were detected from the component map in (A) are overlayed with
the atomic structure. (C) The cryo-EM density map (EMD-4141, grey)
component corresponding to the atomic structure of chain B of 5m1s (PDB
ID, blue ribbon). (D)Helix regions (yellow) and β-sheet regions (cyan) that were
detected from the component map in (C) using DeepSSETracer 0.1. The
display was created using Chimera (Pettersen et al., 2004).

FIGURE 3 | Secondary structures detected using DeepSSETracer 0.1
and Emap2sec+ for two chains. Two views of detected secondary structures
in cryo-EM component map (EMD-8129, chain AA of PDB-5j8k (blue ribbon))
are shown for detected helix regions using DeepSSETracer 0.1 (yellow
transparent volume) and Emap2sec+ (yellow dots) in (A) and β-sheet regions
using DeepSSETracer (cyan transparent volume) and Emaps2sec+ (cyan
dots) in (B). The front view and the back view of the detected secondary
structures from cryo-EM component map (EMD-4141, chain B of PDB-5m1s
(blue ribbon)) using DeepSSETracer 0.1 (transparent volume) and Emap2sec+
(dots). Locations of some major differences in the detection are indicated with
red arrows. Examples of false positive regions shared by both methods are
indicated with black circles.
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Analysis of Detection Results From
DeepSSETracer and Emap2sec+
The detection of helices and β-sheets was compared between
DeepSSETracer 0.1 and Emap2sec+ using the test set of
28 cryo-EM chain components. The Emap2sec+(Wang
et al., 2021) program and instruction were downloaded
from GitHub (https://github.com/kiharalab/Emap2secPlus),
and the pre-trained models were downloaded from https://
kiharalab.org/emsuites/emap2secplus_model/ in August
2021. The model used in the test is the 4-fold model that
was an aggregated model, in which prediction was done by
majority voting of predicted probabilities from the four
networks. The density contours were obtained in EMDB
and were used as suggested in the instruction of
Emap2sec+. Specific parameters for running Emap2sec+ are
as following: mode � 2 (a voted results from the four
networks), type � 3 (experimental map), class � 3, contour
� [EMDB contour]. Since all cryo-EM chain components are
resized to 1 Å per voxel, there is no resizing needed when
running Emap2sec+. The detected secondary structures using
DeepSSETracer and Emap2sec+ were shown for two examples
(Figure 3). Chain AA (author annotated ID) of PDB-5j8k, also
annotated as chain CB on PDB website, has 446 amino acids.
The detected helices from the two methods (yellow volume
and yellow dots) are mostly co-located, with differences at
some regions noted using red arrows (Figure 3A). The visually
similar level of detection is shown from the residue-level helix
F1-score of 0.75 and 0.73 for DeepSSETracer and Emap2sec+
respectively in this case (Table 2). The slightly lower F1-score
of Emap2sec+ might reflect the main difference in its false
positive detection of helix at a region of a β-sheet (the upper
red arrow of Figure 3A). The main difference in this case is
about the detection of β-sheets. Emap2sec+ detected only one
dot (red arrow in Figure 3B) for the β-sheet on the left. This
region contains eight segments of β-strands, four of which are
segments 15–18, 34–36, 100–102, and 196–201 of the amino
acid sequence. Although some segments are connected by
loops that roughly parallel to neighboring strands, the loop
segments can be indistinguishable from β-strand segments at
the medium resolution. DeepSSETracer detected most
portions of this β-sheet (cyan transparent), although some
over-detection was noticed at the top the β-sheet seen in
Figure 3B. The F1-score for β-sheet detection is 0.63 and 0.
23 respectively for DeepSSETracer and Emap2sec+ (Table 2).
The main contributor for the lower β-sheet F1-score for
Emap2sec+ is likely to be the false negatives mostly in the
β-sheet on the left but also some on the right β-sheet
(Figure 3B). We observed that both methods made
mistakes in similar regions, such as for the case of chain B
of PDB-5m1s (black circles in Figure 3C), where turns were
wrongly detected as helices by both methods. The similar
β-sheet F1-scores of 0.73 (DeepSSETracer) and 0.69
(Emap2sec+) agree with visual inspection of similar
detection overall with minor difference in the β-sheet area,
in which false negative exist for Emap2sec+ (left red arrow of
Figure 3D).

The weighted average of all 28 test cases shows that
Emap2sec + detects helices slightly better than
DeepSSETracer, with 0.77 and 0.72 residue-level F1-scores
respectively (Table 2). Results also show that
DeepSSETracer detects β-sheets much more accurately than
Emap2sec+, with weighted average residue-level F1-scores of
0.65 and 0.42 respectively. The comparison suggests that each
of the two methods has its own strength in detection of one of
the two types of secondary structures for cryo-EM component
maps. The 28 test cases were selected so that they do not share
enough sequence identity or structural similarity with any
chain of the training set used for DeepSSETracer. Since the
28 cases were not compared with the training data used in
Emaps2sec+, they are not guaranteed to be significantly
different from all the training data of Emap2sec+.
Nevertheless, there has not been study about the effect of
evaluation results when a test case shares sequence or
structural similarity with a training data for the secondary
structure detection problem.

The design of DeepSSETracer and Emap2sec+ are different,
and this is reflected in different architecture of the network,
training data, and training process. DeepSSETracer is designed
for detection of secondary structures in component maps, such as
those individual chains rather than the entire entry of a cryo-EM
map, which often contains many chains. The training and testing
for DeepSSETracer are based on component maps. Emaps2sec+
is trained and evaluated with entire entries of cryo-EM maps
(Wang et al., 2021). The test here using the 28 component maps
shows an aspect of performance when Emap2sec+ is applied to
component maps, and it does not represent its performance on
entire maps. The detection results were evaluated using residue-
level F1-scores for individual classes, such as helix and β-sheets,
because it is a stable performance measure at the residue-level. In
DeepSSETracer, three class labels are defined, helix, β-sheet, and
background. Note that the background class contains all other
voxels that include those at the loop area and at the empty area
without much molecular mass. The definition of class labels in
Emap2sec+ is different in terms of how background is handled. It
has a separate other class for molecular regions not in a helix, a
β-sheet, and a nucleotide. The difference in class definition
prevents from the comparison using Q4 score that was
measured for Emap2sec+ (Wang et al., 2021). Even though the
overall performance of all classes is not directly comparable,
performance of individual classes can be compared using residue-
level F1-scores for helix and β-sheet respectively.

MATERIALS AND METHODS

Data Selection
All cryo-EM density maps were downloaded from EMDB
(https://www.ebi.ac.uk/pdbe/emdb/) with a requirement of
resolution between 5–10 Å and a corresponding atomic
structure available in PDB. A density map is often associated
with multiple chains of one or more proteins, but individual
chains were used in training and testing. The atomic structure of
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individual chains of proteins were used as the envelopes to extract
the density region of the chains in Chimera using a 5 Å radius
parameter. Since it is common to see multiple copies of the same
sequence in a cryo-EM density map, duplicated copies in each
protein were removed from the pool to reduce training bias.
Needleman-Wunsch algorithm was used to align a pair of
sequences, and near identical chains (i.e., with more than 70%
sequence identity) in the same protein were removed.

Since various levels of image quality exist among density
maps and within the same map, a screening was performed to
exclude chains with poor fit between the atomic structures
and their corresponding component density maps. The
cylindrical fit of helices was used as an estimate for the fit
of the entire chain (Sazzed et al., 2020). More specifically, an
F1 score was calculated from the fit for each helix in a chain,
and the average F1 score over all helixes of a chain was
subsequently computed and used to derive three bins of data
representing top three levels of fit. A data set containing 1,382
chains from the top three bins was derived by the cylindrical
fit. Each data point contains an atomic model of a chain and
its corresponding cryo-EM component map. The data set was
randomly partitioned into training (1,216 chains), validation
(101 chains), and initial test set (65 chains). In order to
ensure that test data are sufficiently different from the
training data, additional screening was conducted. Firstly,
those chains with unknown sequences were eliminated from
the initial test set. Note that some chains have “UNK”marked
as amino acid IDs in the PDB file, even though atomic
coordinates were provided for the backbone of the protein
chain. For the remaining chains in the test set, chains with a
higher than 35% sequence identity with any of the chains in the
training set were removed. To make sure that the test set is
sufficiently different from those chains in the training set with
unknown sequences, TM-align was used to compare structural
similarity. A TM-align score of lower than 0.5 was required for
at least one of the two TM-align scores that are normalized
respectively for the lengths of the two sequences. The final test
set contains 28 chains, each of which is sufficiently different
from any other chain in the test set and from every chain in the
training set through screening by either sequence identity or
structural similarity.

After data screening, a total of 1,345 component density maps
were partitioned into three disjoint subsets, used for training (N �
1,216), testing (N � 28) and validation (N � 101), respectively.
Among the 1,216 chains in the training set, only 90 structurally
unique chains exist, if a unique chain refers to one that has at least
one of the 2 TM scores below 0.5. In an extreme case, a chain with
a few helices may have a high TM score when comparing with a
large chain (with many helices) if the score is normalized by the
shorter length of the chains. However, the other TM score that is
normalized by the longer chain is small in this case. For this
reason, we required at least one of the 2 TM scores to be small for
two structurally different chains. Our data selection process
suggests that although many chains are available in the data,
the number of unique chains is small in our top three bins. Note
that structurally similar chains may have significant difference in
two images, particularly in twomaps with large quality difference.

However, it is easier to measure uniqueness using sequences or
structures than using images. Each density map is resampled to 1
Å per voxel. STRIDE was used to annotate secondary structures,
for which H, G and I were considered as helix residues and B, b
and E were considered as β-sheet residues. Voxels within 3 Å
from Cα atom of the helix and β-sheet residues were labeled as
helix voxel and β-sheet voxels, respectively. The rest of voxels
were labeled as background.

Neural Network Architecture
Since there is large variation in the size among protein chains, it is
desired to have a neural network that accepts inputs in varying
size. We employed a neural network architecture of end-to-end
convolution operations, adapted from the 3D U-Net proposed in
(Çiçek et al., 2016). This architecture naturally handles input
density maps of different sizes by making a prediction, i.e., helix,
β-sheet or other for each voxel in a map. More precisely, the input
of the network is a 3D tensor (x-by-y-by-z) representing a density
map and the output is a 4D tensor (x-by-y-by-z-by-3) providing
the predicted probability associated with the three classes for each
voxel in the input.

There are in total five composite layers in the network, each
of which consists of two consecutive sets of operations. Both
sets have in sequence the convolution, batch normalization and
Relu nonlinearity operations. The third layer is the bottleneck
layer, which divides the network into a down-sampling path
(from the input to the bottleneck layer) and an up-sampling
path (from the bottleneck layer to output). Consecutive layers
are connected by a dropout operation followed by a max
pooling in down-sampling or a transpose convolution in up-
sampling. The network contains total 6,142,723 trainable
parameters, with a receptive field, 35 × 35 × 35, for each
voxel in the prediction. For detailed information and an
illustration of the network, please refer to our previous work
(Deng et al., 2020).

Network Training
The aforementioned network was implemented and trained using
the PyTorch framework with a loss function that combines cross-
entropy loss and dice loss. To address the class imbalance
(i.e., overwhelmingly more “other/background” voxels than
either helix or sheet voxels), the cross-entropy was weighted
inversely according to the class distribution in the training subset.
Adam optimizer (Kingma and Ba, 2015) was used to optimize
learnable weights in the network; while the hyper-parameters,
e.g., dropout rate, step parameter in weight decay were optimized
via grid search.

We trained the network with a curriculum, in which the
difficulty of the learning task was gradually increased during
the training process. Such a learning curriculum has been
found effective in producing models with better performance
than those obtained without using any curriculum by
applications in other domains (Amodei et al., 2016; Jesson
et al., 2017) and our previous work on protein secondary
structure detection (Deng et al., 2020). More specifically, we
divided the training process into three consecutive phases,
starting from phase one with using only examples from Bin 1
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followed by phase two using examples from Bin 1 and Bin 2
and then phase three using examples from all three bins. To
further prevent forgetting what has been learned in an early
phase during a later training phase, we implemented a variant
of the technique referred as the gradient of episodic memory
(GEM) proposed by Lopez-Paz and Ranzato (2017). In a
nutshell, we randomly chose five examples used in previous
training phase(s) to adjust the gradient in later phases to
prevent forgetting. For detailed implementation of this
method, please refer to our previous work (Deng et al.,
2020), which also provides detailed comparison of three
different learning curricula.

DeepSSETracer Bundle Organization
The development of DeepSSETracer uses organization
suggested in ChimeraX tutorial (https://www.cgl.ucsf.edu/
chimerax/docs/devel/tutorials/introduction.html).
Dependencies were defined in the bundle information file in xml
format (Figure 4). This file defines the required software
libraries, such as PyTorch, with specific versions. A main
advantage is that a user does not need to install underlying
platforms, since this process is automatically handled once
required libraries are specified. The Graphic User Interface of
DeepSSETracer was created using PyQt5 framework. A model
previously trained using GEM-Unet architecture was provided
in the bundle. A wheel file was generated to package the bundle
information, the GUI-PyQt5, the Deep Learning architecture,
and model (Figure 4).

CONCLUSIONS

As large number of atomic structures and density maps are
accumulated for molecular data, many computational methods
are built on deep learning frameworks, such as Tensorflow and
PyTorch. Although deep learning methodologies have been
shown with improved performance in many problems,
making the methodologies available to users without
extensive computational knowledge is needed. We propose
a software bundle, DeepSSETracer 0.1, for wrapping a pre-
trained GEM-Unet model and the CNN architecture in a
Python wheel for a user to install in ChimeraX. To our best
knowledge, this is the first bundle reported for ChimeraX
with a deep convolutional neural network. We showed the
effectiveness of the integrated bundle in ChimeraX for
secondary structure detection from cryo-EM component
maps. It is fast, about 6 s, for a 5-layer U-Net deep
learning architecture to predict secondary structures of
proteins from a cryo-EM component map with 446 amino
acids. However, the step to initialize the image data for the
deep learning network takes about 27 s, and this step needs to
be optimized. We evaluated the pre-trained GEM-Unet
model and observed 0.72 and 0.65 averaged residue-level
F1-scores for detection of helices and β-sheets, respectively,
using a data set containing 28 test cases. Results from the
comparison between DeepSSETracer and Emap2sec+
shows that DeepSSETracer detects β-sheets more
accurately, and Emap2sec+ detects helices more accurately.

FIGURE 4 | DeepSSETracer 0.1 bundle diagram.
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We observed that using F1-scores that are measured at the
residue level provides a sensitive and stable evaluation for
the detection of individual classes, such as helix and β-sheet
respectively.
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