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Many fluorescence super-resolution techniques, such as (d)STORM, PALM, and DNA-
PAINT, generate datasets wherein multiple localizations across many camera frames may
arise from a single blinking event of an emitter. These repeated localizations not only hinder
interpretation and analysis of such datasets, but also represent an incomplete use of the
fluorescence photons. Such localizations are typically combined into a single localization
either by clustering with hard distance and time thresholds, or by classical hypothesis
testing assuming Gaussian localization errors. In this work, we describe a method for
clustering that accounts for localization precision, local emitter density estimates, and a
kinetic model for blinking which is used to optimize connections within a group of
spatiotemporally colocated localizations.
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1 INTRODUCTION

Fluorescence super-resolution methods have grown to be vital imaging techniques in many research
areas, particularly in the biological sciences. Single Molecule Localization Microscopy (SMLM)
methods take advantage of an extreme form of temporal independence where individual sources
blink on and off with little spatial-temporal overlap from other “on” sources. Many of these techniques,
such as (d)STORM (Rust et al., 2006; Heilemann et al., 2008), PALM (Betzig et al., 2006; Hess et al.,
2006), and DNA-PAINT (Jungmann et al., 2010), are relatively easy to implement on common
fluorescence microscopes with little to no modifications. By finding the center of distinct PSFs arising
from independent “on” sources as observed on a camera, SMLM data is reduced to a set of PSF center
coordinates, or localizations, and their associated precisions. The subsequent processing of these
localizations can have significant impacts on the final interpretation of the data.

Despite extensive research into optimally localizing emitters (Small and Stahlheber, 2014; Deschout
et al., 2014; Sage et al., 2019), little effort has been spent on what we will henceforth refer to as the frame-
connection problem. SMLM methods produce data with multiple localizations in subsequent/near-
subsequent frames which are likely the result of a single blinking event of a single emitter. Specifically, a
single visible emitter may appear in multiple frames, with each frame potentially producing a new
localization of that emitter. The frame-connection problem deals with combining these repeated
localizations into a single localization with higher precision. To the best of our knowledge, only two
solutions to the frame-connection problem are in use: 1) combining any localizations within N frames
and d pixels of one another, as is done in the popular ThunderSTORM package (Ovesný et al., 2014)
(we’ll refer to this method as the “classical” approach); or 2) by a hypothesis test assuming Gaussian
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localization noise (“hypothesis test”) (Wester et al., 2021). A
modification to the classical approach involves setting the
separation threshold d to be some multiple of the localization
error, as is done in the PYMEVisualize package (Marin et al., 2021)
(referred to as “chaining” in that work and as “revised classical”
here). The classical approach has the benefit of simplicity: its
implementation is straightforward and accessible. The
hypothesis testing approach makes use of localization error to
test the null hypothesis that localizations came from the same
emitter, however it neglects a calculation and comparison to the
low-probability alternative hypothesis that a new emitter could
have appeared in the same location. Both of these methods
implicitly make use of the prior knowledge that multiple
blinking events within a small spatiotemporal volume is rare in
SMLM data.

To ensure information about the underlying structure of emitters
is retained, an optimal frame-connection solution should exhibit
minimal over-clustering. In other words, a frame-connection
algorithm prone to connecting localizations from distinct emitters
may reduce the quality of SMLM data. However, if a frame-
connection algorithm is prone to under-clustering localizations
from a single blinking event, it’s addition to the analysis pipeline
may not represent much value. In that view, an optimal frame-
connection solution must be capable of clustering those localizations
which are very likely to have arisen from a single blinking event of a
single emitter, all the while remaining sufficiently conservative in its
connection assignments to minimize over-clustering.

The analysis of SMLM localizations can be classified into two
categories: pre- and post-processing. Broadly speaking, pre-
processing is a clean-up stage during which raw localizations
are filtered without destroying the information they carry. Frame-
connection should be considered pre-processing in the sense that
its goal is to combine repeated localizations without destroying
the temporal information carried by emitter blinking. In contrast,
post-processing methods aim to condense/summarize the
information carried by the localizations into descriptors of the
underlying structure or process being observed. More general
post-processing clustering methods, such as DBSCAN
(Daszykowski et al., 2001), Voronoi tesselation (Levet et al.,
2015), and BaGoL (Fazel et al., 2019b), differ from pre-
clustering frame-connection in that they are not restricted to
grouping observations of a single blinking event. Rather, post-
processing clustering methods attempt to associate or make
inference from all localizations of a single emitter.

The analysis of single-particle tracking (SPT) data aims to
achieve a similar goal to frame-connection: associating multiple
localizations over time to a single emitter. The ideal solution to the
SPT problem is global across all connection possibilities; however,
such a solution is not computationally feasible for realistic
experiments. A locally greedy solution is prone to incorrect/
missed connections, a problem exacerbated by emitter blinking
and detection failure. As a result, many SPT analysis methods
approximate a global solution by performing a locally greedy (in
time) step to reduce the computational complexity. For example,
the multiple target tracing (MTT) method (Sergé et al., 2008)
considers only those connection hypotheses corresponding to a
sliding spatiotemporal window. The method presented in

(Jaqaman et al., 2008) performs an initial frame-to-frame
connection followed by a global gap closing procedure.

In this work, we present a novel solution to the single blinking
event frame-connection problem which accounts for local emitter
densities, fluorescent emission kinetics, and localizations missed
in processing, which we refer to as linear assignment problem
frame-connection (LAP-FC). Motivated by the success and
robustness of the cost matrix method to solving the linear
assignment problem (LAP) in SPT (Jaqaman et al., 2008), we
formulate the frame-connection problem in terms of the costs of
connecting/not connecting localizations. Our algorithm
effectively groups all reasonable connection hypotheses in a
pre-processing step (enabled by the typical brevity of blinking
events in SMLM data), which allows us to find a globally optimal
solution to the single blinking event frame-connection problem.
We demonstrate that our algorithm outperforms the classical and
hypothesis test methods in several situations typical of SMLM
data with no to minimal evidence of over-clustering.
Furthermore, our algorithm is in practice parameter-free,
making it the ideal method for use by end users of SMLM data.

2 MATERIALS AND METHODS

Our solution to the frame-connection problem consists of three
primary components: 1) pre-clustering of localizations into sets of
connection candidates, 2) estimating local densities and kinetic
rates from preclusters, and 3) making a maximum likelihood
assignment of localizations to clusters, which is implemented as a
LAP. In this section, we will describe our formulation of the
frame-connection problem before describing the three
components of our algorithm. A description of some
commonly used variables used throughout this text is provided
in Table 1.

2.1 Pre-Clustering
For a typical SMLM dataset, the number of localizations n ∼ 106

makes finding a global solution to the LAP across all localizations
computationally infeasible. As such, we perform a pre-clustering
of localizations in a manner similar to the revised classical frame-
connection solution as presented in (Marin et al., 2021). For a
given localization, the spatial nearest neighbor within some frame
gap and within some multiplier of its localization error (typically
chosen to be five frames and 5, respectively) is found. If that
nearest neighbor is already part of a cluster, the localization is
incorporated into that same cluster. Otherwise, the localization
and its nearest neighbor (if one exists) are defined as a new
cluster. To ensure localizations aren’t excluded from their ideal
precluster, pre-clustering allows incorporation of multiple
localizations within the same frame to the same cluster.

2.2 Estimating Local Emitter Densities and
Kinetic Rates
To estimate local emitter densities and kinetic rates, we assume
that each precluster will on average be representative of a single
blinking event. That is, we assume that most preclusters consists
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of localizations of a single emitter blinking once with a duration of
multiple frames. The rate parameters kon, koff, and kbleach, and the
probability of missing a localization pmiss are estimated from the
pre-clustered data as follows. The sum of the off rate and the
bleaching rate koff + kbleach is estimated from the cluster durations
N (in frames) as

̂koff + kbleach � −log 1 − 1
�N

( ) (1)

where ... denotes the mean value. The expression given in Eq. 1 is
derived assuming that cluster durations are geometrically
distributed with the probability of turning off given by 1 −
exp[− (koff + kbleach)] (the probability of turning off within
Δt � 1 frames). The probability of missing a localization pmiss

is estimated from the ratio of the number of localizations in a
cluster nc to the cluster’s duration N as

p̂miss � 1 − nc/N

The expected cumulative number of localizations observed by
frame f is given by

〈ncumulative〉(f) ≈ Nemitters 1 − pmiss( )
τ

1 − exp −λ1(f − 1)[ ]
λ1

− 1 − exp −λ2(f − 1)[ ]
λ2

{ }
(2)

with

λ1 � kbleach
kon

kon + koff + kbleach
≡ kbleachτ

λ2 � kon + koff + kbleach − λ1

where Nemitters is the total number of emitters present at the
beginning of the experiment. Eq. 2 was derived from the results
presented in (Nino and Milstein, 2021) by assuming kon ≪ koff
with no restriction on kbleach and by accounting for pmiss.
Similarly, the cumulative number of preclusters observed over
time is of the form

〈nclusters cumulative〉(f) ≈ koff〈ncumulative〉(f) (3)

According to Eqs. 2, 3, the off rate koff can be estimated as
nclusters/n where nclusters is the total number of preclusters and n
is the total number of localizations. The bleaching rate kbleach is
then found by subtracting the estimate for koff from Eq. 1. The
on rate kon and the underlying number of emitters Nemitters are
then estimated by fitting the cumulative number of localizations
to the model given in Eq. 2. Additional details about the
parameter estimation procedures can be found in
Supplementary Text 1.

The local pre-cluster density corresponding to each pre-cluster
is estimated by finding the k (chosen to be two in this study)
nearest pre-clusters and then computing ρc � (k + 1)/πr2k where
rk is the distance to the kth nearest pre-cluster. The underlying
local emitter density present at the beginning of the experiment is
then estimated for each pre-cluster as

ρ̂0,local

� ρc
1

k̂off τ̂

1
1 − p̂miss

1 − exp[−λ̂1(fend − 1)]
λ̂1

− 1 − exp[−λ̂2(fend − 1)]
λ̂2

{ }−1

where fend is the last frame containing localizations in the
experiment. The density of on emitters ρon and the density of
off emitters ρoff are then estimated as

TABLE 1 | Description of commonly used variables.

Variable Description Units

kon transition rate from the emitter dark state to the on (visible) state frame−1

koff transition rate from the emitter on state to the reversible off state frame−1

kbleach transition rate from the emitter on state to the irreversible bleached state frame−1

pmiss probability of failing to localize a visible emitter
n total number of (pre-frame connection) localizations in the data
nc number of localizations in a given precluster
Nemitters underlying number of emitters in the data
ρ0 initial underlying density of emitters in the first frame of data emitters/pixel2

ρ underlying density of non-bleached emitters emitters/pixel2

ρon density of emitters in the “on” state emitters/pixel2

ρoff density of emitters in the “off” state emitters/pixel2

N number of spatial dimensions
x vector of Cartesian coordinates [x1, x2, . . . , xN] pixels
Δxi separation between two localizations along the i-th dimension pixels
σ2xi ,1 variance of the first localization in the i-th dimension pixels2

σ2xi ,2 variance of the second localization in the i-th dimension pixels2

σ2xi sum of the variances σ2xi ,1 + σ2xi ,2 pixels2

f integer frame number frames
fend frame number corresponding to the last frame of the data frames
Np number of candidate frames that have elapsed by the appearance of a localization frames
Nf number of candidate frames remaining after the appearance of a localization frames
τ approximate duty cycle of an emitter
F CDF of the nearest-neighbor distribution of localizations within 5 frames of one another
δ deviation of a nearest-neighbor distribution CDF F from the ideal CDF Fideal
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ρ̂on(f) � ρ̂0,localτ̂ exp −λ̂1(f − 1)[ ] − exp −λ̂2(f − 1)[ ]{ }
ρ̂off(f) � ρ̂on(f)

k̂off

k̂on

2.3 Frame-Connection via Minimization of
Costs
The frame-connection problem can be thought of as a
spatiotemporal clustering problem in which only one
localization is allowed admittance to each cluster in each
frame. In terms of the LAP, frame-connection concerns
assigning each observed localization to one and only one
cluster, with each assignment having an associated cost. In
particular, frame-connection consists of “connection” costs,
“birth” costs, and “death” costs. The connection costs are the
costs for assigning a localization to an existing cluster. The birth
costs are the costs for birthing a new emitter with the candidate
localization being its first observation. The death costs are the
costs for prohibiting assignment of any future localizations to an
existing localization cluster. The costs are arranged in a square
matrix such that the LAP solution permits only one assignment
per row and column. We define each of these costs by assuming a
three-state kinetic model for emitter blinking. The transition rates
are defined as kon, the rate from the (reversible) off state to the
visible on state; koff, the rate from the on state to the off state; and
kbleach, the rate from the on state to the (irreversible) bleached
state. We additionally assume a constant probability of missing a
localization (i.e., failing to localize a visible emitter) which we
designate pmiss. Furthermore, the costs account for the local
density of emitters ρ(x, f) where x � [x, y] is the precluster
location and f is the frame number. Our procedure for estimating
kon, koff, kbleach, pmiss, and ρ(x, f) directly from the data is described
in section 2.2.

The connection, birth, and death costs are defined to be the
negative logarithm of the probabilities associated with the
prescribed actions. The cost cc of connecting two localizations
is defined as follows:

cc � −log ∏N
i�1

p Δxi |σ2
xi

( ) · p observe aftermissing localizations|pmiss ,Δf( ) · p(not turning off |Δf)⎧⎨⎩ ⎫⎬⎭
where N is the number of dimensions (taken to be 2 for the
present study), Δxi is the separation between the two localizations
along the i-th dimension, σ2xi ≡ σ2xi,1 + σ2xi,2 is the sum of the
localization variances σ2xi,1 for localization 1 and σ2xi,2 for
localization 2 in the i-th dimension, and Δf > 0 is the
temporal separation between the two localizations. The
probability terms are given by

p Δxi|σ2xi( ) � 1�����
2πσ2xi

√ exp
Δx2

i

2σ2xi
( )

p observe aftermissing localizations|pmiss,Δf( ) � 1 − pmiss( )pΔf−1
miss

p(not turning off |Δf) � exp − koff + kbleach( )Δf[ ]

where the rate parameters are given in units of frame−1. The cost
of introducing a new emitter in frame M after Np candidate
frames (“birth” cost) is given by

cb � − log p new emitter turning on|kon , ρoff (x, f), Np( ) · p notmissing localization|pmiss( ){
+ p observe aftermissing localizations|pmiss , Np, ρon(x, f)( )}

� − log ρoff(x,M) 1 − exp −kon( )[ ]exp −konNp( ) 1 − pmiss( ){
+ ρon x,M −Np( ) 1 − pmiss( )pNp

miss}
where ρoff (x, f) is the local density of emitters in the off state, and
ρon (x, f) is the local density of emitters in the on state (see section
2.2). The cost of not observing an emitter for the remaining Nf

candidate frames (“death” cost) is given by

cd � −log p bleaching|kbleach( ) + p turn off |koff( ) + p missing localizations|pmiss , Nf( ){ }
� −log 1 − exp −kbleach( )[ ] + 1 − exp −koff( )[ ] + p

Nf

miss{ }

As in (Jaqaman et al., 2008), we arrange our LAP costs in a
square block matrix composed of four equal sized square sub-
matrices, with each sub-matrix being nc × nc for nc
localizations within a given precluster. The upper-left block
matrix contains the connection costs between a localization
identified by its row index with a localization identified by its
column index, arranged as an upper-triangular matrix (to
prohibit selection pairs of row m to column n and row n to
column m) and divided by two to account for the definition of
the bottom-right auxiliary block costs (see below). The
bottom-left block contains the birth costs for the
localizations identified by the column index. The upper-
right block contains the death costs for the localizations
identified by the row index. The bottom-right block, to
which we attribute no physical significance, is defined to be
the transpose of the upper-left connection block, as
assignments in the upper-left block lead to the same
assignments in the (transposed) lower-right block. All cost
matrix entries containing a prohibited selection (e.g., main
diagonal terms, which represent connection of a localization to
itself) are set to a non-link marker, which tells the LAP solver
not to select those entries. Costs that are infinite or otherwise
invalid (i.e., not a number) are set to twice the sum of all valid
costs to ensure they are only selected when no other
assignment is available. The LAP is then solved using the
Jonker-Volgenant algorithm (Jonker and Volgenant, 1987),
which assigns each localization to a single cluster of
localizations. This process is then repeated for each pre-
cluster of localizations to yield the final frame-connected set
of localizations.

Localizations connected by the frame-connection algorithm
are combined assuming they each represent independent samples
from a Gaussian distribution. The resulting position of the m
frame-connected localizations is taken to be the maximum-
likelihood estimate for the position x

x̂ � ∑m
i�1xi/σ

2
i∑m

i�11/σ
2
i

(4)

and the localization error for the frame-connected localization is
taken to be the inverse of the Fisher information
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σ̂2 � 1∑m
i�11/σ

2
i

(5)

2.4 Simulated SMLM Data
Simulated SMLM localizations were generated to test the frame-
connection algorithms. A uniformly distributed point target was
simulated by scattering emitters uniformly across a square region
of interest (ROI). Dimerized emitters were simulated by placing
emitters at varying separations from one another with sufficient
inter-dimer spacing to ensure localizations from distinct dimers

will not be connected by any of the algorithms. To generate
localizations from simulated emitter positions, the frames in
which each emitter was observed were simulated by the
Gillespie algorithm (Gillespie, 1976) as prescribed by the
transition rates kon � 0.005 frame−1, koff � 0.5 frame−1, and
kbleach � 0.2 frame−1. Localizations corresponding to the
emitter being on the entire frame were assigned a fixed
photon count I. For frames in which the emitter turned on,
turned off, or bleached, the number of photons was reduced to I
(1 − u) where u is sampled from the standard uniform
distribution. Gaussian noise was added to each localization

FIGURE 1 | Uniformly distributed emitters with initial density ρ0 � 10 emitter/pixel2, kon � 0.005/frame, koff � 0.5/frame, kbleach � 0.2/frame, pmiss � 0.01, photon
emission rate of 1,000 photons/frame, additional Gaussian noise with σ � 0.05 pixels, and 10,000 total frames. (A) “Ideal” frame-connection solution, scale bar � 2 pixels.
(B)–(E) Results for the three sub-ROIs marked with yellow squares in (A) using (B) LAP-FC with a maximum pre-clustering frame gap of five frames and a maximum
separation of 5 times the localization error; (C) the hypothesis test algorithmwith a maximum frame gap of five frames, a maximum separation of 1 pixel, and a level-
of-significance of 0.05; (D) the classical algorithm with a maximum frame gap of 1 frame and a maximum separation of 0.2 pixels; and (E) the revised classical algorithm
with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. The circles in (B)–(E) are centered at the localization position with
radii equal to the localization error. Green circles represent localizations from the ideal results from (A). Magenta circles represent the results of the frame-connection
algorithm. White circles correspond to frame-connection results matching the ideal results.

FIGURE 2 | Deviation of the nearest-neighbor distance CDF from that of the ideal frame-connection result ensembled over multiple uniform emitter simulations,
where nearest-neighbors are restricted to appear within five frames of one another. The green line corresponds to the revised classical method, the purple line to the
classical method, the yellow line to the hypothesis test method, the red-orange line to the LAP-FC method, and the blue line is the δ � 0 baseline. The number of
simulations and initial densities were varied as (A) 40 simulations with ρ0 � 5 emitters/pixel2, (B) 20 simulations with ρ0 � 10 emitters/pixel2, and (C) 10 simulations
with ρ0 � 20 emitters/pixel2.
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with a standard deviation given by the Cramér-Rao lower bound
corresponding to fitting a Gaussian to the emitter PSF given the
background intensity and a finite pixel size (Smith et al., 2010). To
mimic noise sources not accounted for by localization errors,
such as residual, uncorrected sample drift, an additional source of
Gaussian noise with standard deviation 0.05 pixels was added to
each localization. A constant probability of missing a localization
pmiss was applied to the final results by randomly removing pmissn
(rounded to the nearest integer) localizations from the n total
localizations.

2.5 Comparison to “Ideal” Results
The “ideal” frame-connection results are specified as follows. For
a given simulation, the underlying emitter generating each
localization is noted. Localizations arising from the same
emitter that occur within five frames of one another are then
combined using Eqs. 4, 5. These frame-connected localizations
are considered to be the “ideal” frame-connection result.

The cumulative distribution function (CDF) of the nearest-
neighbor distance distribution between frame-connected
localizations was computed as follows. For a given set of
frame-connected localizations, the nearest-neighbor to each
localization within five frames (in the past or into the future,
but excluding same frame neighbors) was found and their
separation was stored. The binned CDF was then computed
from the resulting set of nearest-neighbor distances.

Comparisons to the “ideal” frame-connection CDF Fideal were
made by subtracting Fideal from the binned CDF F of the results
being compared. The difference δ ≡ F − Fideal provides a visual
tool for comparing frame-connection results. A deviation δ < 0
suggests that localizations were connected that should not have
been, since such over-connection would increase the expected
nearest-neighbor distance. Similarly, a difference δ > 0 suggests
that frame-connection did not connect localizations which
should have ideally been connected. Although this trend for δ
may not necessarily hold for exceptionally high localization
densities (e.g., for very high localization densities, incorrect
connections may in fact cause the mean nearest-neighbor
distance to decrease), we don’t expect such data to be relevant
in SMLM.

3 RESULTS

3.1 Uniformly Distributed Emitters
Simulated SMLM data for uniformly distributed emitters was
generated as described in section 2.4. The frame-connection
results from each of the algorithms (LAP-FC, hypothesis test,
classical, and revised classical) are shown in Figure 1. ROI
selections were made to highlight the performance of LAP-FC
in comparison to the other algorithms. For the sole emitter blink
present in Figure 1 ROI 1, the LAP-FC algorithm was the only

FIGURE 3 | Gaussian reconstruction images for frame-connection results on simulated dimer emitters with spatial separations ranging from 0.1-1 pixel, kon �
0.005/frame, koff � 0.5/frame, kbleach � 0.2/frame, pmiss � 0.01, photon emission rate of 1,000 photons/frame, and 10,000 total frames. (A) “Ideal” frame-connection
solution, scale bar � 2 pixels. (B)–(E) Results for the three sub-ROIs marked with yellow squares in (A) using (B) LAP-FC with a maximum pre-clustering frame gap of five
frames and a maximum separation of 5 times the localization error; (C) the hypothesis test algorithm with a maximum frame gap of five frames, a maximum
separation of 1 pixel, and a level-of-significance of 0.05; (D) the classical algorithmwith amaximum frame gap of 1 frame and amaximum separation of 0.2 pixels; and (E)
the revised classical algorithm with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. Scale bar � 2 pixels.
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method to completely connect all observed localizations. For
Figure 1 ROI 2, the hypothesis test, classical, and revised
classical algorithms correctly connected most of the
localizations. For Figure 1 ROI 3, the classical and revised
classical algorithms again connected most localizations
correctly while failing to connect some others.

To compare the frame-connection algorithms for data with
varying densities, a total of 40, 20, and 10 independent uniform
emitter simulations were generated for initial emitter densities of
ρ0 � 5 emitters/pixel2, ρ0 � 10 emitters/pixel2, and ρ0 � 20
emitters/pixel2, respectively, with the parameters otherwise
matching those described in section 2.4. The deviation δ of
the nearest-neighbor distance CDF from the ideal CDF was
computed as described in section 2.5. The results are shown
in Figure 2. For a relatively low initial emitter density of 5
emitters/pixel2, all of the algorithms tend to under-cluster
localizations, with LAP-FC showing closer correspondence to
the ideal case; however, the hypothesis-test may slightly over-
cluster as indicated by the dip of δ < 0 in Figure 2A. For an initial
density of 10 emitters/pixel2, the hypothesis test algorithm shows
the closest correspondence to the ideal frame-connection results,
however the dip δ < 0 seen in Figure 2B suggestive of over-
clustering is more prominent than in Figure 2A. The LAP-FC
algorithm shows the closest correspondence to the ideal result
without indication of over-clustering. For an initial emitter
density of 20 emitters/pixel2, Figure 2C suggests that the
hypothesis testing method is largely over-clustering
localizations. The LAP-FC algorithm otherwise shows the
closest correspondence to the ideal frame-connection results
without significant over-clustering, however a small dip of δ <
0 was present at a scale not visible in the figure.

For the simulations described in the preceding paragraph,
histograms of the durations of frame-connected localizations
were generated and are shown in Supplementary Figure S2.
Comparing to the expected distribution (geometric with
probability p � 1 − exp(−k), where k ≡ koff + kbleach) of frame-
connected durations, all methods appear to have an over-
abundance of short durations, with the trend being similar at
each tested density. LAP-FC and the hypothesis test methodmore
closely reproduce the expected distribution than the classical and
revised classical methods, with the hypothesis test showing the
closest correspondence.

To test the robustness of LAP-FC with respect to its estimates
of kon, koff, kbleach, and pmiss, LAP-FC was repeated for the 20 ρ0 �
10 emitters/pixel2 simulations described above with varying
values of each parameter. For each of the 20 simulations,
LAP-FC was applied and the internally estimated values k̂on,
k̂off , k̂bleach, and p̂miss were noted (see Supplementary Table S1).
LAP-FC was then applied to each simulation with externally
prescribed values of kon, koff, kbleach, and pmiss, with each
parameter being varied individually with the other parameters
held fixed at their true simulated value. Each parameter was
varied to their upper and lower bound (see Supplementary Text
1) as well as to the maximum and minimum values estimated in
the original LAP-FC application described above. The resulting
values of δ were computed as described in 2.5 and plotted in
Supplementary Figure S1. According to the results in
Supplementary Figure S1, even large deviations in parameter
estimates from the true values rarely lead to over-clustering by
LAP-FC, and in all observed cases (i.e., excluding the upper and
lower bound demonstrations), the results show little deviation
from those when all parameters are set to their simulated value.

FIGURE 4 | Frame-connection results for actin microfilament localizations generated by multi-emitter fitting. (A) Gaussian reconstruction image of the LAP-FC
frame-connection results. Selected ROIs indicated by numbered yellow boxes in (A) are shown for the frame-connection results using (C) LAP-FC with a maximum pre-
clustering frame gap of five frames and amaximum separation of 5 times the localization error; (D) the hypothesis test algorithmwith amaximum frame gap of five frames,
a maximum separation of 1 pixel, and a level-of-significance of 0.05; (E) the classical algorithm with a maximum frame gap of 1 frame and a maximum separation of
0.2 pixels; and (F) the revised classical algorithm with a maximum frame gap of five frames and a maximum separation of 2 times the localization error. Scale bar �
0.5 μm. Localizations in (B)–(F) are displayed as circles of radius equal to the localization error centered on the estimated position and color-coded to indicate time, with
dark blue indicating the start of the experiment and yellow indicating the end of the experiment. The red arrows in (B)–(F) ROI 1 point to a qualitatively interesting set of
localizations.
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3.2 Simulated Dimer Emitters
Dimerized emitters were simulated at 20 spatial separations
ranging uniformly from 0.1-1 pixel to investigate frame-
connection performance for closely spaced emitters. Gaussian
reconstruction images are shown for the results of each of the
frame-connection algorithms in Figure 3. Overall, each of the
tested algorithms performed well enough to observe the general
trend in the data clear from the ideal result in Figure 3A (that is,
pairs of closely spaced emitters with an increasing pair separation
from left to right). The classical and the revised classical methods
(Figure 3D,E, respectively) did not correctly connect as many
localizations as the LAP-FC and hypothesis test methods
(Figure 3B,C, respectively), however no over-clustering was
apparent. Overall, the LAP-FC performed better than the
other methods tested. No apparent over-clustering artifacts
were introduced by any of the four algorithms tested.

3.3 High Duty Cycle Actin With Multi-Emitter
Fitting
An SMLM dataset resulting from Bayesian multi-emitter fitting
(Fazel et al., 2019a) of actin data with a relatively high localization
density was used to compare the performance of the tested frame-
connection algorithms. The results are shown in Figure 4. Inspecting
the ROI selections made in Figures 4C–F and comparing to the
non-frame connected results in Figure 4B, each of the algorithms
appear to make reasonable connections based on localization
spatiotemporal proximity. The LAP-FC and hypothesis testing
algorithms made the most connections as is noticeable by the
feature sharpness in Figures 4C,D. The classical and revised
classical methods both fail to connect a pair of relatively isolated
nearby emitters on the right hand side of ROI 1 (shown as blue
circles and pointed to by small red arrows), whichwhen compared to
Figure 4B seem to be arising from the same emitter.

4 DISCUSSION

SMLM is rapidly becoming a commonplace tool for researchers in
need of nanoscale spatial resolution in fluorescence microscopy.
The expansion of SMLM outside of dedicated research labs
necessitates reliable analyses which can be trusted without
expert intervention. Quantitative analysis of the resulting super-
resolved localizations requires, in many cases, a well-characterized
correspondence between localizations and emitters. That is to say,
many analyses of super-resolved localizations require a one-to-one
relationship between localization and emitter. While recent
techniques have largely solved this localization clustering
problem (Fazel et al., 2019b), any such method will be limited
by the reliability of the input localizations. If the input localizations
contain a very large proportion of repeated localizations, such post-
processing tools may be pushed to their practical limits, for
example leading to infeasible computational costs. Alternatively,
localizations which have been over-clustered (i.e., localizations
from distinct emitters that were connected together) represent a
loss of information unlikely to be captured by any post-processing
analysis.

Many steps in SMLM data analysis have been refined and
validated (e.g., fitting the localizations and determining the error in
their positions), however the frame-connection problem has received
little attention. Known existing methods for solving the frame-
connection problem have not reached an optimal solution. We
have shown that the classical and the revised classical methods are
perhaps too conservative in their assignment of connections to make
optimal use of the data. On the other hand, the hypothesis testing
method is perhaps too liberal in its assignment of connections. We
have shown that the hypothesis testing method for frame-connection,
which typically provides more appealing results than the classical and
revised classical methods, is susceptible to over-clustering at high
densities. Furthermore, results of the classical, revised classical, and the
hypothesis test algorithms rely heavily on the selection of arbitrary
thresholds.We have shown that, by formulating the frame-connection
problem as a linear assignment problem with statistically motivated
assignment costs, these common artifacts can largely be reduced, with
the added benefit that arbitrary thresholds are used only in a pre-
processing step. Our algorithm accounts for the local emitter densities,
the kinetic rates of blinking, and the possibility ofmissing localizations
of a visible emitter. By combining all of this knowledge, our algorithm
exceeds the performance of other known frame-connection problems
with minimal to no over-clustering.
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