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Predicting the physical or functional associations through protein-protein interactions (PPIs)
represents an integral approach for inferring novel protein functions and discovering new drug
targets during repositioning analysis. Recent advances in high-throughput data generation
and multi-omics technigues have enabled large-scale PP predictions, thus promoting several
computational methods based on different levels of biological evidence. However, integrating
multiple results and strategies to optimize, extract interaction features automatically and scale
up the entire PPI prediction process is still challenging. Most procedures do not offer an in-
silico validation process to evaluate the predicted PPls. In this context, this paper presents the
PredPrIn scientific workflow that enables PPI prediction based on multiple lines of evidence,
including the structure, sequence, and functional annotation categories, by combining
boosting and stacking machine learning techniques. We also present a pipeline (PPIVPro)
for the validation process based on cellular co-localization filtering and a focused search of
PPI evidence on scientific publications. Thus, our combined approach provides means to
extensive scale training or prediction of new PPIs and a strategy to evaluate the prediction
quality. PredPrin and PPIVPro are publicly available at https://github.com/YasCoMa/predprin
and https://github.com/YasCoMa/ppi_validation_process.

Keywords: protein-protein interaction, scientific workflow, PPI prediction, text mining, in-silico validation,
large-scale prediction

1 INTRODUCTION

Proteins are complex macromolecules that play an essential role in the cellular machinery, perform
functions in biological processes Safari-Alighiarloo et al. (2014), and regulate gene expression
under certain conditions (Cooper, 2000). While many proteins may execute their function
individually, other proteins either physically bind to or functionally associate with each other,
thereby producing protein-protein interactions (PPIs) to perform their function correctly.
Currently, in-silico bioinformatics approaches represent an efficient method of detecting PPIs
on a large scale and facilitating the best candidate pairs’ prioritization for posterior experimental
validation. PPI detection methods that combine multiple pieces of evidence such as evolution,
functional characteristics, structural features, and sequence-based methods, have achieved better
performance than other approaches that only use one or few pieces of evidence (Chang et al.,
2016).
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The most recent PPI detection methods are based on
machine learning techniques (Kotlyar et al., 2015; Arango-
Rodriguez et al., 2016; Hashemifar et al., 2018; Chen et al.,
2019; Wang et al., 2019; Li and Ilie, 2020). A few methods
(Kotlyar eta.,. 2015; Chen et al., 2019) also use various protein
features to predict PPIs, combining functional annotations
with network topology and others such as orthology and
paralogy. Some related works typically use a non-automatic
and costly feature extraction step to generate the prediction
inputs (Hashemifar et al., 2018; Chen et al., 2019). Some
recent results (Gonzalez-Lopez et al., 2018; Chen et al,
2019; Yang et al., 2020) offer automatic feature extraction
but do not provide a mechanism to reuse the already
calculated features to optimize subsequent experiments
according to preliminary information. Some predictors
offer large-scale prediction focusing only on optimizing
training and evaluation predictors but their strategies have
not considered the data distribution in independent processes
in parallel (Chen et al., 2008; Pan et al., 2010; You et al., 2014;
Zhang et al., 2014). Other methods (Papanikolaou et al., 2015)
identify PPIs using text mining techniques, although most of
these methods still present a high number of false-positive
results. These works also start from a global search to discover
any possible interaction from the texts, which may be time-
consuming. Finally, few methods (Tan et al., 2004; Antony
et al., 2008; Frech et al., 2009) analyze predicted PPIs to
perform postprocessing validation and assist in their
curation process.

We introduce a new PPI prediction method, PredPrIn
(Prediction of Protein Interactions), a scientific workflow for
end-to-end data management from preprocessing to PPIs
classification. The main goal of PredPrIn is executing large-
scale protein interaction prediction, acting in training/
prediction modes. PredPrIn automatically extracts protein
information to create a reusable and adaptable knowledge
base, enhancing the speed of further experiments according
to the diversity of proteins in the database. Our method
combines four types of detection methods (based on the
primary sequencee (Li and Ilie, 2017), the semantic similarity
of Gene Ontology terms (Pekar and Staab, 2002), domain
interactions and co-participation in pathways) as the base-
level predictors of the stacked generalization scheme
(Dzeroski and Zenko (2004)) and uses a meta-level classifier
based on the boosting technique (Schapire, 2013).
Complementing the PredPrIn method, we also present a
validation process based on cell location co-occurrence
filtering and a focused search on individual PPIs’ relevant
scientific publications. The text mining part was projected
with context filtering to eliminate false-positive relations
from other regulation events between proteins.

2 MATERIALS AND METHODS
2.1 PredPrIn

The PredPrIn (Figure 1) architecture is divided into three steps,
namely 1) Preprocessing; 2) Numerical feature generation; and 3)
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Classification and analysis. Our method deals with protein data
acquisition, feature computation according to diversified PPI
detection methods, and result exportation of PPI classification.

2.1.1 Preprocessing

We use the functional annotations retrieved from the UniProt
database to create a preprocessed feature knowledge base to be
reused for subsequent prediction experiments. PredPrIn stores
RDF (resource description framework) files (Cyganiak et al,
2014) for each protein of the interaction pairs in the workflow
input. The Extraction and Filtering information module
automatically parses these files running SPARQL (Group,
2013) queries to obtain the properties related to functional
annotations, amino acid sequence, and identification in the
Pfam® as well in the Kegg Orthology’ (KO) databases. The
results of these queries are then filtered according to the
required inputs of the detection methods, and the final list of
features is stored in the knowledge base. We also added a
controller to check whether updated information on the
protein is already included in our knowledge base. Each time
a new experiment is started, this controller checks the RDF files’
integrity hashes to compare local and UniProt versions.

2.1.2 Numerical Features Generation

PredPrIn computes numerical features for classification using
four types of detection methods that are based on the primary
sequence of amino acids (SPRINT-Scoring PRotein
INTeractions) (Li and Ilie. 2017), domain interaction, the
semantic similarity of Gene Ontology (GO) terms (Ashburner
et al., 2000), and co-participation in metabolic pathways.

We modified the original stacked generalized scheme
(Dzeroski and Zenko, 2004) using the predictions derived
from the aforementioned detection methods to build the
numerical features matrix (rows are the PPIs and columns are
the predictions) used as input by the meta-classifier. Thus, we can
combine multiple pieces of evidence on the interaction
probabilities according to each detection method’s perspective.

The detection method based on semantic similarity is grounded
on the assumption that proteins sharing functional annotations
have a high chance of interacting (Jain and Bader, 2010). Hence, we
performed a comparative analysis among five semantic similarity
metrics (see Supplementary Material S1). Thus, we implemented
the Pekar metric (Pekar and Staab, 2002) in the workflow to
calculate three numerical features from the cellular component,
biological process, and molecular function branches.

In addition to using functional annotation features, we also used
protein structural information based on the possible interactions
between conserved regions of their structure, such as domains,
using data from the 3DID (three-dimensional interacting domains)
database (Mosca et al., 2013). Let D ={d}, d,, . . ., d,,} represent the
list of all possible domains that can be annotated for proteins,

LDC = {(d,, d3), (da, d3), ..., (d,_1, d,)} define a list of all

'http://www.uniprot.org
*http://pfam.xfam.org/
*https://www.genome.jp/kegg/ko.html
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FIGURE 1 | Steps of the PredPrin architecture: (i) Preprocessing; (i) Numerical feature generation, and (iii) Classification and analysis. The preprocessing step
retrieves protein information from the UniProt database, and automatically parses and filters them to build a knowledge base of processed features. The numerical
feature generation step uses this knowledge base to distribute the correct inputs for the execution of the four detection methods and then generates a matrix of scores
organized according to these methods’ results. This matrix is used in the classification and analysis step to carry out the prediction by a classifier implementing the
boosting technique. PredPrin may run in either training or test mode. In both modes it is mandatory fulfiling the configuration file with the information of the datasets
containing PPIs and the specification of mode type (train or test). In test mode, the additional input is a trained model previously computed and the workflow output is the
positively predicted PPIs. No further input is required in training mode, and its outputs correspond to the trained model, the cross-validation and performance metrics
report.

known pairs of this annotation in 3DID and LDP = {(d,, d,),
(dy, d3), ..., (d,_1, d,)} represent the list of all pairwise
combinations of the domains associated with proteins
belonging to PPIs under evaluation. Then, the domain score
is calculated using Eq. 1, defining a Jaccard index representing
the domain pairs derived from the combination of the known
interactions list of protein domains.

|[LDC n LDP|
SCOTeDomain = T (1)

|LDC U LDP|

Finally, we further developed a method that considers the
functional relationship between a pair of enzymes in the context
of metabolic pathways. For this method, a list of all enzymes and
their respective pathways in which they participate is retrieved
from the KEGG (Kanehisa et al., 2016) database. Supposing a
PPI between proteins A and B, let V4 = {Vy, V5, ..., V,}
represent a list of all metabolic pathways associated with
protein A and Vy = {V;, V,, ..., V,,,} is a list of pathways
related to protein B. This method’s pathway score is calculated
following Eq. 2, which is a Jaccard index representing the
fraction of pathways shared and participated in by the
proteins in the PPIL

| Van Vy
SCOT€pathway = m (2)
A B

2.1.3 Classification and Analysis
The final PredPrIn step executes a combined analysis of all
numerical features or evidence calculated using the detection

methods. A variance unit then normalizes the feature matrix
(Noda, 2008) and uses it to input the meta-level classifier
Adaboost (Schapire, 2013) algorithm that implements the
boosting technique. This step also applies the 10-fold method
of cross-validation for model selection. As a result, this step
returns the positively predicted PPIs (in test mode) or the trained
model (in training mode) with a report containing the main
performance evaluation metrics (Hossin and Sulaiman, 2015),
such as the accuracy, precision, recall fl-measure, confusion
matrix, and AUC-ROC plots.

2.2 PPIVPro-Validation Process of

Predicted PPls

The PPIVPro has two filtering modules (Supplementary Figure
$3) to evaluate newly predicted PPIs, namely, 1) cellular co-
localization filtering and 2) PPI extraction from scientific
publications.

2.2.1 Cellular Co-localization Filtering

We constructed a database of association rules (Hipp et al., 2000)
using the co-occurrence of cellular components in the known
validated interactions from the HINT database (Das and Yu,
2012). Then, we applied the Apriori algorithm (Hipp et al., 2000)
according to the cellular component annotations iteratively
assigned to HINT proteins to generate the association rules
using an evaluation function as a stop criterion of the process.
This function evaluates whether a subset of main cellular
components is included among the rules. After this iterative
process, the rules database contains cell location sets that
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presented high co-occurrence frequency and correspond to a
double-column file (antecedent and consequent).

Considering a given PPI, the filtering module analyzes
whether the two proteins’ cellular components are found in
the antecedent and consequent columns in the same rules.
Then, this proteins pair is returned as positive by this module.

2.2.2 PPI Extraction From Scientific Publications

This PPIPubMiner module uses HGNC symbols (Povey et al.,
2001) associated with the PPIs’ protein identifiers under
evaluation as bait to filter the most relevant articles indexed in
the PubMed* and PubMed Central® databases. The content of
these papers is further retrieved using the NCBI API® and stored
in a knowledge base of processed xml files.

A cleaning step handles these files to remove the markup
language tags, such as sections unrelated to the essential text in
the article body paragraphs. This step returns the processed text
of the sentences found in the abstract and main body of the
papers.

Among all existing natural language processing (Manning
et al., 2014) techniques to handle and prepare textual data,
PPIPubMiner executes the extraction of sentences and tokens,
word normalization to lower case, stemming, removal of stop
words, and prioritization of verbs and nouns using part-of-speech
tagging. These steps optimize the text mining and filtering of
those sentences that have an interaction context.

We developed a context filtering dictionary to exclude terms
(or sets of terms) that appear in the same sentence of proteins but
are related to other regulatory events not directly associated
with PPIs.

Another step of this module further checks the existence of
protein entities’ in the filtered sentences. We also developed an
entity recognizer to obtain evidence of experimental validation
methods, such as entities found in the molecular interaction
ontology.®

If the target proteins are found with verbs and nouns
indicating an interaction context (for instance, signaling
and binding), the final step generates a rule-based report for
each protein pair. This report includes the sentences, the
interacting words found, the proteins, and the experimental
methods.

2.3 Datasets for Performance Assessment
We prepared six balanced datasets (described in Supplementary
Table S8) to test the efficiency of PredPrIn parallel execution and
compare its performance against related works. Each dataset
contains 200 thousand PPIs, with 50% positive and 50% being
negative. The positive protein pairs of validated group datasets
were formed by interactions from DIP® (2,469 PPIs), HPRD'®

*http://pubmed.ncbi.nlm.nih.gov/
*https://www.ncbi.nlm.nih.gov/pmec/
*https://www.ncbi.nlm.nih.gov/books/NBK25498/
“http://www.nactem.ac.uk/ GENIA/tagger/
*https://www.ebi.ac.uk/ols/ontologies/mi
*https://dip.doe-mbi.ucla.edu/dip/Main.cgi
"http://www.hprd.org/
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(12,094 PPIs) and Biogrid11 (85,437 PPIs) databases. The other
group interactions was extracted from STRING'> database. We
considered variations in the range of confidence scores in the
STRING group to achieve protein pairs with a diversity of
functional annotations and diminish the prediction evaluation
bias. These first six datasets were named as the low score
version'”, since their negative pairs were retrieved from
STRING wusing score less than 400. We also prepared a
duplicate dataset, named as the random pairs version'*, with
the same positive pairs as the six aforementioned datasets. Still, all
the negative pairs were randomly chosen among the available
protein identifiers on the Uniprot database. The only restriction
applied to these negative pairs was their absence in the known
positive set.

These twelve datasets were used to test scalability and
efficiency. The performance of trained models derived from
these datasets was also evaluated on disease-state PPI
prediction with a curated lung cancer PPI network'® (Li et al,
2017).

Only validated group datasets (low score version) were used
for new PPIs prediction. In contrast, the STRING group datasets
(low score version) were used to evaluate whether a model from
inferred PPIs can predict PPIs from other related databases such
as FunCoup (Persson et al., 2021), HumanNet (Hwang et al,
2019) and genemania (Franz et al, 2018). To assess the
hypothesis mentioned above, we extracted and compiled"® all
the genemania datasets of Physical interactions (202 datasets), all
the HumanNet PPI datasets and the Funcoup PPIs with a
confidence score above 0.900.

2.4 Datasets and PPI Prediction Methods

Used for Performance Comparison
The performance comparison with other PPI prediction tools
followed the same strategy used by the authors of Metago (Chen
et al,, 2019), where they compiled the reported scores of the
prediction methods (PPI-MetaGo (Chen et al., 2019), PRED_PPI
(Guo et al., 2010), TRI_tool (Perovic et al., 2017), hierarchical
vector space model (HVSM) (Zhang et al., 2018), go2ppi
(Maetschke et al., 2012), GIS-MaxEnt (Armean et al., 2018)
and DeepSequencePPI (Gonzalez-Lopez et al, 2018), and
executed PPI-Metago prediction experiments using the same
datasets'” reported by these tools.

The species used in our analysis (Supplementary Table S10)
were Saccharomyces cerevisiae (datasets SC1, SC2, SC4, SC5, and

"'https://thebiogrid.org/

Phttps://string-db.org/
Phttps://github.com/YasCoMa/predprin/blob/master/datasets_paper/version_
low_score.zip
“https://github.com/YasCoMa/predprin/blob/master/datasets_paper/version_
random_pairs.zip

http://oncoppi.emory.edu/
"https://github.com/YasCoMa/predprin/blob/master/datasets_paper/datasets_
functional_prediction.zip
https://github.com/YasCoMa/predprin/blob/master/datasets_paper/datasets_
multiTools_comparison.zip
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SC6), Homo sapiens (datasets HS1, HS3, HS4, and HS5),
Escherichia coli (datasets EC1 and EC2), Drosophila
melanogaster (datasets DM1 and DM?2), Caenorhabditis
elegans (dataset CE), Schizosaccharomyces pombe (SP),
Arabidopsis  thaliana (dataset AT) and Mus musculus
(dataset MM).

2.5 Dataset for Predicting New Candidate
PPIs

We designed a dataset with new candidate PPIs to test the models
trained with PredPrIn for new PPIs discovery. We retrieved data
from the Network of Cancer Genes (NCG) database (Repana
et al., 2019), which contains two lists corresponding to known
and candidate cancer genes. Hence, the PPI dataset was
developed by collecting the proteins associated with these
genes and applying a pairwise combination of the proteins in
both lists. We generated approximately 800 thousand PPIs'®, and
we separated them into four datasets to be processed in parallel in
PredPrIn. We obtained the processed annotations and the
corresponding matrix of numerical features, which contained
M lines related to the PPIs and N columns of calculated features
provided by the detection methods.

3 RESULTS AND DISCUSSION

3.1 PredPrin Prediction Evaluation

3.1.1 Assessment of Prediction Efficiency and
Scalability

We compared the PredPrIn efficiency with the DPPI method
(Hashemifar et al., 2018) using the same PPI dataset of the
primary evaluation containing 50,000 protein pairs. We took
the PredPrIn running times with and without using the
Knowledge base (kb) to perform this comparison
(Supplementary Table S9). The experiment was performed in
a computer with 16 GB of RAM memory, 1 TB of hard disk, using
Ubuntu 16.04 as operating system. The time corresponding to
DPPI only considers the prediction and does not involve data
preprocessing, which is the most time-consuming step for DPPI,
especially in protein profile generation. For the same number of
protein pairs, using the KB information, we improved the
running time to less than 5hours relative to DPPI,
demonstrating the importance of the KB for experiment
acceleration. Furthermore, almost 95% of the decreased time
affected the preprocessing step, which was expected since the
knowledge base mainly affects this step.

Regarding scalability, we performed the main experiment to
evaluate the PredPrIn predictions and the workflow architecture
for parallel execution of the six datasets of each version at a time
(described in 2.3). We also indicate that the knowledge base for
this experiment contributed to decreasing the running time from
55 to 47 h. Despite the considerable increase in the dataset size

"*https://github.com/YasCoMa/predprin/blob/master/datasets_paper/ncg_
dataset.zip
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(50,000 to 1,200,000 PPIs), the additional execution time was not
proportional, which means that the parallelism provided by the
workflow architecture allowed our approach to be scalable. We
estimated that the individual parallel processes assigned to each
dataset had a maximum usage of RAM memory up to 2GB, which
happens only in the SPRINT execution to obtain the sequence
feature scores, then the usage decrease to 800 MB. Previous works
related to the large-scale prediction of PPIs have not considered
the strategy of distributing dataset load in a workflow
architecture, and optimizing features acquisition and
extraction by reusing prior computed information (Chen et al.,
2008; Pan et al., 2010; You et al., 2014; Zhang et al., 2014). Some
do not consider the preprocessing step in the running time
evaluation (You et al, 2014; Hashemifar et al., 2018) while
PredPrIn distributes the dataset load since this first step.

We enhanced the first PredPrIn step, including triggers
(controller and reuse of the KB) to increase the speed in
future prediction experiments. Hence, we improved the user
experience by providing automatic feature extraction like
previous works (Gonzalez-Lopez et al., 2018; Chen et al., 2019;
Yang et al, 2020), and added more refinements to the
preprocessing step. Furthermore, by using RDF (Cyganiak
et al., 2014) data, we ensure that the preprocessing is flexible
to the inputs required by other detection methods added to the
numerical feature generation step in the future.

The PredPrIn prediction performance on predicting disease-
state PPIs (Supplementary Material S2) was also assessed with
the OncoPPI dataset (Li et al., 2017) containing 347 interactions.
PredPrIn was used in the test mode with these interactions with
each of the twelve models, the overall execution time took 8 min.
According to the recall results, our tool reaches up to 87% of recall
even without using specific information about the disease-state
context.

3.1.2 Comparison of PredPrin Against Individual
Detection Methods

We compared the prediction performance of the individual
methods (Section 2.1.2) with PredPrIn using accuracy and F1-
score comparison plots, one for each dataset. The models in each
version (low score and random pairs) presented similar
performance, so we chose only the plot for dataset six to
demonstrate the results (Supplementary Figure S4) for each
dataset version. PredPrIn obtained the highest accuracy and F1-
score values in all datasets, ranging from 0.95 to 0.97 in low score
version, and from 0.979 to 0.996 in random pairs version. The
results show a better performance of individual methods in the
random pairs version of the datasets, which also contributed to
increase the scores for PredprIn. Hence, this result reinforces the
statement that the combination of multiple pieces of evidence
provided by PredPrIn yields better predictions than individual
detection methods (Chang et al., 2016).

Interestingly, the detection methods based on semantic
similarity (GO-CC, GO-MF, GO-BP) also have high accuracy
values. However, the values are not larger than 0.80. This finding
implies that our comparative analysis (Supplementary Material
S1) of semantic similarity metrics to select the best metric was
reflected in the excellent performance of this detection method.
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FIGURE 2 | The plots are grouped by dataset, compared with accuracy and precision metrics between PredPrin and the other tools according to each species
datasets. The left y axis represents the accuracy values, and the right y axis refers to the precision ones. The colors are repeated according to each line of plots. The first
line of plots are the isolated datasets for AT, CE, MM and SP species, the second line are the plots for the pairs of datasets belonging to DM and EC, the third line contains
the plots for four datasets belonging to HS species. Finally, the last line represents the plots of the five datasets of SC species.
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Moreover, the behavior observed in the accuracy and F1 score
plots of the detection methods shows the importance of using
multiple evidence for prediction. This trend was also
demonstrated in previous related work (Kotlyar et al., 2015).

We also carried out several biological analyses
(Supplementary Material S3) and confirmed the hypothesis
related to Gene Ontology functional enrichment when
comparing positively and negatively predicted PPIs. These
biological analyses also demonstrated that the predicted PPIs
conserve biological properties according to known parameters
explored in the literature, such as the roles of hub proteins as
proteins with high betweenness centrality.

3.1.3 Comparison of PredPrin With Known PPI
Prediction Methods

We compared the PPI predictions with seven recent tools, and
was evaluated in different datasets of several species (as
described in Section 2.4). We executed PredPrIn in training
mode to obtain the classification metrics report and we selected
accuracy and precision metrics to evaluate PredPrIn against
these tools. Besides PredPrIn was designed to perform large-
scale predictions in parallel, these datasets are significantly
smaller than those we built for the scalability and efficiency
assessment described in Sections 3.1.1, 3.1.2. The more
extensive dataset (SC6) used in the present section is
unbalanced (just as SC4 and HS5), and it has 17,257 positive
and 48,594 negative protein interactions.

PredPrIn had the highest values of accuracy and precision for
all human datasets (Figure 2), the detailed values of these metrics
are described in Supplementary Table S11. This fact happened
because we mainly designed PredPrIn to predict PPIs for the
human organism. The core of the PredPrIn’s SPRINT predictor
component was kept with the trained model for human proteins.
A second factor to be considered is that the comparative analysis
to select the most efficient semantic similarity metric was also
performed for human PPIs. Besides PredPrIn being designed for
humans, only two datasets (EC1 and CE) PredPrIn had accuracy
under 72%. This means that the other new predictors added in the
second step of PredPrIn leveraged and helped the PPI prediction
of non-human organisms. PredPrIn metrics values are closer to
the other tools like PPI-MetaGo with a difference under 0.180
between accuracy and precision in most datasets. We also
surpassed the other tools in the datasets AT, DM2 and MM
for both metrics.

PredPrIn and MetaGo wuse a stacked generalization
architecture, and our results showed that this technique has
great potential for PPI prediction. We developed PredPrIn to
achieve compelling predictions without requiring a specific
computational architecture, such as a graphic processing unit
(GPU). PredPrIn combines automatic feature extraction and
acquisition, reusing this information to optimize further
experiments  involving  proteins  already  analyzed.
DeepSequencePPI is the only tool used in this section analysis
that offers automatic feature extraction from the raw sequence.
Still, it does not reuse prior computed information when
generating features for future experiments. PPI-MetaGo also
computes the features but it requires hand-crafted protein

Large-Scale Protein Interactions Prediction and Validation

annotations and sequences from the user in each experiment.
PredPrIn added three new predictors to the base level of the
stacking ensemble technique. At the same time, PPI-MetaGo uses
sequence, go annotations and network-based features, using them
in four classic classifiers of the base level. The total computation
of the final score in its strategy increases according to the number
of PPIs received as input.

3.1.4 Prediction Analysis of Models Derived From
Computationally Inferred PPIs

The traditional training models are computed from validated or
literature-curated PPIs. However, the STRING database
concentrates on submissions of predicted PPIs from several
sources and prediction methods. This database has more than
two trillion PPIs from 5090 organisms (Szklarczyk et al., 2018).
Thus, the number of validated PPIs is significantly smaller than
the predicted ones. The HINT database (Das and Yu, 2012)
aggregates validated PPIs from eight curated databases. The total
number of binary interactions is 164448 considering the 12
organisms in this database. Thus, this section’s analysis aims
to evaluate the prediction performance using trained models only
from the STRING datasets (described in Section 2.3). We also
evaluated the impact of different ranges of confidence scores in
the prediction to determine whether they reflect in the prediction
performance.

We executed PredPrln in a test mode with the trained DS4,
DS5, and DS6 against the datasets FunCoup, HumanNet and
genemania. We evaluated using the recall metric to measure the
ratio between positively predicted PPIs from PredPrIn and all
possible true interactions from each database. Since all the
physical interactions from genemania return 204 datasets, we
organized the recall results for the three models grouping these
datasets in year intervals (Figure 3). Due to the large-scale
processing capability of PredPrIn, we processed all these
datasets setting ten independent processes (10 datasets in
parallel), the total execution time was 2 days and 17 h. All the
models produced recall values varying from 57.3 to 73.6%. The
lowest values occurred in the HumanNet and the highest ones in
the FunCoup database. There were minor differences according
to the confidence score of the PPIs in the models. Model 1 was
trained with PPIs with the highest confidence scores and for all
datasets produced the best recall values (67.3% for genemania
sets, 73.6% for FunCoup and 57.4% for HumanNet), the
difference between model 1 and two was higher (0.014,
approximately) than the difference between model two and 3
(0.006).

We evaluated the model prediction in the genemania
datasets with more details to explore their recall values
(Figure 4). Interestingly, in some datasets, highlighted as the
outliers dots, the recall values were above 80%, besides the
mean remained between 60 and 70%. Although our results
showed that models derived from STRING (computationally
inferred PPIs) showed a high recall performance in selected
datasets, most of them, the prediction was unsatisfactory
considering a cutoff value of 75%. We also observed that the
confidence score of the PPIs in models produced low
improvement on forecast.
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FIGURE 3 | Comparison of recall in the models derived from DS4 (model3/m3), DS5 (model2/m2) and DS6 (model1/m1) trained by PredPrin. The genemania
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FIGURE 4 | Comparison of recall values showing the mean location and distribution of recall values in each group of genemania datasets.

PredPrIn enabled a screening analysis of models derived from  computationally inferred PPIs. In contrast, some works use in
inferred PPIs in more than 200 human datasets belonging to  their methods only interactions with a high level in the
other functional databases. We evaluated STRING using only  experimental and literature-curated scores that forms the total
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combined score (Das and Chakrabarti, 2021; Ding and Kihara,
2019), limiting the power of the STRING database. Our results
showed that STRING could find protein associations, and the
models can be improved using this database in combination with
another source of features. This strategy was used in the SDN2GO
method (Cai et al., 2020) to predict protein function, in which
they used primary sequence, annotations, network data
(STRING) and domain information.

3.2 Evaluation of the Prediction of New PPls
We experimented PredPrIn testing the models trained with
PredPrIn (Section 3.1.2) for the validated group datasets
against new candidate protein pairs (described in Section 2.5).

Using the models trained by PredPrIn in the numerical
features of the new dataset, the predictor returned 5150
positive PPIs'’. These interactions were submitted to the
validation process proposed in Section 2.2. We developed this
validation method to help curating PPIs, since most experimental
validations are limited by the availability and cost of antibodies to
recognize the proteins of interest just as the requirement of
tagging novel proteins (Miteva et al., 2013). Regarding the use
of in-silico methods to validate PPIs, some methods (Tan et al,,
2004; Antony et al., 2008) proposed an approach to validate
interactions based on the principle of coevolution. Specifically,
one study (Antony et al., 2008) tested their approach on PPIs
retrieved from text mining in a specific context for articles,
including those belonging to “multiple sclerosis” terms.
Compared with the cited study, the first filtering step of our
validation process attempts to exclude PPIs in locations that
invalidate the interaction more quickly than running sequence
aligners such as blast (the most used tool in evolutionary
methods). Furthermore, our approach searches the most
relevant articles in any context that contain a relation between
the target PPIs. We also attempt to recover the mentioned
experimental assays in these articles to enrich the confidence
of the exported report.

Concerning the results of our validation process, the first step
(Section 2.2.1) filtered PPIs located in cell sites which has no
channel to enable physical interaction. This step returned 4820
PPIs*° that were further evaluated by the second filtering step
with the PPIPubMiner module (described in Section 2.2.2).
Among the 330 removed protein interactions, most of these
pairs were composed by one protein in the nucleus and the
other in the extracellular matrix. In other cases of removed
protein pairs, one or both proteins had zero or few general
annotations about their location.

From the remaining 4820 pairs, we have found that 20
predicted interactions was already published in validated PPI
databases with overlapping: DIP (2), HPRD (2), HINT (7),
Biogrid (13). In STRING, we have found 30 interactions with

“https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/supp_positive_pairs.tsv
*https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/filtered_pairs_by_assocrules.tsv
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score above 900, 2 with score between 800 and 900, and 14 with
score ranging from 700 to 800.

As a result of the PPIPubMiner module, we found 3729 PPIs*!
(out of 4820 remaining of the previous step) in published
scientific papers that mention proteins and 50 protein pairs®
in an interaction context in one or more sentences in different
articles. These final protein interactions provided by
PPIPubMiner passed through manual curation to study the
properties of these indicated interactions. The goal of this
manual validation was analyzing the sentences retrieved for
the 50 pairs at the end of the validation process. We evaluated
each paper to check whether the interactions were really
confirmed.

Regarding the use of text mining for PPI identification, most
methods (Papanikolaou et al., 2015) start extracting from an
article any protein pair in the PPI context instead of prioritizing
the validation of specific protein interactions. Our approach is
designed for more focused research, by selecting evidence in the
most relevant papers indexed in Pubmed to validate and confirm
the relationship of the predicted PPIs. We also build a knowledge
base to optimize the extraction of information, by saving
preprocessed sentences indexed by their origin. Also, context
filtering reduces the number of false-positive sentences. The
manual curation showed that this context-based filtering
excluded protein pairs related to regulation events (mainly in
exome and gene profiling studies).

According to the manual validation results, among the 50 pairs
with sentences, two were already confirmed in Biogrid (LRIG3-
GAL3ST1 and SMAD2-ZEB2 (also in HINT)). We also computed
the occurrence of three cases: finding sentences with any
interaction context, finding evidence of physical PPIs in the
sentence and finding sentences out of interaction context (the
main error).

There were only nine occurrences of unique sentences in
which there was no interaction context, and the tool wrongly
classified the sentences based on a gene expression and regulation
context besides finding key interacting verbs like recruit and bind.
These errors happened for the pairs APC-TCF7, HOXA13-
HOXA10, JUN-ESRRG, JUN-GNA12, JUN-NR3C2, JUN-
TLR7, JUN-TLR9, LMO2-SCAF4, ROBO2-CD200, and
ROBO2-DLLI. Besides there was no evidence for APC-TCF?7,
this PPI was also predicted in STRING with a score above 900,
which is a false positive.

For almost all the 50 pairs, PPIPubMiner identified interaction
context (41). Among these 41 cases, 12 were confirmed as
evidence® of physical interaction of protein pairs predicted by
PredPrIn, which are AR-TACC1, CCR4-YTHDEF2, IL2-IL1B,
IL2-CCKBR, IL2-TLR4, HMGA1-AURKA, DDX3X-
MAPKAPKS5, IRIG3-GAL3ST1, SMAD2-ZEB2, MYC-CEP170,

*'https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/literature_evaluation_pairs.tsv
*https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/processed_sentences.zip
“https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/compiled-direct-interactions-predprin.tsv
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AR - TACC1 Neighborhood

Literature STRING
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(direct PP1)

FIGURE 5 | Neighborhood of each protein pair showing the relations between proteins according to each data source. The number found in squares represents the
number of hidden nodes that we set apart to improve clarity. The gray vertices represent the proteins known to be associated with cancer. The blue vertices are
candidate proteins for such an association. The white vertices indicate the proteins connecting the blue and gray vertices in more than one data source. The known
interactions at the green edge were extracted from the STRING (Szklarczyk et al., 2018) database and we used a confidence score range above 900 to filter its
interactions. The other known interactions were extracted from the experimentally validated (black edge) database (Rolland et al., 2014) and another one based on
literature curation (Breuer et al., 2013) (IMEX - International Molecular Exchange Consortium, in blue edge). The PPIs of these two databases were retrieved using the

Network Analyst tool (Zhou et al., 2019). The purple edge is based on our validation process.

NUP98-DOT1L, and RAF1-LGALS1. We highlight that, except
for IRIG3-GAL3ST1 and SMAD2-ZEB2, all these interactions are
not described in any PPI curated databases.

The other 28 cases were related to transcriptional interactions
between proteins and gene promoters or some types of RNAs.
Besides these last cases were not our primary focus while
developing PPIPubMiner, the sentences of some of them also
brought evidence of other physical PPIs** involving the proteins
of interest (not directly between them). Due to these repeated
events, we intend to improve PPIPubMiner to classify the types of
interaction that are retrieved in the sentences.

At the end of this manual review, we selected two protein pairs
to discuss in more detail. Figure 5 presents the known
neighborhood of the two interactions using diverse PPI data
Our validation process expanded this known
neighborhood by adding their relation according to the
published articles returned as reports for each protein pair.

sources.

3.2.1 Direct Interactions

The publication (Guyot et al, 2010) found by PPIPubminer
confirmed that TACCl1 has a role in controlling the
transcription of nuclear hormone-receptors and nuclear
locations. According to the results of experimental assays,
TACCI interacts physically with Ral, TRa2, and TRS1 in
yeast and mammalian cells, and it also interacts with RXRa,
RARa, PPARy, ERa, GR, and AR. These last proteins are
transcription factors belonging to two families of nuclear
receptors.

We also found evidence (Du et al, 2016) supporting
CCR4-YTHDF2. According to coimmunoprecipitation
assays, these authors describe that YTHDF2 interacts with
CAF1, CCR4A, and CNOT1 through the CCR4-NOT

**https://github.com/YasCoMa/predprin/blob/master/results_new_pairs_
prediction/compiled-direct-interactions-collateral.tsv

complex. This human complex consists of 9 subunits,
including one structural subunit (CNOTI) and two
catalytically active subunits (CAF1 and CCR4A). CAF1
presents a direct interaction with CNOT1, and CCR4A
indirectly interacts with CNOT1 across CAF1l. The
interaction between YTHDF2 and CNOT1 is mediated by
the SH (Src homology) domain. In addition to the interaction
between CCR4 and YTHDF2, we also extracted the
interaction between YTHDF2 and CNOTI, which was not
included in HINT and Biogrid data sources.

4 CONCLUSION

PredPrIn provides a large-scale architecture to predict PPIs. We
introduced new prediction methods based on domain and
pathways. We also carried out a semantic similarity
performance analysis to select the best semantic similarity
metric. We also modified the stacking ensemble technique
using the internal predictors as the base classifiers linking to a
meta-level boosting classifier. This modification avoids the
computation of the same features in many classic classifiers
and decreases computing time. PredPrIn provides automatic
feature extraction and reuses the processed annotations to
accelerate the subsequent experiments. Many proteins are
presented to PredPrIn less time it will take to execute the
prediction. PredPrIn supports many datasets being processed
at the same time. The user can define the available number of
independent processes.

PredPrIn produced values of area under the curve above 90%
for all six human datasets, and it also performed better than
recent prediction tools in other human datasets. It was able to
outperform in some non-human organisms. PredPrIn offers an
infrastructure to perform large-scale and efficient predictions.
The validation process can filter the new predicted interactions
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according to co-localization and text mining on biomedical
literature, complementing the PredPrIn classification. We
introduced a context filtering to avoid retrieving false positive
sentences which is a significant problem in PPI literature
extraction (Papanikolaou et al., 2015).

In summary, our workflow can efficiently and accurately
predict binary protein-protein interactions and scale
experiments with the flexibility to extensions in its
features generation core. Furthermore, our validation
process complements PredPrIn offering a way to execute
post-processing with a focused search of possible
interactions and evidence of them in relevant scientific
publications.
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